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3.4  Enter the following data into SPSS (lime, in minutes, taken for subjects in a fitness
trial 1o complete a certain exercise task):

31 39 45 26 23 56 45 80 35 37

25 42 k)] 58 80 71 s 16 36 21 LT
W oEE e KOO 48 3 37 9 The tabular description of data
27 39 7 31 56 28 40 82 27 37

Using SPSS select an appropriate graphing technique to illustrate the distribution.

: 5 ; 3 : A In the previous chapter we introduced the use of graphs as a means of displaying distributions.
Tustify your choice of technique against the other available options. P P Erep playing

The power of graphs is their simplicity; the visual impact of a graph can sometimes convey a
3.5 Cousider the followiag list of ptices, in whole dollars, for 20 used cars: message better than the most advanced statistics. The simplicity of graphs can also be their
weakness. We often do want to ‘dig deeper’ and extract morc precise understandings of the

W ““wmm WMMM o _%MMM _omwwm data than can be gleaned from a cbart. Obtaining a more detailed breakdown of a distribution
13,630 9400 10.200 12.240 usually begins with the construction of frequency tables.
11,670 10,000 12,750 12,990 e s

Frequency () Tefers to e number o fimesa particular score appears in & Se{of data. - 1T

From these data ¢onstruct 2 histogram using these class intervals:
. We will look at a variety of tables for presenting the frequency of scores in a distribution and
7000-8499, 8500--9999, 1000011499, 11500-12999, 1300014499, the cooclusions they allow us 10 reach about a variable. The tables we will cover are:

3.6  Construct a pie graph to describe the following data: « listed daza tables

Migrants in local area, piace of origin *simple frequency tables
Place - Number «relative frequency tables
Asia 900 < cumtlative frequency (ables
Africn o0 « tables with percentiles
Burope 2100 P

South America 1500

Other 30¢ Listed data tables

Tatal 6000

] . ] . In Chapter 2 we worked with the results of a hypothezical survey of students for three sepzrate
Whal feature of this distribution does your pie graph mainly illustrate? variables: age, sex, and health level. A table such as the SPSS data table we created in
Chapter 2 (Figure 2.20) is called a listed data table, since the score that each case bas for
each variable is listed separately. Such a tabic has as many rows as there are cases, and as
many columns as there are variables for which observations have been taken. A listed data
3.8 Use the Employee data file to answer (he following problems with the aid of SPSS. table, which presents the raw data for each case separately, allows us to calculate a variety of
(a) 1 want to emphasize the high proportion of all cases that have clerical positioas. 192. descriptive statistics, which we ,§.= encounter later. This is ir% SPSS uses listed data as
Which graph should I generate and why? Generate this graph using SPSS, and its ao_..:;ﬂ for daia ¢otry. However, listed data tables are not very _umwn.:u:é as :.a&o&_om
add necessary titles and notes. presenting %S, and, where we have a large number of cases, HEvBﬁ._nm_..mon 9@629 with
(b) Use a stacked bar graph 1o show the number of women and the number of men e hypothetical survey of 200 students space would prohibit the construction of a lisied data
employed in cach employment calegory. What does this indicate about the sexual table for these data.
division of labor in this company?
(¢) Generate a histogram to display the distribution of scores for current salary. How Simple frequency tables
would you describe this distributicn io terms of skewness? A more informative way cf presenting the data is 1o construct a simaple frequency €able (or

just frequency table), which presents the frequency distribution for a variable by tallying the
number of times ( /) each value of the variable appears in a distribution.

3.7  From a recent newspaper cr magazine find examples of the use of graphs. Do tiese
examples follow the rules outlined in this chapter?

A frequency table has in the first column the name of the variable displayed in the title row,
followed by the calegories or values of the variable down the subsequent rows. Tte second
column then presents the frequencies for each category or value.
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d.“o_. example, %_q data we used to create graphs in Chapter 3 can alternatively be presenteq
with a separate frequency table for each variable (Tables 4. 1-4.3).

Table 4.1 Sex of students

Sex Frequency (/)
Male 105
Female 93
Total 198
Table 4.2 Health rating of students
Heulth ratinp Frequency {)
Unhealthy 31

56

71

178
Table 4.3 Age of studeals
Age in yeary Frequency (/)
17 6
18 28
19 34
20 4]
2] 30
2 25
23 12
24
25 s
Over 25 4
Total 197

Source: Hypothetical student survey
Notes: Totals do not equal 200 due to incomplete responses for individual ems

These tables have the minimum structure that all frequency tables must display. Tsey mus::

*have a clear title indicating the variable and the cases for the distribution;

*have clearly labelled categories that are mutually exclusive; ‘

«indicate the total number of cases;

.E&Q.:o the source of data, as in Table 4.3 (in most of the tables that follow in this book
we .s:: not follow this rule, since they are generally constructed from hypotnetical data).

«indicate, where the total in the table is less than the number of survey Rm@oqan_._wximw
there is a difference, as in Table 4.3. -

Notice also that in Table 4.1 we have placed males in the first row and females in the
second. This may seem arbitrary given that, as this is 3 nominal scale, we can order the
mmﬁmo:_om (the rows of the table) in any way we choose We have placed males first because it
is commonplace with nominal variables to arrarige the rows so that zhe calegory with the
highest frequency (what we will learn 1o call the modey is the first row, the category with the
,qmwo_:k &._w\_m.n Jreguency is the seccnd row, and so on. The modal category is often of
muanw:m inierest when analyzing the distribusion of 32 nominal variable, and therefore it is
convenient to present it fixst.

With ﬁ\,.v_om 4.2 and 4.3. however, the ordering of the categories is restricted by the fact that
we are using ordinal and intervalfratio scales. For these levels of measurement, we generally
start with the lowest score in the distribution and then increase down the page. Thus 17 is
first row in Table 4.3, which is the lowest value for age, and then we gradually ‘ascend’ the
scale as we move down the table row by rcw,
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The other aspect to Table 4.3 tha: we should note is ¢the use of the ‘catch-all’ category of
Over 25. This is commox with iaterval/ratio scales that have a long tail of values with only a
small requency of cases (usually icss than five percent in ‘otal).

Example
The blood types of the 20 patents arc recorded in the following listed data table (TaSle 4.4).

Table 4.4 Blood type of respondents

Case numbor ____Blood lype Casge number Blood type
1 0 11 Q
b3 (o] 12 A
3 AB 13 B
4 A i4 (6]
5 A 15 (¢]
8 (¢} 16 A
7 A 17 G
S AB 18 A
9 A 19 A
10 A 20 B

To describe these raw data in a simple frequency table we construct a table with the
categorics of the variable down the first column aod the frequency with which each appears in
the disaibution down the second column (labelling each column appropriately) (Table 4.5).
We then tally up the number of times each category appears in the distribution; we find that
theze are seven people with type O, two people with type AB, nine people with type A, and
two people with type B.

Table 4.5 Blood type of respondents
Blood type Frequency .

A 9
(o] 7
B 2
AB 2
Total 20

Since blocd type is 2 comina. variable, we bave piaced tke categery with the highest
frequency (type A), which is calied the modal category, ix the [irst cow.

Relative frequency tables: percentages and proportions

Some extra information can be calculated as part of a frequency able, f required. This is the
relative [requency distribution.

In order to generate a relative frequency table, we need to acquaint ourselves with
percentages and proportions.

According 10 Australia’s census data (Australian Bureau of Statistics Census of Population
and Housing, cat. no. 2720.0) in 1986 there were 324,167 one-parent familics out of a total of
4,158,006 families. la 2001 there were 762,632 onc-parent families out of a total of
4,936,828. What does this tell us adout the changing pature of families? On the basis of this
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information we can say that there were more single-parent families in 2001 than in 1986,
Absolute numbers, though, do not tell us much about the relative change in single-parent
familics. If, however, | said that such families accounted for 7.8 percent of all family types ip
1986 and 15.4 percent in 2001, the pattern is immediately obvious: single-parent familieg
have become a relatively larger group. By calculating these percentages we have in effec
compensated for the different total number of families present in each year,

Percentages are Stafistics that standardize the fotal nuriber of cases 16 4 base valie of 00,77
The formula for calculating a percentage is:

% - £x100

n

where f is the frequency of cases in a category, and n is the total number of cases in |
categories.

We can sce where the percentage figures came from in the example by putting
(‘substicuting”) the raw numbers into this formula:

. 324,167 _ G . 762,632 o rE
1986: o iie 100 = 7.8% 2001 FEESex100 = 15.4%

It should be fairly clear that if I calculate the percentages for each family type in a given
year and sum them, the total will be 100 percent. For example, if I add the percentage of
single-parent families to the percentage of non-single-parent families in 2001, the total will be
100 percent; knowing that 15.4 percent of all families in 2001 were headed by  single parent
allows me to calculate quickly the percentage of families nos headed by a single parent:

100~ [5.4 = 84.6%

Propaortions are close cousins of sercentzges. A proportion (p) does exactly the same job as
a percerlage, except that it uses a base of | rather than 100. In fact, it is calculated in exactly
the same way as a percentage, excepl for the fact that we do got multiply by 100:

oo L

n

The result is that we get a number expressed as a decimal. io the example above the results
expressed as proportions are:

. 324167 _ . 762,632 _
1986: =erong ~ 0078 2001: oy = 0154

Generally, percentages are easier to work with — for some reason people are more
comfortable with whole numbers than with decimats. But in later chapters we will use

proportions extensively, so it is important to learn the simple relationship between proportions
and the more familiar percentages.

To convert a proportion into its corresponding percentige
._%%3r.w:mz._.aﬁmaha..Hmhc%.oe.
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This may all seem straightforward. There are some words of caution that need to .aa bome mn
mind, though, when working with propoertions and percentages, or when encountering them in
other people’s work. The first thing to look for when nomw.oa.;on_ with a va..nn:ﬁmmn oaa

oportion is the raw total from which they are ou_oc.pm_n&. ._z_”:m. is because percentages an
o ortions are sometlimes used to conceal dramatic differences in »cmo_iw M_No;.?n increase
w._.ohm uaemployment rate from: 10 to 10.5 percent Ao«m E_: seem &E:wao in mS:u,._o»_ terms.
But if this 0.5 percent represents 35,000 people it is, in socioeconomic terms, a _wﬁa increase. i

Conversely, a large change in percentage nms__.nw may be HSu_ i.ran working _<._:.: maﬂ
absolute numbers, The number of people attending a vBA%.E.m:Equ:ﬁ ﬂoo:am ﬂu<a e
150 percent greater than the number that attended the last meeting, but if this is an:..a y :.,o
to five people attending the recent meeting rather than the two who mﬂnnm_& :.u._n_ Enw_o:m onacm
it is hardly a dramatic rise. With small absolute numbers, small additions to ei dw: e fotal o
the categories that make up the total will greatly affect the percentage _._mfd calculated. 1

Now that we Lave familiarized oursclves with percentages acd proportions we caa use them
to construct relative frequency tables for the data we introduced 8._.__51 We czn add to Mr_m
table for each variable a columa that expresses the percentage (or unou.o..ﬁoav &. cases that fa
in each category. Table 4,6 shows the calculations _u<o_,.6n_ in b..og:mEm relative Am_.on_.._nno_aw
Of course, when actually reportiang results these calculations are not included, as i Table 4.
and Table 4.8.

Table 4.6 Sex of students

Frequency Percent (%)
e N 108 100w 53
Male 105 Toy X100=

93
—x100- 47

Femnale 93 T i
Total 193 100
Table 4.7 Health rating of students i
Health rating Frequency ] wn?m,wn: (%)
Unhealthy 51 5
Healthy WM. wo
Very healthy
._.OW_ 178 190
Table 4.8 Age of students
Age in years Frequency Percent (%)
17 6 _w
18 28 .q
19 M W
20 41 1
2 30 {s
22 25 13
23 12 .M
24 9 "
25 M A
Over 25 2
Total 197 00

Notice tha! the column of percentages must add up 1o 00 percent, mEnm ali cases must fall
into one classification or apother. Sometimes tables do not strictly foliow this rule when
numbers have been ‘rounded off’. For example, for a particular table exac: percentages to |
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decimal place may be 22.3%, 38.4%, and 39.3%. This may affect the readability of the table
50 the numbers are rounded off to the nearest whole number: 22%, 38%, 39%. These rounded
numbers add up to only 99%. Where this occurs a footnote should be added 10 {he table which
states ‘Mzy vot sum (0 190 due to rounding’, or words to that affect.

Cumulative frequency tables

With ordinal and interval/ratio data one further extersion to the simple frequency table can be
made. This is the addition of columas providing cumulative frequencies and cumulative
relative frequencies. Since ordina! and interval/ratio dzta allow us to rank-order cases from
lowest to highest, it is sometimes interesting 10 know the number, and/or percentage, of cases
that fall above or below a certain pcint on the scale.

Sometimes all the absolute and relative frequencies and cumulative frequencies for a
variable can be combined in the one table, as in Table 4.9, which shows the calculations for
the first few rows of the 1able.

Table 4.9 Age (in years) of students

Age Frequency Cumulative frequency Percent (%) __ Cumulative percent %
17 & 6 3 3
I8 28 36214 14 Y
157

19 34 344284668 1 Haels
20 a 414304284 6=109 21 LBl ss
2] 30 135 i3 7
22 25 164 3 83
23 12 176 6 85
24 9 185 5 93
25 8 193 4 98
Over 25 4 i97 2 130
Total 197 100

With the distributions summarized in this way, I czn now answer spec:fic research questions
that might be of interest. If ] was interested in how many respenden:s are 19 years of age of
younger [ simply look at the sum of cases in the first three rows of Table 4.9. The cumulative
frequency at this point is 68, which is 35% of all cases. Similarly, if 1 am interested ir. hew
many cases are over 19 years of age, 1 can see that since 35% are 19 or below, there must be
65% of cases (100 — 35 = 65%) above this age.

A common misiake in calculating cumulative percentages is to add the simple percentages
for each row. The percentage for each row of the table contains a potential rounding error, so
that adding these values up to get the cumulative percent may accumulate these reunding
errors. For example, if we add the individual percentages for ages 17, 18, and 19 years we get
a cumulative percent of 34%, rather than the correct figure of 35%, which is calculated
directly from the raw frequencies.
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Class intervals

One additional point needs to be made about working with interval/ratio data, 2s we have
been with the age distribution of students in our example, With interval/ratic data we often
use class Intervals rather than individual values to construct a frequency distribution.

b Lo e

for presentation and analysis. o

The point of using class intervals is to collapse data into a few easy-1o-work-with categories.
But this increase in ‘readability’ comes at the cost of information, and therefore should not be
undertaken if the data already come in a few, easily presented, values. In the example we have
been working with, measuning age in whole years already provides a ‘workable’ number of
values 1o organize the data into. It would not be useful to group these individual years ioto say
5 year class intervals, since this will only bide variation in the data that would otherwise belp
us answer our research question. We only use class intervals if the range of values is so large
that it makes presentation and analysis difficult.

We will use the data represented in listed format in Table 4.10 for the income of 20 people
to illustrate the usefulness of class intervals, and the general rules that apply to the
construction of class intervals.

Table 4.10 Weekly income of 20 survey respondents: listed data
Case number Income

B S0

2 NU
3 $250
4 $300
5 $360
a mu:m
g
»
¢

3400

$400

$400
10 $420
i $425
12 $450
13 $462
14 $470
15 $475
16 $502
17 $520
18 3560
19 $700
20 $1020

We can see that, even where we rank-order the cases from lowest to highest, a listed data
1able is not a useful summary of the data: a table with 20 rows of individual numbers does ot
get us far.

We can instead produce a simple frequency table by indicating the total number of cases that
have each value of the variable contained in the data (Table 4.11). This frequency table has
condensed the data slightly, but overall it has not simplified matters for us. We have s0 many
individual values appearing in the distributior that when we use each one separately to group
lhe cases, we still have a table with ao impractical oumber of rows. To describe the data in a
more meaningful way, we clusier together ranges of values for people’s income and indicate
the 1otal monber of people that fall within each range (Table 4.12).
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Table 4.11 Weekly income of 20 Survey respondents: sumple frequency table

Frequency
@u}v/

i
I
1
I
3
1
1
{
!
|
i
1
r
I
|
1
0

2

Table 4.12 W. d
e 4 Veekly wncome of 20 survey respondeats: frequency table with class intervals

Frequency

2

0

0
$301-400 I
$401-500 3
$501-600 9
3601 or more 3
Toual NM

We 2 8 Y i
can see that the ‘compact’ version of the data distribution in Table 4 12 is easily

interpreted. We can immediatel 3 i
et y observe the high frequency of ithi
class nterval. We can also see the spread of scores across the _._W.RZM_“M& TR A

Yy
) ave s—._G same Q—_u N_EO: a ¢ lower and pper end
O.l__n—m: G~N.Mm Intervals M__Dcmﬁ __ w1 nd u

especiall i i 1 oy
Joﬂn_‘ . “_.wupwn.ﬂm_ﬁacocm_“_Mmm:wwmwmﬂmwmﬂnw.nwn imn__nq n_an n__am intervals the ammm“..:mwm.mo..w
ki » but _ mmunicated. For example, if
_om__j%“o“ww_”un_awnwwww EM_ﬁ._M, (i.e. m.Tmoo. $201-400, etc.) a great deal ow E?:M\MMMWMM_EMM
ool M% 1 nﬂ;m in terms of ::.u variable of interest, such as the person whe
Cebiics Oa:ﬁ.mzu _.von_: who _.ao._u_.\& MM%AS weekly income, will now be considered ..o
e ¥, when ao:oa:am.ﬁ::& nto class intervals we [ose information on the
W the data, and the wider the Intervals the greater the loss of information
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Conversely, if we have a very narrow width for the class tatervals in a table we will be able
:0 detcct more variation in the data, but we will not simplify the data in a manageable and
readable way. For example, if we used class intervals with a width of $50 for our income data
(i.c. $1-50, $51~100, etc.) the number of rows in the table will not reduce down into the
readable form we are after.

When construcling class intervals we need to ensure that the intervals are mutually
exclusive. Thus in choosing $100 as the width of the class intervals in Table 4.12 the class
intervals are $1-100, $101-200, $201-300, etc. Notice tha! the upper stated limit of each
interval does not ‘touch’ the lower stated limit of the next interval: there appears to be a gap
between 100 and 101, 2G0 and 201, 300 and 301, 2nd so on. Won’( some cases fall down this
gap aod not be included in any interval? Provided that the unit with which the variable is
measured is the same as that used to construct the class intervals, all coses will jall into one
ciass or another. We will be able to account for every case, in this example, because [ have
chosen to measure income in terms of whele dollars. Someone is in cither the $1-100 group
or the £101-200 group. A person cannot fall in between because of the units in which income
is measured: no one can have an income of $100.63, simply because we have not measured
income at that level of precision. [f income is measured in a more precise unit, such as doliars
and cents, the class intervals will then have to be expressed in dollers and cents as welf 1o
ensure the categories can ‘capture’ all possible scorcs.

Aoother concept that will be used when working with class intervals in later chapters is the

mid-point (1) of the interval. The mid-poiot is the sum of the lower and upper limits divided

by two:

mid- point = lowerlimit m upper limit

For example, the mid-point for the class interval $1-100 will be the sum of $i and $100
divided by two:

a-ﬁu_Buaﬁc

Thus the frequency tabie for the data in Table 4.12, with stated limits and mid-poiats, is as
shown in Table 4.13.

Table 4.13 Weekly income of 20 survey respondents

Weekly income Mid-point Frequency
$0 S¢ 2
$1-100 $50 30 2
$101-200 $150.50 ']
$201-300 $250.50 1
$301-400 $350.50 3
$401-500 $450.50 9
$501-600 $550.50 3
$601 or more $650.50 2
Total 29

The reason for Jaboring through this process of calculat‘ng limits and roid-poiots for tables
using class intervals may not be immediztely obvious. However, it does affect the types of
calculations we might want to generate on the basis of such tables, as we will see when we
come to Chapter 9. Some familiarity with thei- coostruction cow will ke'p us later.
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Example

A drug is administerec to a sample of 50 pat; i i
. patients and the time elapsed (ia sec
drug has an effect is recorded for each paiient. These times zre: poec (i ze00ncs) before the

78,37, 99, 66, 90, 79, 80, 89. 68, 57, 71, 78, 53, 81. 77
T an o oo 20 3908, 97, 71, 78,53, 81,77, 38, 93, 79, 98, 7€, 60, 77, 49, 92
80,74, 69,90, 62,84, 74,73, 48, 75, 98, 32, 75, 84, 37, 55, 59, 63, 86,95, 55, 70, 62, ww wwuv

To construct class ntervals for these data | have to define my intervals in the same unit of
QmumEaEwE as the raw data, which in lhis case is whole seconds. I also have to sel o_
interval widths that are neither 100 wide (which will conceal variation we are interested -~
nor too small A.«.\Eo: will not adequately condense the data into manageable geoupings) .3“3
often takes a little trial and zrror; here I will choose ten secand intervals which Mmm e
hopefully agree after iospecting Table 4..4, provide an appropriate m.._:::m._.w of Eo..&mﬁf: i

Table 4.14 Drug responsc umes

Mm_m : w. ntervals (seconds) Frequency
46—49 w
50-59 N
60-69 8
70-79 15
80-89 1¢
90-99 8
Total 5S¢

The concentration of scores ;45...:5 a namrow range of times is now clearly evident, as well as
the spread of scores around this range. ‘

Percentiles

go:_n.« corumon way of grauping interval/ratio data intc manageahl i
with the construction of percentiles. Instead of using the <m._=8mozsm wmmuﬁﬂaw%””_ﬁ.oa“nw
we :,y.a w. wﬁn_o:_,\: percentage of cases to coostruct a table. The set of cases is gw%:_na.n_“
and ‘spiit _nuo the number of groups of equal size defined by the chosen percentage. For
@SSU._P deciles divide the cases into ten equal groups each containing 10 percent omn.mmnm.
n:»l.__.,u. use four groups each containing 25 percent of cases, and quintiles, used in Tabl .
4.15 te display Go. distribution of income among Australiaa households in ucogwls into :<M
groups cach ao.n_m.:m:m 20 percent of cases (ABS catalog no. 6523.0). This table Erk-o&n&
all ro:m.&o_% I terms of inceme, from the poorest to the richest, and then splits them into $
equally sized quiatiles. The first quintile comprises the 20 percent of households that are th
poorest, the second decile comprises the next 20 percent of households, through to th t..zm
quintile, which comprises the cichest 20 percent of bouscholds. ‘ i

Table 4,15 Equivalized disposab.e household income, Australia 2002—03

m_.bN: ._.< m“__ﬁ. Share of disposable income %%
Second _w M
Third 176
Fourth 23.7
Highest 333

, ._,.ﬁ_o m.rwﬂn of Eoo_ﬂo beld by cach quintile gives a sense of income distribution at this point
I time: income is not equally spread across households (according (o this measure).
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Freguency tables using SPSS
SPSS can geverate the same (ables that we created ‘by hand’ above (Table 4.16, Figure 4.1).

Table 4.16 The Frequencies command on SPSS (file: Chi4.sav)

Comments

This will bring up a dialog box headed Frequencies. This will
oontain an area with a list of the variables for which data have
been entered

A numbcr of froquency tables can be generaled simultancously
by pasting more than one variable into the Variable(s): box.
Here we waat all three vanables, so we will paste all of them
This will paste the selected variable(s) into the area below
Variable(s):, which is the list of variables for which a frequency
table will be generated

PSS command/action
1 From the menu select Analyze/Descriptive
Statistics/Frequencles

7 Select the variable(s) to generate a frequency
1able for by clicking on their name(s)

3 Clickon»

4 Click on OK

@mﬂuq.s...f_.?r_
@ Health raling [heath]
@ Age in years [age]

wﬂn:.ws 4.1 The Frequencies dialog box

Notice the appearance of the dialog box in Figure 4.1. {2 has some features in common with
most of the dialog boxes we will eacounter in later chapters so we will take a moment to note

these.

*On the left of the box is an arez with a list of the variables created in the Data Editor. This
is called the source variable list that provides the list of variables we can analyze using the
particular command we have chosen from the mepu (io this instance we are using the
Analyze/Descriptive Statistics/Frequencies commaad).

*On the right is another area which is initially blank, but which eventually contains the
variable(s) we have actually chosen to analyze. This is called the target variable list.

= Variables can be moved back and forth from one list to the other, as we have done here, by
clicking on them and then clicking on the » button between the two lists.

*Many of the dialog boxes we will encounter bave default settings. These are options that
are¢ preselected by SPSS; they will automatically be used when the OK button is clicked.
For example, in the Frequencies dialog box you will notice a tick mark, v, in the tick-box
next w Display frequency tables. This indicates that a frequency table will automatically
be generated for each of the variables pasted into the target vanable list. SPSS does not

have to be specifically asked to generate the tables. If we did not want a frequency table to
be generated for each of the 1arget variables, we would click on this box to remove the tick
mark. If at any poiot you want to retumn to the default setiing for any given dialog box so
you can begin a procedure from scratch, click the Rese¢ button.

* There are a number of butions available providing options that add to or refine the basic
settings. Here we can also generate Statistics and Charts, and include Format options.
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The instructions in Table 4.16 produce a table for each varable with raw, relative ang We can immediately compare these tables with the ones we generated *by hand’ above to
Ppiianye fequengios (Blgar 4.2), confirm that all the figures are the same. The usefulness of the value labels that we specified
in Chapter 2 should now be obvious. If we had not specified that 1=female and 2=male, for
example, then the first able would not have these value labels printed along the left. Thus we
Frequencles might be left scratching our heads or hunting back through our notes to remember which
category the value | represented and which czlegory 2 represented. Here we have all the
information priated with the output.

Statist s . .
= There are two limitations to SPSS tables (0 which attention needs to be drawn.
Sexof student | Health rating | Age inyears
N Valig 198 i78 197 iy T . <
Nissing 2 7 3 «1f a calegory in the distribution has a zc:o frequency, even though it has been given a value

label, it will not appear in a frequency lable. For example, if there were no students in the
survey who rated themselves as Healthy, SPSS will omit this category from the table,
Frequency Table ratber than print it with 0 in the frequency columa.

«Cumulative frequencics are gencrated with a table even when they are not appropriate.
Curulative frequencies are not approprate where we have a nominal scale, since the

S e ordering of the categories is not fixed. Since the points on a nominal scale are not ordered
T _:,é_%mw‘ Eammw Valig 1&””_“ owﬁ_“_w.____..t ¢ it makes 2o sense (0 talk o.m the number or percentage of cases up to a certain now.u_ on ..._5
e it i o A“M..M m..um_m; O::.E_mn_su mnonzom_n_nm are zlso nm: approprate E_n.m,.wn there are only two calegories,
Total 198 290 J960 ! since tbe simple frequencies and cumulative frequeancies will be the same.
Misslag  Diy not answer 2 1.0
o M| 1o Valid cases and missing values
If you look clasely at each table in the SPSS oulput you wili see that there are columns
Vealth rating headed Percent and another headed Valid Percant The reason for printing these twa columns
T e i the frequency tables arises because datz sometime im_.._n_n cases for which a .,\uJNEa has
T :2%._“ E;M_u valg vewmd Percent not been adequately Bmﬁfﬁ_. These are called, as we A__um.:mmon_ in Chapter 2, missing cases,
Healthy 5 o s MM_N and the presence of missing cases will cause the values in the Percent and Valld Percent
Very healthy n 85 108 N columns to diverge. The number of valid cases is equal to the total number of cases minus the
Total 78 99.0 100.0 number missing:
Missing  Don't know 18 90
Did not answey
Total _ Hw :Mm valid cases = lotal cases — missing cases
TJots! 200 1000
For example, we can sec from the SPSS output that 2 students did oot answer the question
asking for their respective sex. Ia setting up the SPSS file, you will recall, these responses
Agu Inyzars were coded as 3 for purposes of data entry, and the label ‘Did not answer’ attached to this
susinnss | vasn | | S ooan.ﬁch which was then mnn.Emn_ as a missing <w_:n. .:m_n result is that .._z..\ Percent column
Valld 17 5 30 30 30 provides the percentage of cases in each category, including tha! for the missing value, as a
18 28 14.0 142 173 perceniage of all 200 cases. The Valld Percent column, on the other hand, calculates the
- . M.M _u.w“ aus percentage of cases in each category, excluding the missing values, based on only the total
2 3 150 162 HM number of valid cases (lbe summary Statistics table a1 the top of the SPSS output
7 2% 125 127 832 summarizes, for each vanable the number of total valid and total missing cases).
M.u 12 6.0 6.1 89.3
2 N “M “w ”ww Tmproving the look of tables
mw _N M..m :M MWM You may regard, as I do, the {ormat of basic SPSS tables not o be of ‘report qualicy’. They
39 1 5 5 AEES obviously oeed some tidying up, such as the removal of unnecessary decimal places and
s, w_uﬁzgg. ! DM_M 100.0 changes to the layout of text and data. One option is to create a blank table using a word
Tolal 200 Jo00 processor, intc which we enter the results from the SPSS output. An alternative is to use the
SPSS formatting options to improve the look of tables and then export them into a report. To

. ) . : : . : Rt
Flgure 4.2 SPSS Frequenci explain Bow to do this would lake us beyond the immediate needs of this text, but
Bure requemcles outpat ipterested, a guide to formatting SPSS tables is included oo the accompanying CD.
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EXxercises

4.1  How does a proportion differ from a percentage?
42  Why will a proportion always be smaller than its equivalent percentage value?

43  Convert the following propertions into percentages:

(2)0.01 (b)0.13 (€)1.24 (d) 0.0045
44  Convert the following percentages into proponions:
(a) 12% (b) 14.4% (c) 167% (d) 4.5%

45  The following data represent lime, in minutes, taken tor subjects in a fitmess trial to
complete a certain exercise task.

31 39 45 26 23 56 45 80 35 37
25 42 32 S8 80 71 15 16 56 21
34 36 10 38 12 48 38 37 39 42
27 39 17 31 56 28 4¢ 82 27 37
The heart rate for each subject is also recorded in the same sequence as (heir respective
{me scores:

63 89 75 80 74 65 99 85 92 84
74 79 93 91 87 76 82 90 93 77
74 89 85 9] 102 69 87 96 83 72
92 83 35 68 78 73 B6 85 92 90

(a) Using the class intervals 1-9, 10-19, 20-29, and so on, organize the data for cach
of these variables into frequency tables, displaying both raw and cumulative
frequencies and percentages. What are the mid-points of these class intervals?

(®) Open the file you created as pant of Exercise 2.2 to store these data. Using the
SPSS Recode command, generate a frequency table with these class intervals.

4.6 The following cata indicate attendance at selected cultural venues across eight regions:

Region People attending puble librarics People attending popular music concerts
A 1409 1166
B 1142 370
C 713 604
D 413 280
E 497 332
13 130 99
G 20 82
H 38 74
Total 4342 3456

For each of (kese variabies calculate the relative frequencies for each region.

47  From a recest newspaner or magazine find examples that use the techniques outlined
in this chepter. Do these examples follow the rules of description outlined here?

4.8 o Exercise 2.1 you created an SPSS file lo store the data for the example we used in
the text for tae weekly income of 20 survey respondents:

$0, $0, $250, $300, $360, $375, 3400, $400, $400, $420, $425, $450, $462, $470,
3475, 3502, $520, $560, $700, $102¢

T

4.9

4.10

4.11
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(a) Open this file in SPSS and generate a simple frequency table,
(b} Using the class intervals we employed in the lex( above, geaerate a {requency
table.

In Exercise 2.3 you created ac. SPSS file {or the following deta;

Televisior: watched per night Mzin channei watched Satisfaction with quahty of

(In minutes) programs
170 Commercial Very satisfied
140 Public/gevernment Satsfied
280 Public/government Satisfied
65 Commercial Very satisfied
180 Commercial Not satisfied
60 Cammercial Not satisfied
150 Public/govemment Satisfied
160 Commercial Not satisfied
200 Public/government Satisfied
120 Commercial Not satisfied

(a) Geeerate a frequency tabie for each of these variables.

(b) Recode mirutes of TV watched into categaries of less thac 100 minutes, and 100
minutes or nore. Generale a frequeocy table for this new variable. What is its
level of measurement?

Using the Employee data file on the CD that comes with this ook, geverate
frequency tabies that will allow you to determine:

(a) The number- of employees that are from minariry groups.

(b) The percentage of employees that are from a minority group.

(¢) The percentage of eraployees with !5 years of education or less.

(d) The percentage of empioyees whose starting salary was greater than $17,100.
Using the Employee data file collapse the beginning salary daa ioto appropriate class

intervals using the Recode command. Justify your choice of interval widith, and
determine the class mid-points.



Using tables to investigate the relationship between
variables: Crosstabulations

The previous chapter discusses the way in which frequency tables can be used o describe the
distribution of a single variable, This chapter extends the usc of frequency tables to situatiors
where we are interested in whether /wo variables are related. This is similar to the way we
extended the use of graphs from the univariate context to the bivariate context in Chapter 3,
thus allowing us to investigate whether a relationship exists between two variables.

Crosstabulations as descriptive stanistics

We began Chapter | with the (cllowing research questions:

‘What s the health status of the students in my statistics class?’

‘Is there a relationship between the health status of the seudents in my statistics class and
their sex?’

‘Is any relationship berween the heslth status and the sex of students in my statistics class
affected by the age of the students?

A simple frequency table allows us (0 describe the distribution of individual variables s0 that
we can address questions such as the first of those listed above. Having dealt with this simple
univariate question we are now ready to tackie the more complex bivariate problem presented
in the second question. It may help at this point to return to the discussion of bivariate
analysis in Chapter | before proceeding, where we emphasized the need to distinguish
between the independent and dependent variables in the relationship.

We suspect that there is a relatienship between health status and sex of students, and if there
is such a relationship, it must be a one-way relationship running from the sex of the students
to health status (it is not possible for the reverse to hold and the sex of studeats to be
dependent on their respective health status). In other words, in our model, sex of students is
the independent variable and health status is the dependent variable. Remember though that
this is only a supposition for what we expect to find. The ‘real world’, or at least the data we
gather from it, may not agree with this expectation. The two variables may not be related,;
instead they may be independent of cach other. How can we organize the data we collect to
inform us whether our model is correct or whether the two variables are in fact independent?

We introduced data for a hypothetical survey of students that included measurements for
these two variables. Each student has a value assigned to them indicating their sex and
another value indicating their health stats. How can we organize these numbers in such a
way as to reveal any relationship thal may exist between the sex of a student and health
status?

We could use the univariate methods we leamnt in the previous chapter to construct separate
frequency distributions for each variable (Tables 5.1 and 5.2). It is clear that these separate
univariate frequency tables do not help us much. It is impossible to assess whether there is a
relationship between the two variables, which is the 2im of our research question.
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Table 5.1 Frequency distnbuticn for sex of students

Sex _40_.n_%mn-_n<
Male

Female , Mm
Total -

Table 5.2 Frequency dss:ributior: for kealth status of students

Heaslth rating Frequency
Unhealiby S1
Healthy 56
Very healthy 71
Total 178§

To capture any possibie relationship that may exist between variables measured 2:.._“ scales
that heve only a few poitts we use a bivariate table, which is also known as a contingency
table or crosstabulation (or ‘crosstab’ for shon).

pivariate table diSplays the jomtireque

The crosstabulation for the data we have (hypothetically) collected is presented in Table 5.3.

Table 5.3 Health rating by sex of students

i Sex
Health ratin
“ i , Female Male Total
G
Unhealthy 34 i6 Ma
Healthy 29 27 -
Very healthy 17 54 _qw
Total 30 9

Sourze: Hypothetical student survey. ) 2
Note: 23 students did not provide responses for either or both vaniables

A crosstab shows the joint frequency distribution for rwo variables, since we can ‘read ofl
the score any given case bas for each of the variables simultaneously. Looking al Table 5.3,
for example, we can see thal there are 34 students who are both female n.:& rate _._.__n_...ao_,,..ou as
unhealthy. Since bivariate tables describe data in a way that reveals this joint distribution, it
allows us (0 investigate whether two variables are related.

There are certain rules we follow in the copstruction of a bivariate table:

*Give the table an appropriate title. A crosstab should always have a title with clear
labelling for both variables and the cases described by the Bv_n., .

*Clearly label the rows and columns with the variables described and the categories that
make up each scale.

.\““R.&W the source of data. This s usually done in the text immediately before or afler the
table, or as a footnote attached to the table (as in the example shown E Table u,u.g, .

* Note any excluded data. As with tae source of data this can be done i the text immediately
before or after the table, or as a foamote attached to the table. . A

* Place the appropriate variables in the rows and columns. If there is reason 1o _un_._ne.q :m,:
the two variables are not only related to each other, but that ooe of the variables is
dependent on the other (a onc-way relationship), the independent _.Slaim_.ta_i& be
arranged across the columns aod the dependent variable &c§ the rows. In this E@..EE@
we have specified that sex is tke independent (columo) vanable and health status is the
dependent (row) vanable.
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*For scales that can be ranked. ensure the scale increases down the rows/across the
columns. Notice that one of the variables, ‘Health rating’, is ordinal. Thus the categorieg
that make up this scale can be ordered from lowest 10 highest. We therefore place the
lowest point on the scale, the ‘Unhealthy’ category on the first row so that the scale
increases down the page until we reach the highest point on the scale, which is the ‘Very
healthy’ category.

In discussing the use cf crosstabs as a means of describing data, we need to become familiar
with some terminology:

*The size and dimensions of the table. The size of the tabie is defired as the number ¢f
categories for the row variable times the number of categories for the column variable. |
this example there are three categories for health siatus and two categories for sex,
producing a 3-by-2 table. If health status was measured o1 2 four-poirt scale, on the cther
hand, the dimensions of the tablz will be 4-by-2.

* The cells of the table. Each square in the table :hat contains the number of cases that have a
particular combination of va.ues for the two vaniables is called a table cell.,

* The marginals of the rable. The entries in the Total column are called column marginals
and the entries in the Total row are called row marginals. These provide the frequencies
fcr the categories of cach varizble, much like the simple frequencies in Table 5.1 and 5.2.

Types of data suitable for crosstabulations

We use crosstabs to describe the relationship between two variables whose variation is
cxpressed in only a few categories. Thus the most straightforward instance for using a
crosstab is where both variables ace measured on scales that respectively have only a smell
number of points. That is, regardless of the level of measurement, we use crosstabs if the data
do not range over 100 many scores. As a rule of thumb, if each variable is measured on 2 scale
with five or less points, the data will directly “fit” into a crosstabulation. The data we used
above for the relationship between sex and health rating is an example: sex bas only two
points in its scale of measurement (male and female), while health rating only has three
(unhealthy, healthy, and very healthy).

The raw data we work with, however, do not always come neatly packaged into a small
number of scores. A slightly more complicated situation we sometimes encounter is where
one variable has only a few points of variation in the data, but the other has many points.
Imagioe, for example, that instead of the simple scale we used above we measured health
status by asking students to rate themselves on a 10-point scale that ranges from ‘Very
unhealthy’ at one extreme and ‘Very bealthy’ at the other. If we try (o present the raw data in
a crosstab with the sex of students, the table will have ten rows (excluding the Total row)
rather than the three that exist in Table 5.3. Such a table would be 100 big to easily interpret.
Where one variable has only a few points of variation but the other has many, we cannot fit
the original scale into a crosstab; we need to aggregate scores into broader groups (using the
SPSS Recode command detailed in the supplementary chapter on the CD supplied with this
text). Thus if I had a 10-point scale for health status and want to express its relationship with
students’ sex in a crosstab, I will collapse some of the scores together so [ end up with fewer
categories. Similarly, if I wish to see if there is a relationship between health rating and a
student’s age, [ would need to group students together into broader 2ge groups.

The only exception to this is where [ have two variables that are bofh measured on interval/
ratio scales and the data contain many values. I could conceivably collapse the values for each
variable into broader groups, but a better option is to waork with the original scales and use 2
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scatterplot rather than a crosstab to display agy possible relationsbip between the two
yadables (and calculate the measures of correlation specitic to such data). We will explore
this method of data description in Chapter 12,

Crosstabulations with relative frequencies

We constructed the crosstab 10 see if 8 student’s health status was dependent or their sex.
Looking 2t Table 5.3 we see that males do in fact tend to rate themselves as healthier than
femalcs, lending support to our theoretical model of (he relationship. The probiem with
relying just oo this table, though, is that the total oumber of females and total sumber of males
are not equal. Thus there are more males rating themselves as ‘“Very healthy’, partly besause
they do so 2t a higher rate than females, but also partly becsuse there are simp.y more males
in the sample. We can compensate for this and improve our abiiity to draw out any possible
relationship contained in the data by calculating the relative {requencies, raiher than just tke
absolute number of cases in each cell. The relative frequencies based on columnn totals (with
calculations for the females) are as given in Table 5.4.

Table 5.4 Health rating by sex of students: Column percentages

Health rating ; Sex

Female ____Male Total
Unhealthy M_\. - 43% 16% 284,
Healthy w:g- 36% 28% 32%
Very healthy m,_a- 21% 56% 40%
Total 100% (30) 100% (97) 100% (177)

Thus 43 percent of the total number of females rate themselves as ‘Unbealthy’. Note that in
the cells of the table we only included the percentages. We therefore have also included in the
marginals the total number of males 2ad females from which these percentages are calculated.

The crosstab can, zlteratively, provide the relzlive frequencies in terms ol the row totals, as
shown in Table 5.5, which includes {be calculations for the ‘Unhealthy’ group. We can
immediately scc from this that 68 percemt of fhe fofal number of studenis rafing themselves as
unhealthy are female.

Table 5.5 Health rating by sex of students: Row percentages

Health rating Sex

. Female Malg “Cotal
Unhealthy m “100- 68% m 08 - 32% 100% (50)

Healthy 52% 48% 100% (56)

Very healthy 24% 76% 100% (71)

Total 45% 55% 100% (177).

Sometimes we can combine in one table the raw data aud the relevant percentages by adding
extra columns or rows. The appropriate structure depends on the context in which the data are
being used and the intended audience. As 2 general rule, where we have the independent
variable across the columns we are usually interested in generating the column percentages.
In bivariate anzlysis, we compare the groups formed by the independenl variable (in this
instance males and females), sc the relevant percentages 1o calculate are based on the total
number of cases in each of these groups, which should be arranged across the columns.
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Crosstabulations using SPSS

The data from the previous example have been entered in SPSS, so we can see how to
gencrate crosstabs (Table 5.6, Figure 5.1).

Table 5.6 Generating crosstabs on SPSS (file: Ch05.sav)

SPSS command/action Comments
[ From the menu select Analyze/Descriptive Statistics/ This brings up the Crosstabs Q..s_o.m box
Crosstabs
2 Click on the variable in the source list that will form the This highlights Health rating
rows of the tble, which in this case is Health rating
3 Click on » that points (o the target list headed Row(s): This pastes Health rating into the Row(s): target s
4 Click on the variable in the source list that will form the This highlights Sex of student

columns of the table, which in t

case is Sex of student

3 Click on » that points to the target list headed This pastes Sex of student inio the Column(s); tarput
Column(s): list

6 Click on OK

® againyeus fage)

Health raling * Sex of student Crosstabulalion

Court
Sex of student
Femals Male Tota!
Health  Unt.ealthy 2 23 45
rating Healthy 41 20 81
Very healthy 17 54 71
Total 80 97 177

Figure 5.1 SPSS Crosstabs dialog box and output

The crossiabs command can be extended to provide relative as well as absolute frequencies.,
Thus option is selected by clicking on the Cells button on the Crosstabs window, This will
bring up another dialog box headed Crosstabs: Cell Display (Figure 5.2). This window
provices the oplions for deciding how much information each cell will contain. The default
seiting, which we just used, is for the cells to contain the raw count only. If we want the row
percentages in addition to the raw count we click on the small square nex:! o Row. This will
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place a v in the check-box to shew that it is selected. Similarly, if we want column
percentages we click on the check-box next to Columu. Figure 5.2 also illustrates the output
that results if we select column percentages only.

Healkth cating * Sex of student Crasstabutation
% within 8ex of student

Sex nf gtudent
Femalg M ale Total
Heamx ~ Unhealthy 25% 165% 28.2%
mine Healihy 36.3% 278% 31.6%
Vaty healthy 13% 557% 401%
Total 100.0% | 1000% | 1000%

Figure 5.2 The Cell Display dialog box and SPSS crossiab output with only column percenlages

Intcrpreting a crasstabulation: The pattern and strength of a relationship

We have introduced the construction of 2 very important descriptive tool in research: a
crosstabulation. Its importance rests on the fact that so much data collected in research are
data that only have a small sumber of categories or values. Having transformed a set of raw
data into a crosstab, the task is then to inierpret it — to assess whether it reveals that a
relationship exists between the two varizbles. Wheo interpreting a relationship evident in a
crosstab we generally look for two features:

¢ patiern
« strength

These aspects of a relationship are clearer if we Lighlight the modal cell for each column
{Table 5.7).

Table S.7 Health rating by sex of students

Health rating Sex
Femal, Male Totel

Unhealthy 3 ik o e 16% 28%
Healthy 36% 28% 32%
Very bealthy 21% T FENDSY 40%
Total 100% (30) 100% (97) 100% (177)

By highlighting the modal cell for each column we can see that there is a relationship.
Looking at the relative frequencies it is cvident that nearly half of all fernales sampled rate
themselves as unhealthy, whereas over half of all males rate themselves as very healthy. Thus
we can interpret the table as suggesting a relationship exists between sex and health starus,
and the pattern of this relationship is that males perceive themselves healthier than females.

We can also assess the strength of this relationship by looking at the proportion of cases in
each column ‘captured’ by the modal cell in each column. We can see that while the modal
category for females is unhealthy, more than half fall into the other two categories. Similarly,
while the majority of males rate themselves as very healthy, a large percentage (44%) of them
do not. This result indicates to us that the relationship between health rating and sex of
students is not very strong.
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Interpreting a crasstabulation when both variables are at least ordfnal

The previous sections discussed the construction of a crosstab, and how we go about
interpreting any relationship revealed by such a crosstab. We looked at an example where we
had one nominal variable (sex of students) and one ordinal variable (health status). The ruley
and procedures we learnt in this instance apply generally to the construction of a crosstab with
variables measured at any combination of levels.

When both variables are measured at [east at the ordinal level, however, the interpretation of
the pattern of a relationship found in a crosstab can be taken one step further to incorporate a
discussion of the direction and the consistency of the relationship.

Direction of the relafionship

Notice that in the previous discussion of the relationship between the sex of students and their
health rating we concluded that health is related ‘o a student’s sex such that females tend to
rate their health lower than males. Because we are working with at least one variable that is
measured on a nominal scale (sex of students) we can’t talk about an increase or decrease in
health being associated with an increase or decrease in a student’s sex. [t makes no sense to
talk about students’ sex increasing or decreasing.

When both variables are measured at least at the ordinal level, however, we can talk zbout
the relationship having either a positive or negative direction.

For example, we might be interested in the relationship between income and the amount of
TV someone watches. The amount of TV a person watches is measured by asking each person
whether they watch TV ‘pever’, ‘some nights’, or ‘most nights’. Income is measured by
grouping people according to whether they are low, medium, or high income earners. With
both variables now measured at an ordinal level, if we do find that a relationship does indeed
exist, we can talk about the direction of the relationship.

Assume that we have gathered data from 300 people measuring their respective incomes aad
the amount of TV they watch. We suspect that if there is a pattern of dependence between
these two variables it will run from income to TV watching. Thus we will arrange the table
with income (independent variable) across the columns and TV watching (dependent variable)
down the rows.

All the rules we discussed earlier with respect to the construction of a crosstab still apply.
But with both variables measured on an ordinal scale there is one important additional rule.
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Table 5.8 Frequency of TV waiching by income

watching Income .
L Low Medium High Total
BE 10 100
Never 15% 1%
. T 7 100
1e nights 20
" 19%
Most nights 16 100
10% R
Totzl 105 100 300

To help with the interpretation of the table, as in our earlier example, we highlight the modal
cell for each column. We can immediately see that there is a relationship between these two
variables, in thal as income increases so 100 does the amount of TV watched, Thus we bave a
positive relationship. [f the modal cells were all lined up along E.o 2:.2 diagonal, from
High/Never to Low/Most nights, the table will describe a negative relationship.

Consistency of the relationship

[n addition 1o discussing the direction of the relatiouship, when working with two ordinal
variables, we can also look at whether the relationship is cansistent. Notice that all the Bom_»_
cells in Table 5.8 are arranged along the pos:tive diagonal, so that there is smooth progression
in the relationship across the whole range of values. Such a pattern of dependence is called a
consistent relationship. If on the other hard we observe the results contained io Table u,& we
will still coaclude that (kese is a celationship between the two variables, but we describe it as 2
non-consistent relationshlip.

Table 5.9 Frequency of TV watching by income: a non-consistent re_ationstp

TV watching [ncome _
Low Medium High Total
: 0
Nev i 15 10
. 12% 15%
Some Tights . 20 9 100
19% 9% 70
Most nights 10 15 100
’ B 10% 15%
Total 105 . 95 100 300

We can see that at the low end of the income scale, as income rises TV watching also
increases, but that the relationship reverses as we move further up the income scale,

Example

Research is condusted to see whether the English proficiency of migracts from non-English-
speaking backgrouads improves over time. Englisb proficicocy is rzted by a standard <w.&u_
assessment test as ‘very poor’, ‘poor’, ‘average’, or ‘aSove average’. Length of time since
migration is measured by classifyiog ncigranis zs being resident for ‘less than | vaw_u_
‘between 1 and 2 years', ‘25 years’, or ‘over 5 years’. [n totzi, 690 migrants of non-Boglish-
speaking background are surveyed .

The raw data from this cesearch are the 1380 numbers indicating for each person their
English proficiency and their length of time since migration. These raw data arc described in
the contingency Table 5.10, which provides the relative frequencies as column perceptages
and also highlights the modal cell for each column.
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The first point 10 note is the construction of Table 5.10. It is clear that if these two variables
are related, the appropriate model for this relationship will be one-way dependence with time
since migration as the independent variable and English proficiency as the dependeat variable.
There is no sense in which we could argue that the reverse is true: it is not reasonable to argue
that English proficiency somehow determines how long someone has lived in a country. Thus
we have placed time since migration along the columns, and English proficiency down the
TOWS.

Table 5.10 English proficiency by time since migration
Time since migration

English proficiency

= 1 year of less 1-2 years 2-5 years Over 5 vears Total
Very poor 0% 35% 5% 4% 184
Poor 0% 50% 10% 9% 154
Average 8% 1% & B0t e T 322
Above average 2% 4% 5% 6% jo
Tolal 150 150 160 200 690

The other aspect of the table’s construction worth poting is that the quantity of each of these
variables increases as we move across the columns or down the rows. We have two ordinal-
level variables, so that we need to ensure the values of the variables move in the appropriate
direction. That is, people wilh the least time since migration are in the first column, and time
increases across the page. Similarly, the people with the lowest English proficiency are in the
first row, and the strength of this variable increases as we move down the page.

The relationship can now be assessed in terms of its pattern and its strength. We can see that
there is a general improvement in English proficiency reflecting a positive association
between the two variables. The relationship is not perfectly consistent, as the effect of time
since migration begins to peter out after 5 years of residency, and migrants’ English skills
rcach the average level of the rest of the population. Afier a poins there is clearly no
association between these two variables.

In terms of the strength of the relationship we could argue that it is quite strong. For each
column the modal cell seems to capture a very large proportion of cases in that column,
indicating that for a majority of cases the pattern of association we have noted seems to hold.

Summary

We have investigated extensively the construction and interpretation of bivariate tables. We
have seen that these tables are a useful way of describing categorical data in such a way as to
reveal whether a relationship exists between two variables under investigation. We discussed
the specific rules and procedures for transforming a collection of raw data into a compact
crosstab, and the means for interpreting any relationship that a crosstab may reveal. With all
tables we saw that this involved an assessment of the pattern and strength of the relationship.
We bave also seen that where both variables are measured at least at the ordinal level some
additional aspects to a relationship can be gleaned from a <rosstab, namely the direction of the
relationship, and whether it is copsistenl.

Exercises

51 A study finds that the number of injured people at ag accident is related to the number
of ambulance officers attending the zccident. Should ambulancs officers stay away
from accidents in order to reduce the injury rate?

5.2  Tor each of the fellowing tables, calculate the column percentages.

54
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(a) Dependent

Independent

— ] 2 Total
1 30 60 90
2 45 50 95
Total 75 1:9 185
(b) Dependent N Independent
1 2 3 Total
1 56 40 15 106
2 15 30 50 95
Tatal 71 70 60 20}
For each of the following tables, calculate the row percentages.
(a) Dependent _ Independent
1 2 Total
i 30 60 90
2 49 50 95
Total 75 110 185
(o) Dependent Independent
= 1 2 3 Total
1 56 40 10 106
2 15 30 50 95
Total 7i 70 60 201

Stratified samples of 30 people who voted for the Conservative Party at the last
clection and 30 people who voted for the Progressive Party at the last election are
drawn to assess whether political preference is related to father’s political preference:

Case  Voting preference Father's voting preferencef Case Voting preference Father's voting preference
| Progressive Progressive 31 Conservative Conservative
2 Progressive Progressive 12 Conservative Other

k] Progressive Progressive 33 Conservative Conservative
4 Progressive Conservative 34 Conservative Conservative
5 Progressive Progressive 35 Conservative Conservative
6 Progressive Progressive 36 Conservalive Progressive
7 Progressive Progressive 7 Conservalive Conservative
8 Progressive Progressive 38 Canservative Conservative
9 Progressive Conservative 39 Caonservalive Progresstve
10 Progressive Conservative 40 Conservalive Other

11 Progressive Progressive 41 Conservative Conservative
12 Progressive Progressive 42 Conservative Conserva

13 Progressive Other 43 Conservalive Conservative
14 Progressive Progressive 44 Conservative Conservative
15 Progressive 45 Conservalive Conservative
1§ Progressive 46 Conservative Other

17 ssive Other 47 Conservative Conservaiive
18 Progressive Progressive 48 Conservative Other

19 Progressive Progressive 49 Conservative Progressive
20 Progressive Progressive 50 Conservative Conservative
21 Progressive Progressive 51 Conservative Conservative
22 Progressive Progressive 52 Conservative Caonservative
23 Progressive Other s3 Conservative Progressive
24 Other 54 Conservative Progressive
23 Progressive 55 Caonservative Conservative
26 Progressive Progressive 56 Conservative Conservative
27 Progressive Conservative 57 Conservative Other

28 Progressive 58 Conservative Conserv

29 Progressive Progressive 39 Conservative Conservative
e Progressive Progressive 60 Couservalive Other
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(a)Which of these variables would you consider to be independent and which
dependent? What are their respective levels of measurement?

(b) Construct a bivariate table to describe this result, either by kand or on SPSS.

(¢) Looking at these raw figures, do You suspect a dependence between these
variables? If so, how would you describe it in plain English?

Hypothetical samples of children from Australia, Canada, Singapore, and Britiz are
compared, in terms of the amouat of TV they watch:

Amount of TV Country

Canada Australia Britain Singapore Total
—LQE. 23 25 28 28 104
_S.Qm::: 32 34 39 33 138
High 28 ¥ 40 3 33
Total 83 3 197 96 375

Can we say that the amyount of TV watched is independent of counlry of residence?

A wu_.:u_n of 162 men between :he ages of 40 and 65 years is taken and the state of
bealth of each man Is recorded. Each man is also asked whether he smokes cigareties
on a regular basis. The results are crosstabulazed using SPSS:

Health Level * Smoking Habit Crosst

count
Smaking Habit
Doesnt Dass

_ Smaoke Smake Total
Heglth Poor 13 34 47
Level g 2 19 4

QGaod 35 9 44

Very Good 27 3 30
Total g7 65 162

(4) What are the variables and what are their respeclive levels of measurement?

(b} Should we characterize any possible relationship in terms of one variable being
dependznt and (ke other independent? J ustify your answer.

(¢) From this table calculate the column percentages.

Usc the Employee data file to answer the following questions:

(a) The total number of managers in the sample.

(b) The total number of males in the sample.

() The tctal number of male managers.

(d) The total number of male managers as a percentage of all managers.

(e) Mrn wﬁdmns&n of female employees in custodial positions as a perceotage of all
emales.

6

Measures of association for crosstabulations:
Nominal data

The previous chapter looked at the construction of crosstabulations. Crosstabs are 2 means of
organizing categorical data in such a way as to reveal whether a relationship exists between
two variables. We used as an illustrative example the results contained in Table 6.1.

Table 6.1 Heallh raling by sex of students

Health rating ? Sex

Total
Unhealthy 0
Healthy %
Very healiby &
Total 177

When analyzing a crosstab 1o see if a relationship exists we ask two related questions:

* What is the pattern of the relationship?
*Hew strong is the relationship?

We can see that in this crosstab the pattern of the relationship is such that females tend to
rate their health lower than males. We can also describe, in verbal terms, the strength of the
relationship. The variation in studeats’ sex is related to a the variation in health rating. My
impression from the table leads me  use words like ‘mild’ or ‘moderate’ to describe the
strength of the relationship 1 observe. Notice, though, how subjective is tbis choice of words.
You may read this and think that you would use words more like ‘strong’ or ‘considerable’ to
describe the strength of the relationship in this crosstab.

It would be more objective to have a way of measuring the strength of the relationship
evident in a crosstab. Rather thao leave it to an eyebal! judgmeat that might vary from person
to person, it would be better to have a way of measucing the strength of 2 relationship that will
give the same answer, regardless of the person making the judgment. This is precisely the
function of measures of association. Ar analogy may aid this discussion. | may regard today
as being a ‘fairly warm’ day, while another person may judge it tc be ‘very warm’, while
another person may feel that the tcmperature is ‘pretty cool’. We are all experiencing -
‘observing” — the same thing, which is today’s temperature, but our subjective interpretations
of this experience are different. If, however, we all refer to a standard thermometer and see
that the temperature is 20 degrees, this is something we can all agree about. The thermometer
shows the same number regardless of who looks at it. The thermometer is an objective
quantification of temperature since it is based on a common standard. Similarly, while
different people may look at a crosstab and verbally assess the strength of a relationship io
different ways, measures of association can provide an unequivocal index of the stwength of 2
relationship that will give the same apswer for everyone.

Measures of assoclation as descriptive statistics

Measures of association are descriptive statistics that quantify a relationship between two
variables.
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Measiires of association indicate, in _quantitative terms, the extent to which a n:maw in Ea
ivalue of one variable is related to a change in the value of the other variable.

Association is another word for ‘relationship’ or ‘dependence’: when age increases does
height also increase (or decreasc)? Is a change in religious beliefs associated with a change in
attitude to capital punishment? (The werd ‘correlation’ is normally used when measurnng the
relationship between two continuous variables, but effectively means the same as association).

As we have discussed, graphs and tables are some ways of identifying a relationship that
may be present between two variables. We can, in addition to these simple methods of
description, calculate measures of association to actually quantify the impressions gained
from these tools. The most important thing to remember about measures of association is that
they are meant to help us describe data. Rather than just relying on a visual impression of a
crosstab or graph, they can, in the appropriate circumstances, provide a single figure for the
strength of association.

The problem with these measures is determining the appropriate circumstances in which
they can provide this information, If the right circumstances do not apply then these numerical
measures may be misleading. Thus while it is possible to generate these measures on theic
own, [ would advise against presenting them independently of a crosstab. It is easier to ‘see’ a
relationship embodied in a crosstab, which can indicate whether the conditions necessary for
caleulating measures of association are present.

Unfortunately, putting the concept of association into practice is 2 slippery problem.
Working with measures of association can be a very frustrating experience because there are a
large number to choose from, each with its own peculianties and limitations, and often they
do not lead to the same result. For example, many measures of association are sensitive to the
decision as 1o which variable is designated as independent and which is dependent. Such
measures are asymmetric. Asymmetric measures are useful where we believe that the
relationship is such that one variable is dependent on the other. If, on the other hand, we
suspect that the relationship is one of mutual dependence, or else we are simply not sure of
which model is appropriate, we use symmetric measures that take on the same value
regardless of the variable that is specified 1o be the independent variable and that which is
specified to be the dependent variable.

Table 6.2 provides some guide for choosing between the more common measures detailed in
the following chapters. The starting point for selecting a measure is the level at which each
variable is measured, particularly whether the data allow ranking (ordinal and interval/ratio
scales) or not (nominal scales). (Those wanting a more complete treatment of measures of
association that covers the full range of measures available should consult either of the two
following texts, which provide an excellent, although sometimes very technical, discussion:
H.T. Reynolds, 1977, The Analysis of Cross-Classifications, New York: The Free Press; A.L.
Liebetrau, 1983, Measures of Association, Beverly Hills, CA: Sage Publications.)

In constructing a measure of association it is desirable for it to have the following properties:

* It is ideal for measures of association 1o take on the value of 1 (or —| where appropriate) in
situations of perfect association. Unfortunately this is not always the case, and the cause of
much of the frustration tied up with using measures of association. Some measures carl
take on values larger than 1, while others (such as gamma) can take on the value of |
where perfect association does not exist.

*It is ideal for measures of association to take on the value of ¢ in situations of no
association. Unfortunately not all measures meet this ideal quality. Some measures such as
lambda can ke on a value of 0 even where an association is evident to the naked eye.

* Where both variables are measured at least at the ordinal level, a + or — sign should
indicate the direction of association: whether an increase in the quantity of cne variable is
associated with an increase (positive association) or decrease (negative association) in the
quantity of the other vanable.
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Table 6.2 Measures of association
Measure Symmetry  Data consideration Comment

Lambda Asymmetric At least one variable is nol

May underestimate sirength of a _d_n:oq_nr_ﬂ
where one variable is ordinal or interval
May equal § even where a relationship exists

Goodman and  Asymmetric At I¢ast one vanable is nominal

Kruskal tau
Eta Asymmelric  Suitable where independent vanable
is nominal and dependent variable is
interval/ratio
Somer's d Asymmetric  Both variables at least are ondinal
Gamma Symmetric  Bath variables at least are ordinal Not suitable for non-consistent relati
Kendall's tau-b  Symmetric  Both variables at least are ordinal Suitable only for tables with the same number

of rows and columns
Kendall’s tau~c  Symmetric  Both variables at least are ordinal
Spearman’s tho Symmetric  Both variables at least are ordinal Special case of Pearson’s r applied to the
with many points on the scale ranks of the scores rather than raw scores

Pearson's » Symmetnic  Both vanables are intenval/ratio with  Suitable for linear relationships
many points on the scale

The rest of this chapter discusses measures of association for two variables when ope or both
of the variables is measured at the nominal level. Before doing so, it is important to remember
that all that these measures do is detect association. They do not necessarily show whether
onc variable causes a change in another. We may suspect theoretically that one variable
causes a change in the other, but the statistics we will learn here cannot prove causation, only
provide supporting evidence for a theoretical model. For example, a relationship between the
number of storks in an area and the birth rate in that area has been observed (see T. Hoferz, H.
Przyrembelb and S. Verleger, 2004, New evidence for the theory of the stork, Paediarric &
Perinatal Epidemiology, vol. 18, p. 88), and we may calculate a measure that quantifies this
statistical relationship. However, we cannot go from this statistical regularity to the
conclusion tha: the storks cause the birth rate!

Measures of association for nominal scales

A measure of association, as we discussed above, is a numerical index that indicates the
strength of a relationship. Measures of association range between two extremes. One extreme
is the case of perfect association. In the case of perfect association, all cases with a particular
value for one variable have a ceriain value for the other variable. For example, Table 6.3
illustrates a crosstab where sex of students and health rating are perfectly associated.

Table 6.3 Perfect association

Health ratmg e Sex
Female _ Male o
Unhealthy 80 Q
Healthy 0 0
Very healthy 0 97
Total 80 9 177

We can see that knowing if a student is male or female allows us to sule with perfect
certainty what their respective health rating will be. Sex is, for this group of cases, a perfect
predictor of health status. Put another way, a change from female to male will always be
associated with a change in health from ‘Unhealthy’ 10 ‘Very healthy’. With perfect
association we can say that all the variation in the dependent variable (healtl:) is explaned by
the varialion in the independent variable (sex): the difference between two cases in terms of
their health can be explained just by referring to the difference in their sex.
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The opposite extreme, displayed in Table 6.4, is the case of no association: knowing how 4
case scores on one variable gives no indication as to how it scores on the other variable.

Table 6.4 No association

Health rating Sex
Fernale Male Total
Unhealthy 22 27 S0
28% 28% 28%
Healthy 26 3 50
2% 32% 32%
Very hea 32 39 !
40% 40% 40%
Total 83 97 177

There is not a relationship in these datz bezween students’ sex and health: rating. For each of
the categories of the independent variable, exactly the same pattern of responses exists for the
dependent variable.

The two cases of no association and perfect association form the two opposite ends of the
scale. The case of no asscciation is given a value of zero and perfect association a value of |
(Figure 6.1).

No association Perfect association

0 1
Figure 6.1 Scale for nominal measures of association

We pever aclually gather data that fit ¢ither of these (wo extremes. They simply act as
reference points. Data normally fall somewhere in between, such as the example we have
been workiog with (Table 6.5).

Table 6.5 Health rating by sex of students

Health rating Sex
Female Male - Total
Unhealthy 34 16 - 50
43% 16% 28%
Healthy 29 27 56
36% 28% 32%
Very healthy 17 54 7
21% 56% 40%
Total 80 97 77

A visual inspection of this crosstab tells us that there is some relationship between these
variables, but it is also clear that this is not a case of perfect association. If you had to give the
strength of the relationship in this table a number between 0 and 1, with 0 representing no
association and 1 representing perfect association, what would you give it? Is it closer to the
data in Table 6.3 or Table 6.4, or somewhere in the middle?

The calculation of lambda gives us this number. Lambda gives an exact numerical location
for where our actual result falls along the continuum in Figure 6.1. It does this by measuring
the *statistical distance’ between the table containing the actual data we observe and each of
the two possible extreme situations of no association and perfect association.

Lambda is one of a class of measures called proportional reduction in error (PRE)
measures. The logic behind PRE measures is that if two variables are associated, then we
should be able to predict the score that a case has on one variable on the basis of the score it
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bas Yor the other variable. If sex and health rating are indeed related, then we should be able 1o
predict student’s health rating by knowing whether they aze male or fema.e, and the stronger
\he relationship the more accurate will be our prediction.

All PRE measures follow a similar procedure. We try to predict kow the cases will be
gdistributed in a bivariate table under two conditions:

»we predict the distribution of cases along the dependent vanable withour any kncwledge of
their scores for the independent variable;

- we predict the distribution of cases along the dependent variable with knowledge of their
scores for the indcpendent variable. )

To seec how we make these predictions assume that the 177 students in our survey are lined
up cutside a room, and they will walk in one by one. Before each person enters we have to
guess — predict — their bealth rating (i.e. predict their scores on the dependent variable). In
making taese predictiors you are given only one piece of information, which is that the
majority of all 177 students rate themselves as “Very healtry’.

What guess will you make before each person walks in the roem? Knowing only that the
majority of students ra‘e themselves as ‘Very healthy’ the best guess is to predict that alf 177
studeots rate themselves as ‘Very healthy’. In other words, with no other information, guess
the average! In effect this uses the no-association model in Table 6.4 as the prediction rule.

Now if there was not much of a relationship between these two variables this prediction rule
will geperate very few errors. The closer that the actual pattern of cases resembles the no-
association model the fewer errors that will be made when using this prediction rule to guess a
student’s health. In our example, if we guess all 177 students rate themselves as ‘Very
healthy’ we make a prediction error of 106. This is the number of studeats who actually rated
themselves as eitber ‘Unbealthy” or ‘Healthy’ that we have incorrectly guessed as being ‘Very
healtby’. We call this £/

E;=50+56=106

Now let us assume that (hese 177 students are asked to re-cater the room randomly one by
one. This time, though, before each one enters you are told whether they are female or male.
Suspecting that there js an association between sex and health rating such that females tend to
rate :hemselves as ‘Unhealthy’ and males rate themselves as “Very healthy’, you predict that
every female rates borself as ‘Unhealthy’ and every male rates himself as * Very bealthy®. This
is effectively using (he perfect association model from Table 6.3 as the prediction rule.

Following this prediction rule we make 89 errors. This is made up of the (29+17=) 46
females who were incorrectly classified as ‘Unhealthy’ and the (16+27=) 43 males incorrectly
classified 2s ‘Very healthy’. We call this £y:

Ey=(29+17)+(16+27)=89

The question is whether [ have made fewer mistakes when given (he extra infermation about
each student’s sex (the independent variable). Did my suspicion about a possible association
between these two variables reduce the error rate when making these predictions? The
reduction in errors is 106 — 89 = 17. We have made 17 fewer errors by using the perfect
association predictior rulc than when we used the no-association prediction rule, indicating
that there is some relatioaship in the data.

Lambda calculates this reduction in errors as a proportion of £y where £, is the number of
errors without information for the independent variable and £, is the number of errors with
information for the independent variable

- B-5

E
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As a proportion, the errcr rate Lzs been reduced by:

A= E-E _ 106-89 _ oo
E [

Therefore, by having information about a student’s sex (the independent variable) we
able 1o reduce errors when predicting their health ratings by 16 percent. This is the :,E.o
mn_fm_.mmn of PRE measures: they measure something meaningful, which is chan .Wwo.ﬁ
prediction error rates, and thus have a specific interpretation. “ k.

We can see E Figure 6.2 that the result places the observed distribution of data much clo
to the no-association extreme than to the perfect association extreme. *

No association Perfect association

g : |
V] h=016 i

Figure 6.2

_.bBcn_r,_ shows, in a clear-cut way, that although there is some relationship between these
two variables, it is not very strong. Generally, we speak of association between varizbles as
chm weak, moderate, or strong (or some combination of these words, such as ‘very weak’ o
moderately strong’). There is no sharp dividing line that determines ,,t_unn PRE values are .h
be called weak and when they are called strong, but to give a guide, one author suggests the

terminology shown in Table 6.6. (See T.H. Black, 1993, Evalnanng Soci j
~ “ . 7 > \
London: Sage Publications, p. [37.) s Soclal S et

Table 6.6 Interpreting values of lambda

Range Relative strength

0.0 No relationship

0>-02 Very weuk, negligible relationship
02-04 Weak, low asso

04-07 Moderate association
0.7-09 Strong, high, marked 2ssociation

09-<1.0 Very high, very strong re i
1.0 Perfect association

We can see that for the data we are lnvestigating the relationship is in the very weak range.
Properties of lambda

As a measure of association lambda has certain propettics, seme of which are desirable, but
others (unfortunately) limit its applicability. v

1. Lambda .§.2 always equal ] where data exhibif perfect association. If we look at the way
_vamm..m .moa:.:ﬁon_ it will have the desirable property that in the case of perfect
association it will equal . If there is perfect association between two variabies the data
will ao:nwno:a exactly to the second of our prediction rules, producing no errors »_2 make
1o errors with information about the independent variable (E2 = 0) the value for _ﬁ_:ca.m is:

_E
=5 -
5!

2. haiv&h. will always equal O where data exhibit no association. If there is absolutely no
association in the data, the observed results will conform exactly 10 the model of no
assoclation, and making predictions using the no-association model will yield no errors (E
= 0). This will generate a value for lambda of 0, o
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3. Lambda will sometimes equal G where dafa exhibit some association. Although lambda

will always equal 0 whea there is no association, the converse is not necessarily true:
sometimes whea !ambda equals O there may indeed be association. This is a major
liczitation to the use of lambda and will be explored further at the end of the chapter.

4. Lambda is an asymmetric measure of association. This means that the value for lambda

wil: be d’fferent depending on which of the two variables is considered to be indepeadent
and which is considered ic be dependent. In other words, if in the example above we try to
predict a person’s sex based on their respective health rating, rather than the other way
around, the value for lambda will change. Thus when using lambda we need to be explicit
about the model of the relationship we think ties the two variables together. This makes
lambda especially useful when we have strong reasons to believe that there is a one-way
relationship between the two vanables running in a certain direction.

5. Lambda ignores the ordering of categories for ordinal scales. The value of (.16 as a

measure of the strength of the relationship for our crosstab above may strike you as lower
than expected. To the naked eye, the relationship in Table 6.5 appears fo be strooger than
this value indicates. This has partially occurred because the calculation of lambda ignored
the fact that the categories of bealth rating represent a quantitative increase in the variable;
health is measured on an ordinal scale. Lambda does not take into account that in moving
from female to male the modal response for health has increased from the lowest to the
highest category. As far as lambda is concerned, the modal cell is in & different category,
ot a higher one. For cxample, assume that in Table 6.5, 54 males rates themselves as
‘Healthy’ and only 27 rated themselves as ‘Very healthy’; the frequencies in these two
categories are reversed. Common sense would suggest that the relationship is not as strong
as it is in the original data distribution, since a switch from female to male causes the
modal category for health to only jump one point on the scale. Yet lambda will still
calculate the strength to be 0.16. Thus where we have one variable that is nominal and one
that is ordinal, lambda may underestimate the streogth of the relationship.

Lambda using SPSS

Lambda can be generated as an option of the Crosstab command in SPSS, which we
introduced in Chapter 5 (Table 6.7 and Figure 6.3).

Table 6.7 Generating lambda on SPSS (file ChQ6.5av)

SPSS command/action Comments

1 From the menu select Analyze/Descriptive This brings up a windew headed Crosstabs
Statistics/Crosstabs

2 Click on the variable that will form the rows of  This highlights Health rating

the table, which in this case is Health rating

3 Click on » that points to the area headed Row(s): This pastes Health radng into the Row(s): target variable list

4 Click on Sex of student This highlights Sex of student

5 Click on » that points to the area headed This pastes Sex of student :nto the Column(s): target
Column(s): variable list

& Click on the Statistics button This brings up the Crosstabs: Statistics box. In the top-left

commer you will see an area headed Nominal Data, These are
the measures of association available when at least one
variable is measured at the nominal level. In this instance Sex
of student is measured at the nominal level

7 Select Lambda by clicking on the tick-box next  This places ¢ in the tick-box 10 show that lambda has been
it selected

8 Click on Continue

9 Click on OK
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Figure 6.3 The Crosstabs: Statistics dialog box

Notice that in the Crosstabs: Statistics dialog

box we have the range of measures that we
noted in Table 6.2 (pius others), broken down in 2 similar way by level of measurement. Thus
we will be coming back to this dialog box frequeatly over the next two chapters as we work
through the various measures of association.

If we follow the procedure in Table 6.7 we will obtain, along with the crosstab we generated
‘n Chapter 5, the following takle (Figuce 6.4) labelled Directional Measures (whicl is

SPSS’s term for asymmetric measures of association). The table produces three versioas of
lambda: symmetric, asymmetric with Health rating as dependent, and asymmetric with Sex of

student as dependent, from which we choose the one appropriate to our model of the
relationship,

Dwrectiona Measures
Asymip
Valve | Std Error’ | Aopeax T° | Aparox Sig
Narninaf by  Lambda Symmetric 199 072 2510 o1z
Nominat Health rating Dependent 160 082 240 (016
Sex of sludent Dependent 250 11 1.964 050
Ooodmanand  Healtn rating Dependent 073 027 000¢
Krusial tau Sex of student Dependent 138 050 _.000%

3. Not assuming ihe null hypathesis
8. Using the asymplotic standard error assurning the null hypothesls.
¢ Based on chi-squars approxmation

Figure 6.4 SPSS Crosstabs: Statistics output

The symmetric version is used when there is no reason to suspect that one of the variables is
dependent on the other, but rather that they are mutually dependent on cach other. It is
acrually calculated as a weighted average of the two asymmetric versions: in this example the
symmetric value of 0.199 falls somewhere in between the two asymmetric values of 0.160
and 0.250. The asymmetric version has two possible values, based on which of the two
variables we believe is dependent. Here Health rating is dependent, and the value SPSS
provides, 0.16, is the same as that we calculated by hand above, although it does so to 3
decimal places, rather than the 2 decimal places that we used in our haad calculations.

The table also produces the value of another nominal measure of association called
Goodman and Kruskal fau, which has a much smaller value for the association than lambda.
This indicates a *problem’ we will eacounter a number of times in this and the next chapter,
which is that different measures of association calculated on the same data will produce
different values. This is because each measure conceptualizes the notion of association in
slightly different ways and therefore will ot always be in agreement.
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The other columns in the Directional Measures table noE.m:_ Emo_.q_m:ou that is not
levant al this point, but deals with issucs that arise in later sections of this book. They deal
ﬂe the problem of makirg an inference Som a sample to a population.

Example

[ suspect that there is a relationship belween people’s vo._m:nw_ ozonr\fou_ »nm_ &Mﬂomnﬂﬁcw”
1o equal rights legislation that bas been proposed. fon:_nﬁ .Em: political orien ..d_ 1 b
independent variable and attitude ¢ equal rights legislation is the dependent variable.

" hnn_ peopie are selecied and each person is asked (o walk into 2 room. ww::.a nmo_._ person
ww_:oa [ bave to guess whether that person favors or opposes S:w_ :w_:u how_m_i__%?
Hewever, T am given no informzlioc about eack person’s voj_A:om_ crientation before they
enter: [ bave to make 2 blind guess aboul ﬁo_._ persoa’s polilical beliefs ?_uo-”maﬂsﬁwawﬂ
pregressive). The only information [ am given is that for :_.n mua._u_m um.m wi oM.~oM_m "
responsc (the one with most cases) for the m_n_unnﬁ_nc_ vanable is the mcwvo ; w :N_
Limited to this information, the best strategy is to Buess _._E.H all 100 people &_ﬂuwg h__om.
rights legislation. Sitce the madal category by definition is :i wusmo_é with e most
observations we make the fewest errors, é__n_u we have a0 other information to in
prediction, by predicting thzt all cases fall into it (Table 6.8).

Table 6.8 Prediction with no information about the independent variable

i itical oricntation -
Attitude to equal rights _uo__:o_q””“:
pose 0
Op e
Support e
Total

i i this 4 [ am told the political
in have to predict the attitude of each person, but this time . : P
owwnm.w.mou of wa_uvmaon» [ use the peifect association model as the cwm_m for prediction E._u
guess thai all conservative people oppose the legislation and al/ progressive people support it
(Table 6.9).

Table 6.9 Prediction with inforrnaton about the independent variable
Adrade 1o oqual Sghts Political orientation

Progressive Conservative Total
Opposs Q 50 MM
Scpport 50 m ; cc
Tota! 50 3

cack person’s political leanings. To which one of these nxu.oEnmAaoam the anﬂﬂp _QMSSE«MM”
closely conform? If there is litile association between the two variables, Ea.»a. a Euo it
more ciosely resemble those io Table 6.8, whereas :.,n stronger the association, o mone
closely the observed distribution will conform to that in Table 6.9. The extent to w m: v
observed data are closer to one extreme or the other, or 8..%8.:20 o berween, wi
expressed by the difference o error rates we make under ._umnu E.m&o:o: rule.

Assume that the actual (‘observed’) data are those contained in Table 6.10.

The queston is whetber [ have mzde fewer mistakes when given the extra ioformation about

Table 6.10 Observed frequency distribution
Attitudc (o equal rights

Political onentation

Progressive Conservative ._,owu_
Oppose ) 42 “N
. a4 3 -
o 9 100
Total 30 S




90 Siatistics for Research

Even before we do any calculations an eyeball inspection of the crosstab will tell us that
there is a strong mmw.\ocma:on between these two variables, with a very high proportion of
conservatives opposing and a high proportion of progressives supporting the legislation. We
would place this table much closer to Table 6.9, which represents the case of perfect
association. Thus the secend prediction rule (perfect association) will dramatically reduce our
errors when compared to the errors we make under the first prediction rule (no association)
Before we proceed to actually calculate these error rates and lambda, can you guess s_ra_
lambda will be for the actual survey data in Table 6.10 as a value between 0 (no association)
and 1 (perfect association)?

E:rc:._ any knowledge of the independent variable (i.e. whether a person is conservative or
?omnnmm:\&. 42 conservatives who oppose the legislation are incorrectly classified as
mc_uvo:._:m__r and 6 progressives who oppose the legislation are incorrectly classified as
supportirg .. Therefore wotal errors made are:

E =42+6=48
«<:Ar knowledge owm person’s political orientation, bowever, % progressives are incorreclly
o_ﬁm_mnn_. as supporting the legislation, and 8 couservatives are incorrectly classified as
opposing it. Therefore total errors made in this s’ tuaton are:
E)=8+¢=14
Lambda calculates the difference in the two error razes as a proportion of the initial situation

Srﬁn.- i& no knowledge of the independent variable — hence the term ‘proportional
reductioa in error’;

E 13

A= E-£ _ 48-14 _ 0.71

.:._n_.uwﬁm.. E having information about political leaning we are able 1o minimize errors
.Erm: predicting whether a person will support the proposed legislation by 71 percent. This
Indicates a strong relationship between the two variables. Did this figure correspond with the
w»_co you thought expressed the strength of the relationship based on just your visual
inspection of the crosstab?

Llmitations on the use of lambda

Despite _.G inluitive appeal and ease of calculation, a problem is all too frequently encountered
when using lambda. The problem is one we have already noted above when discussing the
properties of lambda. Lambda can have a value of 0 even though a relationship does exist
between Ga two variables (which is evident just by locking at the crosstab). The cause of the
problem is data that are highly skewed along the dependent variable,

To see .E_:: this means in practice, we will analyze the following data (Tzble 6.11). In *his
aveo__ro:nu_ cxamiple respondents are asked whether the govemnment is doirg enough to
m_._o<_m_n poverty. Looking at the crosstab we can see that there is some relationspip. A muck
higher percentage of under 45 year olds agree with the statement about govermment >olicy
._xi people who are 45 or older. Clearly, there is some dependence between the two
variabies, and we might even describe it in verbal terms by saying that it appears ‘o be <ir to
moderate in strength. . o

Measures of association _for crosstabulations: Nominal data 91

Table 6.11 Should the government do more 0 alieviale poverty?

Agree Agc group

Under 45 45 or gver Total
No 110 278
Yes 722
Total 600 400 100¢

However, if we try to quan(ify this relationship with lambda we get a measured association
of zero. Notice that the modal respoose for the dependent variable for afl 1000 cases is “yes’,
which is also the modal response for each of the two categories of the independent variable:
the majority of people under 45 stated yes, and the majority of people aged 45 or over also
slated yes. This skewed distribution in terms of the dependent variable will produce a lambda
of zero, even when it is clear to the naked eye that some association does exist between the
variables.

To sec how, [ need first to calculate the number of crrors when predicting without
know!edge of the independent vaniable (age group). I predict that all 1000 cases wil) fzll in the
‘yes’ category, since this will minimize my error rate. [ therefore make 278 mistakes:

W_Hqu

With information about the independent variable, I will still make the same number of
mistakes. Considering first the respondents aged under 45, I predict that all 600 respond ‘yes’
(120 mistakes). Second, [ predict all 400 peoplie aged 45 or over respond ‘yes® (168 mistzkes).
This sums to 278 total errors, which is the same as predicting without knowledge of the

rcspordents’ sex.

£;=278

The value for lambda will be:

2= Bi-£ _ 278-278 _ 0
2l 278

Lambda has failed to pick up the observable relationship, which is evideni to he naked eye.
This highlights one important rule:

If an inspection of the colusnn percentages leads you to conclude that 2 value of 0 for lambda
is due to a skewed distribution (as iv this case), there are three options:

1. Don’t bother with measures of association. Stick to the crosstab and the relative
frequencies it contains, and base your conclusion regarding the relationship on this alone.
This requires the researcher to make some subjective judgments, but as long as the crosstab
is there for readers to assess for themselves, there is no problem with structuring an
argument using only the relative frequencies as evidence. These frequencies sometimes
*speak for themselves': calculating more advanced statistics (and all the problems that
sometimes come with them) may only serve to bury important information in an avalanche
of suspect numbers. In (he example above, we might say “Twepty-four percent more
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peoole aged under 45 supported legislation to alleviate poverty than people 45 years ang Remember that these are percentages: 40 represents 40 percent of 278 moE%MonWMMHMm
older. Slightly less than one-in-five people in the younger age group opposed the and so on. But we treat them as jf they are individual cases. This means ¢ m_a i
proposition whereas for the older people the level of cpposition was nearly one-in-two.” size ‘is’ 200 rather than 1000: the _oo_ yes ‘respondents wn&;&o 100 no “respon n:a - Without

o s Using the data from the slandardized table (Table 6.13), 1 38_@_2». lambda. Witk

2. Calculate other meosures of association. There are other measures of association for knowledge of the independent variable, I classify all 200 ‘respondents’ in either yes or no, and
nominal dzta that can be used if there are problems with lambda. Another PRE fmeasure, therefore make 100 errors:
which appeared in the SPSS output above, is the Goodman—Kruskal tau. Like lambda this ?
is an asymmetric measure of association that ranges between 0 and 1. Unlike iambda i E| =100
does not use the modal response for the independent variable in making predictions, but i - ; :
rather the frequency distribution of cases across all the categories of the independent With krowledge of the independent variable [ make the .wo__ocs.mm predictions. Starting with
variable. Since it is less sensitive 10 skewed marginal distributions than lambda it is a the under 45s, I predict that all said yes, since this gives me the _c,_cnﬁ nw.-Q rate (40
convenient alternative when skewness causes lambda to equal zero. Another measure of mistakes). For 45 or over I predict that a!l said nc, and therefore make 32 mistakes:
association is Cramer’s V, which will always produce a value greater than 0 where ag
association exists between (wo variables. However, it does not have a simple interpretation E=40+32=72
in terms of PRE, and therefore cannot be used io assess the streagth of a relationship for
any given crosstab. It can be useful though when comparing the strength of bivariate Lambda will therefore equzl:
relationships across different tobles. The formula for Cramer’s V' is given presented it (3e
Key Equations at the end of this book. Cramer’s ¥ is oae of the options, along witk 2= B-£2 - Hloc_dwm =028
lambda, for nominal data when choosing stalistics ir. the SPSS Crosstabs command. E

3. Standardize the table so that the row totals are all equal This is a slightly more
complicated procedure, and one not often suggesled by texts on statistics. (For a more
complete discussion of standardization procedures and their use with measures of
association sec Y.M.M. Bishop, S.E. Feinberg, and P.W, Holland, 1975, Discrete

Afler standardization, there turns out to be a weak to maderate association between these
variables that lambda calculated on the original data could nos extract.

SN ! : : reises
Multivariate Analysis: Theory and Practice, Cambridge: MIT Press, pp. 392-3; and H.T. Exe . . s of association?
Reynolds, 1977, The Analysis of Cross-Classifications, London: Macmillan, pp. 31-3) 6.1  What is the difference between asymmetric mnA symmetric measure i :
Which is the appropriate measure to use in situations in which two variables are
jent?
Standardizing table frequencies (optional) thought to be mutually dependen abile s likel
1 : ; " . e t lculating lambda, to decide whether one variable is likely
Standardizing a table involves trying to elimipate the variation brought about by the skewed 6.2 Why is it important, piruna._mwa Ewa mm 50 10 specify which is dependent and which is
distribution for the dependent variable, while sl retaining the variation across the categories LY be n_uﬁnuwci Ale other,
of the independent variable. When working with lambda we standardize the row marginals so independent?
that each row sums to 100, In a report that uses this procedure it should be made clear that 6.3 Calculate lambda for tke following tables, and interpret the strength of any
lambda is not calculated on the raw data, by adding a comment or footote such as: ‘In relationship:
calculating lambda, row marginals are standardized to sum to 100.” This involves the Tndependont
calculation of the row percentages, which are then treated as if they are real numbers of cases. (a) Dependent ; ) Total
That is, we calculate the percentage of the total ‘yes’ respondents that are under 45 and the 30 50 90
percentage that are 45 or over. We do the same for the ‘no’ responses (Table 6.12). w 45 50 95
Tout 7 L10 e
Table 6.12 Should the government do mare to alleviate poverty?
A pengenat Independent
gree Age group (b) Depunéen
: _ —= 2 3 Toul
Under 45 45 or over Total 1 106
No 1 00m 60% 100% I 36 By = 95
78 ’ i z 15 30 5¢ e
Yes 2 100- 32% 100% { Toul 71 10 “ :
|
i ¢) Dependent Independent
We then use these percentage figures as if they are counts of actual cases, as in Table 6.13. § © 1 2 3 ._wnm”w_
1 70 AQ 10 ]
133
Table 6.13 Should the government do more to alleviate poverty? { 2 50 Py wm P
Agree Age group i} u _Mw _Mu 172 500
_Under 45 45 or over Total | Tota) 5
ve @ % 00 () (optional) If any of these tables produce a lambda equal to zero, standardize the
€s ] 3

distribution and recalculate lambda.
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A rescarcher is interested in the relationship
toward capital punishment. The researcher su
following results:

Setween gun ownership and m:mﬁ.z_n
rveyed 3000 people and obtained the

Ca m:_\—._ punishment Gun owr.ers Non-owrners

For 849 367

.‘.rmm.—_:mw 191 9.
1593

Calculate lambda for these data and interpret the result.

A survey of 50 ‘blue-collar’ and 50 ‘whit ar’ \
_ > ¢-collar’ work .
could sing their National Anthem from start to finish. e seked e
Blue-collar: Yes = 29, No=12]
White—collar: Yes =22, No = 28

pondents if they

ArTange these data into a crosstabuiatj :
/ ) lation. What shouid be Lz
independent variables? Calculate lambda for these data. (e dependent 2ng

(optional} A study finds that the associatio
as the measure, is 0.34. [n the
same variables using ¥ as ran
report their result?

on between two variables, using Cramer’s )
past, studies have measured association between the
ging from G.15 10 0.21. How saould the rescarchers

Open the Employee data file. Recods cu i i
( : rrent salary iato class c
$10,000 income brackets. Use this recoded variable to: 7 tutervals based o

M,“w assess p._.g_pﬁ strength of any association betweer current income and gender;
43sess the strength of any association betw < i .

il ©Co curreac income and employmen;
In your answers you should be careful to specify how you are modelling the
relationships and ckoose the measure accordingly. ¢

Measures of association for crosstabulations:
Ranked data

Chapter 3 illustrated the use of crosstabulations as a meaogs of summarizing data for two
variables that we suspect are related, and which are measured on scales with only a few
points. Jt is important ta begin with a visual inspection of a crosstab ~ to ‘eyeball’ the table —
ic. order to observe directly whether the two variables are independent or whether they exhibit
some kind of relationship. A visual inspection of the table tries to identify the variation in the
data, and based on this we interpret the nature of any relationship that the crosstab reveals. lo
Chapter 6 we also noted that measures of association can be calculated in conjunction with the
1able to give quantitative precision to auy relationsbip we observe.

Data considerations

This chapter concentrales on measures of association for scales that can be ranked. In other
words, both variables must be measured at either the ordinal or interval/ratio levels. We
should note, though, that where both variables are measured on ranking scales with many
points, the measures of correlation that we will discuss in Chapter 12 might be more
appropnate to those discussed in this chapter. Thus the measures discussed here are generally
used for ranked data with only a few peints on the scale, and thus can also be effectively
described in a crosstab (rather than a scatterplot).

The measures discussed in this chapter are PRE measures of association that are similar o
lambda in their basic logic and how we interpret them. With lambda, we try to predict the
value an individual case takes for the dependent variable. We do this by assuming first that
there is no association between the variables, and then second by assuming that there is
perfect association between the two variables. By comparing the error rates under each
prediction rule we can assess the relationship contained in the set of data we acmually collec:.

We undertake a similar procedure with ranking scales, but we make use of the extra
informalion about the variables given to us by the higher levels of measurement; with ordinal
and iotervalratio scales, unlike nominal scales, we know how cases are ranked relztive to
each other. The foliowing measures of association are based on our success in predicting these
rankings.

For example, we introduced in Chapter 5 the data in Table 7.1, which display a positive
relationship between Income and Frequency of TV watching, with each variable measured on
an ordinal scale.

Table 7.1 Frequency of TV watching by income

TV watching ; InFHme

Total

100

Soroe nights 100
19%

Most nights 10 o
10%

Total 105 200
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We can proceed 1o quantify the strong, positive relationship we observe in this crosstah b
calculating the relevant ordinal measures of association. There are 2 number of PRE meas .
of association that can be calculated for such a table, varying slightly in their res mwﬂ...&
methods. All of the measures for ordinz) data we will discuss have the common n__uﬂom 5
of being based on the distinction between concordant and discordant pairs. e

Concordant pairs

Assume that one of tbe 75 high income people in Table 7.1 who watches TV most nights is
named Alex, and one of the 70 medium inccre people who watch TV some nights is called

Andrea. These tw 1 , ; R .
(Fioro 7 1) © people can be ranked against each other for eacl of the two variables

Income TV waiching

Most nights | Afex

Some nights | Andrea

Figure 7.1 Ranking of a concordant pair
The ranking of this pair of cases is summarized Table 7.2,

Table 7.2 A concordant pair of cases
Independent variable: income
Alex ranked above Andrea
(has a higher income)

Dependent variable: TV watching
Alex ranked above Andrea
(watches more TV)

Therefore these two cases are ranked the same Jor each variabie. This might sound like a
strange use of language: how can they be the same if they have different values? The point is
that they are ranked the same: Alex is ranked above Andrea for each vanable. We describe
such a pair of cases as a concordant pair (N). .

We have picked out two cases from the whole set of 300 cases that form a concordant pair.
How do we calculate E_m fotal number of concordant pairs contained in the table? To see this
look at the shaded cells in the crosstab from which we drew Andrea and Alex (Table 7.3).

Table 7.3 Frequency of TV watching by income

TV watching Income

o ; -
= .JE Medium High
Some nights 20
Most nights 10

In the Eun:mwmo: above | formed a concordant pair by matcaing Alex, who is one of (ke 75
cases (SE a high income and also watches TV most nights, with Andrea, wko ’s one of the 70
medium income eamers who watches TV some nights. In fact I can pair Alex up with each
and every one of the 70 people in the ‘medium/some nights’ cel., producing 70 cencerdent
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pairs: Alex plus each of the 70 people ic the middie cell of the table (including Andrea). T can
then do the same for each of the otaer 74 people with 2 high income and watch TV most
pights. This will produce, in total, 75 ots of 70 concordant pairs:

75 x 70 =15250

Looking at Table 7.4, though, we see that there are still more pairs of cases that will form
concordant paus,

Table 7.4 Freguency of TV watching by income

TV watching

Low
Never 75
Some nights 20
Most nighis 14

Ezch of the 75 cases ir. the bottom-right cell is also ranked above each of the |5 cases in the
‘never/medium’ cely: they both have a higher income and watch TV more. So this will add the
foilowiag nurmber of concerdant pairs:

75% 15=1125

In fact, any case will form a concordant pair with any other case in a cell above and fo the
left or below and fo the right of it in the 1able (provided the table has been constructed with
the values increasing down (be rows and across (he colurnns). The total pumber of concordant
pairs, therefore, wili be as shown in Table 7.5.

Table 7.5 Calculating concordanl paics

(75X TORH(TSX L5)HT5X20¥-75x 75} = 23.500

+

(10X 15)H10x75; =900

(15x20)H{i5x 75) = 1425

(70x75) = 5250

N, = 13,500+ 900 + 1425 + 5250 = 21,675

Discordant palrs

Now if | take one of the 10 people who have a low income and watch TV most pights, named
Chris, and compare him with Andrea (one of the 70 people with medium income and watches
TV some nights), the rankiog will not be the same for both vanables. Chris is ranked below
Andrea in terms of income, but ranked above Andrea in terms of TV watching (Figure 7.2).
Such cases are called discordant pairs (N,).
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Income TV watching
High Most nights | Chris

Medium | Andrea Some nights | Andrea

Low | Chris Never

Figure 7.2 Ranking of a discordant pais

A case E:_. form a discordant pair with any other case in the table that is in any cell above
and 10 the right/below and to the left. To calculate the total number of discordant pairs we

begin with the bottom-left cell in Table 7.6 and match it with all cells above and to the right
or below and to the left. )

Table 7.6 Calculating discordant pairs
75 I LR o o g e

ww. - “M =h (10X 70)+(10x 1 5)+(i 0x 10} 10x 10) = 1050

sk - T *
T ER 10
70 10

20 7 =
1 1 (20x15)+ (20 10) = 500

+

(15x 103+ (15% 10) = 300

75 15 Sl
20 BT 10 -
: ¢ 10 (70x 10) = 700

Ng= 1050 + 500 + 300 + 700 = 2550

Measures of association for ranked data

>.: PRE measures of association for ranked data use the difference between concordant and
&mooﬁma. pairs as the basis for assessing whether an association exists and determining its
a:.m.n:o:. The reason why we look at these concordant and discordant pairs is that they give
us information that we can use in prediction. If two variables are positively associated then
the crosstab c.:_: contain more concordant pairs than discordant pairs, and vice versa for
negative association.

1. P‘.a:«m association between variables. The data will contain a lot of concordaat pairs and
few discordant paics. If this is this situation, and 1 am told a person ranks above another in

terms of EQ.::? I'will also predict that person ranks above the other in terms of frequency
of TV warching as well.

Positive association: N, — N, > 0
2. Zwmn:_cm association between variables. The data will contain a lot of discordant pairs, so [
MS__ make the opposite prediction: knowing that a person ranks above agother in terms of
income will ._ﬁa me to guess that that person ranks below the other in terms of frequency
of TV watching.

Negative association: N, - N; <0
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3. No association between variables. The data will contain just as many concordant pairs as
discordant pairs, and I will not increase my ability to predict the categery of the dependent
variable a case falls into by knowing its score for the independent variable.

No association: N.— Ny=0

There are four principal PRE measures of association for ordinal data: gamma, Somers’ d,
Kendal's tau-b, and Kendal’s tau-c. These are all similar in that they have a PRE
interpretation, and they all use the difference between N, and N, as the basis for assessing the
strepgth of a relationship. The difference between them is in terms of how they standardize
this difference. We will begin by exploring the simplest of these, which is gamma.

Gamma

Gamma is a2 common PRE measure of association for two variables measured at least at the
ordinal level and arranged in a2 bivanate table. Gamma is a symmetric measure of
association so that the value calculated will be the same regardless of which variable is
specified as independent and which is specified as dependent. In other words, if we flipped
the rows and columns around in our table, so that income is dewn the rows and TV watching
is across the columns, the calculation of gamma will net be affected. Thus it is not sensitive to
the particular model we believe characterizes the relationship between the two variables.

The formula for gamma expresses the difference between the number of concordant pairs
and the gumber of discordant pairs as a proportion of the iotal number of concordant and
discordant pairs. Using the data from our example, gamma will be:

_ N—Ng _ 21,075-2550 _
G = FSHE  Argsess ~ 078

This indicates that we have a strong positive assaciation between these two variables, which
reinforces the conclusion we drew based just on the visual inspection of the crosstab.

The range of possible values for gamma is between —1 and 1. A gamma of —1 indicates
perfect negalive association: knowing that a case ranks above anotker aloog one variable
indicates that it must rank below for the other variable. Such a result would be obtained if
there were only discordant pairs, as in Table 7.7.

Table 7.7 Frequency of TV watching by income: perfect negative association

TV watching Income

Low Medium High
Never 0 9 100%
Some nights 0 100% 0
Most nights 100% 0 0

If, on the other hand, there are only concordant pairs the value of gamma will be +1,
indicating perfect positive association: knowing a case ranks above ancther for the
independent variable indicates that it must also rank above for the dependent variable. Such a
situation is reflected in Table 7.8.

Table 7.8 Frequency of TV watching by income: perfect positive association

TV watching Income

Low Medium High
Never 100% 0 Q
Some nights 0 100% 0
Most nights 0 0 100%
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A gamma of zero indicates no association. If there are just as many concordant pairs 45
there are discordant pairs, then knowing the ranking along one variable gives no guide as 1o
the ranking on the other variable. This situation is illustrated in Table 7.9.

Table 7.9 Frequency of TV watching by income: no association

TV watching - Incorne

Low Medium High
Never 50% 0 50%
Some nights Q 100% 0
Most nights 0% 0 50%

These three tables illustrate the three extreme points on 2 standardized scale measuring the
strength of assaciation between two ordinal variables (Figure 7.3).

Perfect negative association No association Perfect positive association
|
- _, |
-1 0 1
Figure 7.3 The range of gamma

Clearly the data for the example we are actually working with does not conform to any of
these three extreme situations. It is a question of which prediction rule will be closest to the
results we actually obtain. 1t is clear that the perfect positive association table is the one that
the actual data most closely resemble, and gamma captures this quantitatively with a value of
0.78. It is not quite +1, but closer to it than to 0 or to —1.

Gamma is very popular in the literature because of its relative ease of calculation, although
this advantage is now diminshed by the use of computer programs such as SPSS, which
rakes the calculation of all measures as easy as clicking buttons. 1 suspect that another
element to its popularity is that compared to other ordinal measures of association, it
generates the highest value for the strength of association for any given set of data.

Gamma does have some important limitations though, of which we peed to be mindful. The
first is that it is only a symmetric measure, and therefore does not take advaniage of
information provided by the data where we belicve the most appropriate model for describing
a relaticnship is one-way dependence (as we presumed in our example). The other main
limitation is that, while perfect association will produce a value of +1 or —1, the converse is
oot always true: a gamma of +1 or —1 will not always indicate perfect association. It is
possible to generate a value of —1 or +1 for a crosstab even where there is clearly less than
perfect association. This occurs where the pattern of the relationship is not consistent. We
should follow the rule, thercfore, that before using gamma a bivariate table should be
inspected to assess whether the relationship is consistent.

Both these limitations in fact stem from the same feature in the calculation of gamma. This
is the failure of gamuma to includz tied cases in its formula. There are three types of tied cases.

L. Cases tied on the independent variable (T,). These are pairs of cases that have the same
score for the independent variable but have different scores for the dependent variable.
These are usually any two cases in the same column of a crosstab but in different rows. In
our example these are pairs of cases that have the same income but watch different
amounts of TV.

2. Cases tied oni the dependeni variable (7,). These 2re pairs of cases that have the same score
for the dependent variable but which bave different scores for the incependent variable, In
practical terms, these are any twe cases in the same row cf a crosstab but in different
columos. [n our example (hese ars pairs of cases that waich tze same amount of TV but
bave different income.

A e =
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3. Caser tied or both variables (T,5). These are cases that have the same score for both the
variables. These are pairs of cases drawn from the same cell in the table. lo our example
{Eese arc pairs of cases that have the same income and watch the same amount of TV.

The other PRE measures of associatien for ordinal data seek to redress the limitations with
gamme by including some or all of these tied cases io their calculation.

Somers’ d

Somers’ d is an asymmetric measure of association, in that it is sensitive to which variable
is characterized as the independent variable and which is characterized as the m_ovnun_nnr ._wccm
it is especially useful where we feel the relationship between two variables is __..ﬂ. described
by a one-way dependence model. The logic behind Somers' d is based on 1he idea that /wo
cases that vary in lerms of the independent variable but do not vary in terms of the dependent
variable (they are fied on the dependert variable) reflect no association. lo the ..uxu.:u_a we
have been working with, pairs lied on the dependent vanable but not on the independent
variable are Lhose pairs of cases that are different in terms of income but watch exactly the
same amount of TV. Somers’ d calculates the association as a proportion of all concordant
and discordaat pairs plus pairs tied on the dependent variable:

Ne-Ny

) g i S
Ne+Ngy+T,

To calculate the number of tied cases we 1ake each cell, starting at top _n?. and multiply the
purnber of cases it contains by the total number of cases in the celis to its :mw.: (Table 7.19).
Substituting these calculations ioto the equation for Somers’ d we get the following value:

N.-N, 21,075- 2550 =

d = = = 0.62
N .+Ny +.ﬁv. 21,075+2550+6350

A valuc of 0.62 indicates a moderate, positive association between these variables: an
increase in income is associated with an increase in TV watching.

the dependent variable
A0S

(I5X [5)+(75% 10} = 1875

+

(5% 10} = 150

+

(20 70)H20x 10) = 1600

+

{70x 19) = 700

+

(16 151{10x75) = 900

+

(I5x75)= 1125

T,= 1875+ 150 + 1600 + 700 + 900 + 1125 = 6350
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Notice that the equation for Somers’ 4 is almost the identical equation (o that for gammy,
excep: for the term in the denominator for the number of dependent variable ties. As a resuj;,
whengver tiere are such tied cases, 4 will always have a lower value thar gamma. In other
words, by igncring tied cases, gamma may overstate the strength of association between twq
variables in a0 asymmetric relationship when there are many tied cases.

Since Somers’ d is an asymmetric measure of association we can actually calculate twq
alternative versions of it, for any given crosstab. We can calculate Somers’ 4 with one
variable as independent and the other as dependent, and we can then flip the variables around
and calculate Somers’ d again. In our example we have calculated d with income as the
independent an¢ TV watching as the dependent variable, since our theoretical model of thig
relationship depicts the causation as runping ip that direction. Someone with a different theory
that postulated that somehow TV watching determines income would alteratively calculate ¢
with income as dependent, and this will produce a different value.

Kendall’s tau-b

Kendall’s tau-b is a symmeltric, PRE measure of association for ranked dafa arranged in a

bivariate table, Its main feature is that it makes use of the information provided by cases tied
on the dependent and on the independent variables:

tau-b = No-Ny
(Ve t N 4T, N+ Ny +T.)

C

Far the mathematically minded we note that tau-b is the geomelric mean of the two
2ltereative values for Scmers’ d. It is someiimes therefore referred (0 as the symmetric
verston of Somers’ 4, even though this terminology is slightly confusing since 4 by definition
i3 asyrnmetric. Since tau-b is the geometric mean of Somers’ 4 it will have a value somewhere
between the two values for 4 that can be calculated for any given crosstab.

Unfortunately, tau-b will only range between —1 and +1 where the number of rows in the

crosstab is equal to the number of columns (a square table), and is therefore generally only
used in this special case.

Kendall’s tau-¢

Kendall’s tau-c is 3 symmetric, PRE measure of association much like tau-4. It is used in
situations where a symmetric measure is desired for a table with an unequal number of rows

and columns (which limits tau-b), and which has many tied cases (which Lmits gamema), The
exact formula for tau-c is:

Z\AT y

where k is the number ¢f rows or the number of colurmns, whichever is smzliler; and N is the
tctal number of cases.

Measures of association uslag SPSS

Measures of association are available in SPSS as part of the Crosstabs command (Table 7.11,
Figure 7.4). SPSS has produced the values for gamma and Semers’ 4 in separate tables, since
one is a symmetric measure and the other is asymmetric (which SPSS calls Directlonal). In
cither case the values generated by SPSS, in the column headed Value in each table, zre the
same as (hose we calculated by hand above. These reflect the moderate to strong association
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{hat exists between these two variables for these data. _.a there was a negative ﬁmon_w__:.ou_,_um
egative sign will be printed in front of the value, provided that the data sre arrar.ged in the
-__uzo in the correct format, with values increasing across (he columas ar.d down the rows.

Table 7.11 Ordinal measures of association on SPSS (file: Ch07.sav)

Comments _
This brings up the Crosstabs dialag bex

SPSs command/action

1 Select Analyze/Descriptive Statistics/Crosstabs g ; g

7 Click on Frequency of TV watching which is the  This highlights Rrequency of TV watching
variable in the source list that will appear down the
rows of the table

3 Clickon » ihat points to the Row(s): target
variables hst

4 Click on Income Jevel which is the variable in the  This highlights Income bevel
source list that will appear across the columns

This pastes Frequency of TV watching wnto the Row(s):
target variables list

Click on b that points to the Column(s): target This pastes Income level into the Columngy): (arget varabies
ari i list
variables hist .

This bril 3 You will sez an
Cli Statisti This brings up the Crosstabs: Statistics .72»,
b i area headed Qrdinal, which provides a tist of the measures of
association available for this level of measuremenl
This places ¥ in the tick-boxes o indicate the statistics
selected

w

=

~3

Select Gamma and Somers’ d by clicking the
boxes next to them

o«

Click on Continue
Click on OK

9

Directional Measures

Asymp- _ Approx.
velse | SWd, Ertoc” _>83x, T m.m,ao
3 192 0
Olinal by Orgnal | Sorners’ d Symietric 618 043 | 4t

Frequency of TV watching 613 043 | 14192 000

Oependent

_znﬁi \evel Degerdent 818 043 | 14192 000
2. Not assuming the null hypothesis.
b. Using the asy daid emor ing the null hy, &

Symmotric Measures

Asymp
Value _ std. Erra”
Ordinal by Ordinal Garmma 784 043
N of Valid Cases 300

a. Mot assurning the null hypothesis.

b. Using the i BITOf arming the nul hyg:

Figure 7.4 SPSS Crosstabs: Statistics dialog box and output
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Example of an asymnetric relatronship

A public health researcher investigates whether a new drug improves rehabilitation for stroke
victims. The rescarcher compares a group of 1013 stroke victims who do not take the drug
with 588 stroke victims who do. Based on their ability to complete certain basic tasks the
rescarcher classifies each person as showing ‘no improvement’, ‘some improvement’,
‘moderate improvement’, or ‘stcong improvement’, The researcher initially deseribes the data
in the crosstab in Table 7.12.

It 1s very important to remember in construciing a bivariate table for ranked data that the
values increase when going down the rows and across the columns. That is, the table begins
with the lowesl value for the row variable (which is ncrmally the dependent variable) and
moves down to the highest value. Similarly the first column should be the lowest value for the
column variable (usually the independent vaniable) and increase across the page. This ensures
that our procedures for calculating concordant and discordant pairs are appropriate.

Table 7.12 Effect of drug on health condition

Condition Take drug? -
Yes Total
Nao improvement s 57
3%
Some tmprovement 31 17
%
Moderate improvement 123 439

Strong improvement

Totat 1601

Looking at the column percentages in this table it is evident that there is a relationship. For
example, a higher percentage (71 percent} of people who have taken the drug showed strong
improvement in their health condition than people who did not (56 percent). There is clearly a
pattern of positive association: as drug taking increases (effectively from No to Yes) health
condition also increases. We can also see, however, that the modal category for each group is
‘strong improvement’ indicating that therc is not a very strong relationship evident in the data.
In summary, our visual inspection of the table suggests a weak, positive association. By
calculating the measures of association we gel an exact quantilative measure of this
impression. The calculations needed to determine the number of concordant pairs for these
data are presented in Table 7.13.

Table 7.13 Calculating concordant pairs
PR 15

123 1419x316)+(419x86)+(419x 42) = 186,036

(123x861+{123x42) = 15,744

(1x42) = 1302
419

N, =186,036 + 15744 + 1302 = 2¢3,082

g
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The number of discordant pairs is calcuiated in Table 7.14.

Table 7.14 Calculating discordant pairs

(565X 1231H569x 31 }+(569% 15) = 96,161

Q16x311{316x15) = 14,536

123 (86x15) = 1290
419

N, =96,161 + 14,536 + 1290 = 11,1987
Purting all this into the formzla for calculating gamma, we obtain:

G = Ne=Ng _ 203,082-111,987 _ ¢ 5o

" N.aN;  703,082+111,987

To calculate Somers’ ¢ we need to work out the number of pairs tied on the dependent
variable, which is done in Tatie 7.15.

Table 7.15 Calculating tied cases on the depepdect variable

A2 5
86 31
(569x4i9) =238411

316 123

(316x223) = 38,868

+
(86x3%) = 2666
+
86 31
316 123 (42x15) = 630
569 419

The total number of pairs lied on the dependent vaiable will be:
T,= 238,411 + 38 868 + 2666 + €30 = 28C.575
This will yield a value for Somers” d of:

d= _NeNg  _  203082-111987 g5

T N +Ng+T,  265,082+111,
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This is considerably weaker than the value for gamma, indicating the bigh number of tied
cases. Given that this is clearly a case of one-way dependence, Somers' d, as an asymmetric
measure of association, is preferred. In terms of the research question it would seem relevam
to include in our calculations all those pairs of people who differed in terms of whether they
wok the drug yet showed no differcoce in health improvement.

Example of a symmetric relationship

A survey is conducted to assess whether the presence of union officials in the workplace is
related to the accident rate for (hal workplace. The researcher thinks there is a relationship of
mutual dependence between these variables: the level of upionization is affected by the
accident rate, but also in rum affects the accident rate by raising consciousness and policing of
safety regulations. The researcher will therefore use gamma, since it is a symmetric measure
of association.

One hundred and seventy-seven workplaces are included in the survey and these are
classified as haviog a low, moderate, or high level of union presence. These workplaces are
also classified as having either a high or low accident rate. The results of the survey are
presented in Table 7.16.

Table 7.16 Accident rates at the workplace by union presence
Accident rale Union presence

Low Moderate
Low 17 32
High 43 27
Total 60 59

Can we detect an association between these vanables?
To calculate gamma we begin with concordant pairs. For a 2-by-3 table such as this the
combination of concordant pairs can be determined using the calculations in Table 7.17.

(23x1TP23x32) = 1127
+
(27xi7) =459

ER R 32 35

N.=1127+459=1586

To calculate the number of discordant pairs we work in (he opposite direction (Table 7.(8).

(43X 32)+(43x35) = 3311

(27x35) = 945

Ny=3311 +945=4256

Putting this information into the equation for gamma we get;

_ N.-Ng . 1586-4256 _ _
C= NN, = 13865833 ~ 04
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This indicates thal in predicting the order of pairs on one varizble (accident rate), we will
make 41 percent fewer crrers if we take into account the way that the pairs are ordered on the
other variable (level of unionization). There is a moderate, negative association between these
two variables. Higher unionization is assoc’ated with a lower accident rate.

The other symmetric measure available to us is tau-c (tau-b is not appropriaie sioce this is a
table with a different number of rows 2nd columns):

~ Ezﬂz& B ﬁ;m?aﬁ& - 034
e = Nk -]

This is slightly lower than gamma, which is due to the presence of tied cases, but it still
poikis o the existence of a moderate, nzgative relationship between these (wo variables.

Summary

We have investigated the calculation of 2 variety of PRE measures of association where both
variables are measured 2t least at the ordinal level. Unfortunately, there is no easy rule for
deciding which is the ‘best’ mcasure (0 use. Part of the problem lies with the notion of
associalior itself, and the fact that this cencept is opcrationalized in slightly different ways.
For example, gamma, the tau measures, and rho gre symmetric measures, whereas the
Soriers” 4 is asymmetric, so the choice should be guided by the model of the relationship we
believe in. In practice, these measures usually ‘point’ in the same direction, in so far as they
will generally give similar answers.

Exercises

7.1  If decreases in the value of a vaniable are associated with increases in the value of
another variable, what is the direction of asscciation?

72  Why do we not speak of association between two vaniables as being cither positive or
negative, whea at least one variabic is measured at the aomipal leve]?

7.3  For the emboldened cells in cach of the following tables, calculate the number of
concordant pairs, assuming that the numbers on the edge of each table indicate the
values of an ordinal scale:

(@) i 2 3
] 60 24 12
b 32 14 3
) i 2 3
1 & 2 12
2 32 14 3
(< 1 2 3 4
] 12 17 25 42
2 10 14 19 24
3 6 1 16 20
(d) i 2 3 4
1 12 17 25 42
2 10 14 19 24
3 6 1 16 20
4 3 s 14 2
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For the emboldened cells in cach of the following tables, calculate the number of
discordant pairs, assuming that the numbers on the edge of each table indicate the
values of an ordinal scale:

@ 1 2 2
1 60 24 12
2 32 4 8

®) | 2 3
i 60 24 12
2 1 14 8

© | 2 3
1 60 24 2
2 kY] 14 3

(d) i 2 3 2
1 12 17 25 42
2 10 14 19 24
3 é 1 16 20

For (he cmboldened cells in each of the foilowing tables, calculate the number of pairs
of cases tied on the dependent variable but varying on the independent variable,
assuming that the numbers on the edge of each table indicate the values of an ordinal
variable:

(a) | 2 3
i 60 24 12
2 32 14 8

(b) 1 2 3
! &0 24 i2
2 N 14 8

(<) 1 2 3
) &0 214 12
2 3 14 8

(d) 1 2 3 4
1 12 17 25 42
2 10 14 19 24
3 [ 11 16 20

For the example in Table 7.16, whick 100ks at the relationskip between accident rates
and unionization in the workplace, calculate Somers’ o and compare it 1o the value for
gamma we <alculated in the text.

Calculate gamma and Somers’ d for the following table and interpret your result.

Maother working, Child achievement level

- ] Poor Good High Total
No 20 58 22 100
Pan-time 15 62 23 100

2 62 26 100

47 182 7i 300

|
{
|
{

78

7.9

Measures of association for crosstabulations: Ranked data 109

Consider the tollowing crosstabulation. The table displays the distribution of 162
patients whose health was assessed on a four-point scale, and who were also coded as
smokers or non-smokers. This latter variable is considered ordinal for the purposes of
this study since it indicates level of smoking.

Smoking level

Health level Daeyn™t smoke Dogs smoke Tot!
Poor 13 34 47
Fair 22 19 4l
Good 35 5 44
Very good 27 3 30
Total 97 65 162

(a) Looking at the raw distribution can you delect an association between these two
variables? What is the direction of association? How will this direction manifesi
when calculating a measure of association?

(b) Calculate gamma and Somers’ 4 and draw a conclusion about the relationship
between health and smoking.

Open the Employee data file. Recode current salary into class intervals based on
$10,000 income breckets. Use this recoded variable to assess the strength of the
rclationship between current income and employment category, treating the latter
variable as ordinal variable indicating employment status. Why is tau- not a useful
measure i this instapce?




Multivariate analysis of crosstabs: Elaboration

Chapters 5-7 analyzed the relationship between two variables. In those chapters it wa;
assumed that any association observed in the data between two variables is due 1o a simple
and direct relationship. A strong association in a bivariate table, however, does not necessarily
mean that a simple direct relationship in facr exists; this is only how we have interpreted the
data. There may be more complex relationships buried in the data, but we have not dug deep
enough to find them,

The simplest way of extending - elaborating - the relationship discovered in a crosstab is 1o
look at the possible impact that a third variable has on the original bivariate associatiop
Depending on the outcome of this ¢laboration we may have 10 adjust our model of 5».
relationship between the original two variables to take into account the influence of the third
variable. There are three possible conclusions we can reach when we introduce a third
varable into the analysis:

1. a direct relationship still exists (the third variable has no effect); or
2. either a spurious or intervening relationship exists; or
3. aconditional relationship exists.

We will investigale these possible outcomes by looking at examples of each in .

Direct relationship

We begin with an example where the original bivariate relationship does not change when we
introduce a third variable. When the introduction of a third variable does not alier the original
bivariate relationship, this will provide evidence that the simple direct model is the
appropriate way of characterizing the relationship.

For example, we may have data on income and TV waiching. Our theoretical model argues
that income directly affects the amount of TV someone watches by affording them more ot
less leisure time. To express this we arrange the data in a crosstab and calculate a measure of
association such as gamma (Table 8.1). These descriptive statistics tell us that there is a
moderate to strong, positive relationship.

Table 8.1 TV watching by income level

TV waiching lticome
High Total -
Low 95 210
32%
High 292
Total 502
Gamma=0,47

When we argue that there is a direct relationship between two variables in this way we are
effectively arguing that the refationship will be the same regardless of any other variable that
may cause cases to vary from cach other. In this example, we think income affects TV
watching in the same way and to the same degree, regardless of any other variable that may
cause cases 1o vary, such as sex, age, hair color, etc. This direct bivariate model, however,
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may appear ‘0 te overly simplistic. Surety there are other vanables which impact on the
amount of TV someone watches. Apother researcher, for examgle, may feel :bat level of
education also a{lects the amount of TV walched by individuals.

To assess the possible impact this new variable (level of education) rtas or the observed
relationship besween income and amount of TV waiched, we divide ‘he sample ‘nic two sub-
groups: those who have no post-secondary education and those who have completed some
post-secondary educat:on. [n technica: terms education level is a control variable,

e

“groups bised o the Gategories

The effect of this control variabie is to generate a separate crosstab for each of the sub-
groups defined by the control variable. In this cxample, we first take only those cases with
no post-secondary education and creale a crosstab between their incoms and TV waiching,
ignoring those cases with seme post-secondary education. We then take only cases with some
pest-secondary educatior: and creale a crosstab between their inceme and TV walching,
ignoring people with 00 post-secondary cducation.

The resulting crosstabs are called partial tables and we generate as many partiol tables as
there are categories for the control variable (Table 8.2, Table 8.3). Here the control variable,
‘Education level’, only has two categorics; we therefore generate two partial 1ables. (1f we had
three categories for the control variable, say ‘no post-secondary’, ‘some posi-secondary’, ‘a
lot of post-secondary’, we would geterate hree partial iables.)

Table 8.2 TV watching by income level: controlling for education level (no post-secondary education)

TV watching . income
Low High Total

Low 78 22 100

57% )
High 58 48 106

43% 69%
Total 136 70 206 e
Gamma = 0.49

Table 8.3 TV watching by income level: controlling for education level (post-secondary ¢ducation)

TV watching Income

) Low High Total

Low 37 73 110
55% 32%

High 30 158 186
45% 68%

Total 67 225 296

Gamma - 0.45

With this outcome we can see that the original relationship is reproduced almost exactly for
eack partial table. The value for gamma for each of the two partial tables is almost the same as
that for the original wable, before we controlled for education. In other words, regardless of the
level of education, the relationship between income and TV watching still holds. The direct
relationship we first observed is preserved even afler controlling for the third variable. No
matter how cases vary according to education level, the direct bivariate relationship remains
basically the same, so we will cot alter our initial model that characterized income and TV
watching in a direct relationship.
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Elabaration of crasstabs using SPSS

We can add control variables when generating a crosstab (Table 8.4, Figure 8.1) as part of the
Analyze/Descripfive Statistics/Crosstabs command we introduced in Chapter 5. Note thg
Steps 8 and 9 are only optional when elaborating crosstabs, but the additional informatiog
they provide will belp us interpret the results (Figure 8.2).

Table 8.4 Crosstabs with control variables on SPSS (file: Ch8.sav)
SPSS command/action

1 From the menu select Analyze/Descriptive
Statistics/Crosstabs

Comments
This brings up the Crosstabs dialog box

2 Click on TV watehing This highlights TV walching

3 Clickon » pointing to the target iist headed Row(s): This pastes TV watching into the Row(s): targe list

4 Click on Income This highlights Income

§ Click on » pointing to the target

headed Column(s): This pastes Income into the Column(s): target list
6 Click on Education level This highlights Education level
7

Click on » pointing to the 1arge

st below Layer 1 of 1 This pastes Education level into the target fist that
contains the control variable. A crosstab will be
generated for each value of the variable in this list

8  Click on the Statistics button and select Gamma This will produce gamma for each partial table

9 Click on the Cells button and select Column percentages This genetate the relative frequencies for each
partial table based on the columnn totals

10 Click on OK

Figure 8.1 The Creosstabs dialog box

The wble in Figure 8.2 is actually two crosstabs combined into one. The first half of the
table is the crosstab of income and TV watching for cases with no post-secondary education,
and immediately below it is the crosstab for those cases with post-secondary education. The
percentage of cases watching a certain level of TV is the same for all income categories,
regardless of education level.

This is reinforced by the values for gamma presented in the Symmetric Measures table.
These pamma values are very similar 1o the value calculated on the unsegmented data in
Table 8.1. The relationship between income and TV watching refains its strength and
direction for each of the partial tables.
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crosstabs
TV watching * Incoroe * Education tevel Crossiatnation
- Income
Edugation lavel Low High Tatal
Mo post-secondary TV walching  Low Counl 19 22 100
o withiin Incarme 574% A% 485%
“High  Count 53 48 108
% within Income 428% 68.6% 51.5%
Totat Count 136 70 206
% within Income 100.0% 100.0% 100.0%
Post-secandary TVwatkhing  Low Count 3 73 110
% witln Incoms 55.2% 31,9% 37.2%
High  Count 30 156 186
% within Income 448% 660.1% 62 6%
Totsl Count 57 ne 236
%o within In¢come 100.0% 100.0% 100.0%
Symmetiic Measures
Asymp. Approx.
Education feve( value | std Emo? | AppraxT° | Sig.
No past-zecondary  Ordinal by Ordinal  Gamma 492 s 3547 000
N ofvalid Cases 208
Post-secondary Owdinal by Ordinal  Gamma 450 113 iny ot
N ofValid Cases 298

3. Not assuming the null hpothesis

b. Using he asymplobc standard eror assuming the aull typoihests.

Figure 8.2 SPSS Crosstabs command output with a control variable

Partial gamma

Assuroe that when we introduce leve: of cducation into the analysis we instead obtain the
following partial tables (Tables 8.5 aud 8.6), rather than those in Tables 8.2 and 8.3.

Table 8.5 TV walching by income level: controlling for education level (no post-secondary education)

I'V watching Income
Low High Total

Low 102 50

75% M
High 34 20

25% 29%
Total 136 70
Gamma =009

Table 8.6 TV watching by income level: controlling for education level (post-secondary education)

TV watching Income
Low High
Low 13 45
19% 20%
High 54 184
81% 80%
Total = 67 229

Gamma = -0 007

The relationship between income and TV watching that we observed in the original table
hizs sudderly disappeared for each of the partial tables. It is clcar to the naked eye that there is
00 association tc speak of between income and TV watching, once we have controlled for
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education level. The original association we found has been *washed out’ by the introduction
of the control variable. This impression 1s reinforced by the gamma values, which are now
negligible in strength, unlike the combined gamma for the original bivariate table. In the
original table, where the cases are not separated by level of education, gamma is 0.47. But the
gamma values for each of the partial tables are very close 1o zero.

A more precise way of reaching this conclusion is to caiculate the partial gamma for the
data. The partial gamma is ‘built-up’ from the relationships embodied in the partial tables,
rather than being calculated directly from the unsegmented data in Table 8.1. As we discussed
in Chapter 7, gamma, is calculated on the basis of the number of concordant pairs and the
number of discordant pairs. Concordant pairs, you remember, ar¢ pairs of cases that are
ranked the same on each of the two variables, and thereby embody a positive relationship
between the variables. Discordant pairs on the other hand are pairs of cases that are ranked
differently on the two variables, reflecting a negative relationship between (be variables.

If we add the concordant pairs across both partial tables and the discordant pairs across both
partial tables we can calculate the partial gamma, which measures the dizect relationship
between the two variables we started with, controlling for the third variable. 1t is calculated
by summing the concordant and discordant pairs across the partial tables, We still use all the
cases in determining the partial gamma, but we are now doing it affer seperating the cases into
twg separale partial tables.

The process of calculating the partial gamma for these data is presented :n Table 8.7.

Table 8.7 Calculating partial gamma

Table . Concordant pairs Discordant pairs Gamma
Original bivariate table 204x 1 (5 - 23,460 #8x95 = R360 0.47
Partial table 1 20x 162 = 2040 34xs0= 1700 0.09
Partial table 2 13184 = 2392 w45 = 2430 -0.07
Total across partial tables 204042392 - 4412 1700+2430 = 4130 0.04

The partial gamma value for these daa is ooly 0.04, indicating ka: there is very little direct
relationship between income and TV watching, once we add level of education as a control,

Spurious or intervening relationship?

When the partial gamma is much lower than the original gamma calculated on the combined
crosstab we should conclude that there is cither a spurious relationship or lntervening
relationship between the first two variables. Before explaining each of these types of
relationship, we need 10 point out that deciding which one explains the results of the
claboration is a theorefical and not a stafistical issue. Having found that the original
relationship disappears after elaborating a crosstab, it is up to us to decide how the three
variables fit together, based on our understanding of how the world operates.

We might, for example, believe that the model represented in Figure 8.3 best explaius the
results we just analyzed.

- Income

Education level- \
™~
TV watching

Figure 8.3 A spurious relationship

There is a spurious relationship between income and TV watching in that the relationship we
originally observed between them (Table 8.1) docs not exist; it is only 2 statistical outcome
based on their respective relationships with the control variable. Education separately affects
income and TV watching, but the latter two variables are not directly related to each other.
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The classic example of a spurious relationship is the observed association between the
presence of storks in ao area and the birth rate (a reference to a study of this relationship
appears in Chapter 6). Where there are many storks there is also a higher birth rate: the storks
must be responsible for delivering babies! Of course this is a ridiculous argument and
highlights the difference between a statistical relationship and a causal relationship. The
observed relationship was explained by arguing that the same factors that caused the number
of storks to vary across regions a.so caused the birth rate to va-y. Specifically, rural areas
attract storks, and they also artract people [ooking to star: a family.

In other words, the relationship betwcea the number of storks and the birth rate in a region is
spurious. It docs not really exist but is an artefact of two otier relationshigs: the relationship
between the type of region (rural, non-rurzl) and the aumber of siorks, and the type of region
and the bisth rae.

Another researcher may look at the results of our elaboration of the crosstab betweer
income and TV walcking and instead characterize the relationship as in Figure §.4.

Income Education levei
Figure 8.4 Ap ntervening relationship

TV watching

This researcher could make the argument tha! nigher income earaers can afford 1o undertake
post-secondary education and then this affects how much TV they watch. Whether you think
this argumenl is 2 good onc or not is a matter for theoreticai debate. Whether it is a more
appropriate explanation of the results of the elaboration thac the model of spurious
relationship is open to discussion, but the statistical analysis itself cannot decide the issue.
The statistical znalysis merely indicate thal one of these models best explains the results,

Conditional relationship

Assume that a rescarcher is interested in the extent to which patients respond to a program of
exercise aimed at improving their cardiovascular system. The researcher organizes patients
into [ow exercise and high exercise groups and observes whether there is 2ny improvement in
their cardicvascular systems (Table 8.8).

A visual inspection of Table 8.8, looking particularly at the (shaded) modal cells for each
column, suggests that there is a strong, positive relationship between the variables, The
exercise program does seem to work. To reinforce this impression the researcher calculates
gamma, which produces a value of 0.68.

Table 8.8 Cardiovascular improvement by exercise level

Improvement Exercise level

Low_ High Toral
Ne 3 (1 49
Yes 35
Total 52 32 _ Y

The researcher could leave the restlts here, and conclude that a direct reiatioeship has been
observed between the independent variable (level of exercise) and the dependent variable
(improvement level). However, the researcher believes that the actual relationship is more
complex than this, and that there may be other factors left out of this analysis that may
determine whether a patient’s cardiovascular system improves. In particular, the researcher
believes that whether a person bas been a regular smoker will affect their chances of
responding to the exercise program. The researcher therefore generates the crosstabulation,
this time controlling for smoking level (Table 8.9 and Table 8.10).
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Table 8.9 Cardiovascular improvement by exercise level: smokers only

Improvement Exercise fevel
Low High Total
No 28 7 35
Ta% 70%
Yes 10 k] 13
26% 30%
Total 38 10 43

Gamma = 0.09

Table 8.10 Cardiovascular improvement by cxercise level: non-smokers only
Improvement

Exercise level

Low High Total
No 10 4 14
71% 18%
Yes 4 18 2
29% 2%
Total 14 : 22 36

Gamma = 0,84

When comparing these partial tables against the complete table we started with it is clear
that the relationship works differently depending on smoking history. Regular smokers gained
no improvement in their health levels as a result of the exercise program. But for non-smokers
the relationship is even stronger than was evident in the complete table, a result that was
‘diluted’ by the inclusion of the smokers for whom the refationship does not seem to hold.

This is reinforced by the gamma values for each of these tables. For non-smokers, the value
of gamma is 0.84, as opposed tc 0.68 for the table as a whole. For smokers, though, there is
practically no benefit from the exercise program. We can see that in gauging the effect of the
control variable the measure of association is extremely useful, since it quantifies the changes
that are brought about when the control variable is added.

As a result of this observation, the researcher chaoges the model which may tie the variables
together. Instead of a simple one-way direct relationship, the researcher depicts the
association in terms of a conditional relationship, as in Figure 8.5.

Smoker

\
/

Non-smoker

¥/~———= No improvement

Exercise

~— Strong improvement
Figure 8.5 A conditional relationship

A conditional relationship is sometimes called interaction. Interaction exisis where the
relationship berween two variables depends on the parlicular values of a third variable.
Sometimes we might find that the relationship is reversed depending on the value of the
control variable; for one sub-group the relationship might be positive, whereas for another
sub-group the relationship might be negative.

Example

We want 1o investigate the relationship between intelligence and income. Intelligence is
measured by a standard IQ test and respondents are divided into low and high [Q.
Respondents are also divided into low or high income groups, depending on whether they
eam below or above the median national income level.
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The combined results for 2ll 1000 people surveyed is preseoted in Table 8.11. This lable
illustrates a moderate association between intelligence, as measured by 1Q, .m:m_ income, and
might lead 10 ac iaterpretation that variation in Epﬁ:mgo.o causes .._v._o variation in income
levels. People’s earning capacity is to some extent predetermined by their respective 1Qs.

In order to avoid such a conclusion, we might argue that the [Q test as a measure of
intelligence is biased. [a particular we may feel that IQ scores are themselves a 332.6: of
social class background, and this variable is a key determinant of EooEo. Ho assess this we
construct two partial (ables, dividing the 1000 respondents into high social class and low
social class sub-groups, producing the results in Tables 8.12 and 8.13.

Table 8.11 Lacome asd intelligence

10 Income
 Low High Total
; 165 95 260
i 36% 18%
. 5 740
Hi 295 445
& &4% ¥2%
Total 460 540 100¢
Gamma = 0.48

Table 8.12 Income and intelligence: high social class only

Income
I .
° Low Hich Toal
Low 20 60 80
18% 14%
High 90 380 470
82% B6%
Total 110 440 - 550 E
Gamma =017

Table 8.13 Income and intelligence: low social class only

1Q Income
Low High - Total
Low 145 33 180
41% 35%
High 205 65 270
59% §5%
Total 350 100 450
Gamma = 0.13

We can see that the strength of the bivariate relationship is greatly aws:nmrna_ oGee we
control for social cizss. There is little difference in the pattern of relalive frequencies across
the two partial tables. [o fact, the partial gamma calculated on the _uanm of En partial tables is
only 0.15. We have cither a spurious relationship or an intervening relationship.

Summary

We bave looked at the way in which the introduction of a third varable cay alter a
relationship we had previously observed between two variables. Indeed, the stoTy can gel even
more complex wheo we allow for the impact of even more variables on tse oniginal E&ﬁ&ﬁ
relationship. Taking into account the possible effects of other varizbles involves multivariate
analysis, and we have only just skimmed the surface in this chapter.
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To help in drawing conclusions from the elaboration of crosstabs, Table 8.14 Eoinmu. a
useful guide to decision making (adapted from J. Healey, 1993, Staristics: 4 Tool Jor Social
Research, Belmont, CA: Wadsworth, p. 428).

Table 8.14 Possible results when controlling for a third variable

Partial tables when compared  Model
with crosstab show:

Implications for  Likely next step in
further analysis _ statistical analysis

Thearetical implications

Same relationship between X Direct

and Y

Weaker or no relatic
between X and ¥

Mixod relationships

Disregard contol Select another control Model that X causes ¥ in 4
variable to test further the  direct way is supported
directuess of the

relationship

relationship
Spurious Incorporate Focus on the relationship  Model that ¥ causes Y js
relationship control variable  between these three not supported

variables
or

Madel that X causes ¥ is

Ity supported but must
be revised 1o take control
inte account

Incorporate Focus on the relation

control variable  between these three
vanables

Incorporate Model that X causes ¥
control variable  on control variable partially supported but must
separately be revised to take controt
into account

relationship

Exercises
8.1 A study finds a strong positive relationship between a child’s shoe size ard the chiid’s
skills at mathematical problem solving. Expfain.
8.2 What conclusion would you draw about the relationship becween X and ¥ based on the
following elaboration?
All cases
Y X
1 2 Total .
1 177 146 323
2 sl )46 397
Towl 228 492 720
Controliing for C(1)
7 X
) 2 Total
1 153 52 205
2 4 123 167
Total 197 175 312
Controlling for C(2)
Y X .
| 2 § Tatal
1 24 94 118
2 7 223 230
Total 31 317 348
8.3 An investigation of the relationship between age, concern for the environment, and

political affiliation produces the following gamma values:

Gamma (age and concern for the environment): —0.57

Gamma (age and concern for the environment, liberals only): ~0.22
Gamma (age and concern for the environment, conservatives oply): —0.67
Partial gamma: -0.38

8.4
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What cenclusion should be drawn 2bout the reiationship, if any, between these three
variables?

The following ables are based on a stucy of e l:keiihood of US courts o impose the
death penalty, based on the racial characteristics of (he victim and the defendant (M.
Radelet, 1981, Racial characteristics acd the imposition of the death pena’ty. American
Sociological Review, 46, pp. 918-27).

All cases
Death penalty Victim
White Black Total .a

No ’ 184 106 290
Yes 30 [ .K.,
Total 214 1:2 326
White defendart only
Death penalty Victim

T Whie Black Tolal
No 132 9 141
Yes 19 0 19
Total 151 9 160
Black defendant only

Victim

R White Black Toul
No 52 97 149
Yes 11 ] 17
Toual 53 103 163

What coociusions can you draw about the relationship between (ke race of the victim,
the race of (he defendant, 2nd likelihood {0 impose the dez'h peoalty?
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Descriptive statistics: Numerical measures




Measures of central tendency

Part 2 looked at the description of data in graphical and tabular form. Tables and graphs as a
form of describing data give some sense of the overall distribution of cases. For example, a
Guick glance 2l a frequency table or a histogram wiil ideotify the value that scems Lo be the
‘center’ of the distnbutior.. However, we sometimes want to capture this feature of the data in
mcere precise (crms: what does the ‘typical’ or “average” case look like?

Measures of central tendency

Measures of central tendency (aisc koown as measures of Jocation) arc univanate
descriptive statistics.

There are threc common measures of central tendency: mode, median, and mean. Each
measure embodies a different notion of average and, as Table 9.1 indicates, choosing which to
calculate oo a given set of data is restricted by the level at which a variable is measured.

Table 9.1 Measures of central tendency

Measure  Data considerations .

Mode Can be used with all levels of measurement, but aot useful with scales that have many values
Median  Can be used with ranked data (ordinal and intervaliratio), but not useful for scales with few values
Mean Can be used for intervalfratio data that are not skewed

In this table we can see one of the basic rules of statistics: techniques (hat can be applied fo
a particular level of measuremert can also be applied fo a higher level. For example, the
measure of central tendcucy that can be calculated for nominal data (mode) can also bo
calculated for ordinal and interval/ratio data. This sbould be borne in mind as you read the rest
of the book; wher. I refer to nominal-level statistical techniques I really mean ‘nominal or
above’, and ordinal daw techaiques really refers to ‘ordinal or above'. The ceoverse, however,
is Dot true: measures thatl can be calculated for a particular level of measurement cannot
always be calculaled for lower ievels. The mean, for example, can only be calcu’ated for the
highest level of measuremeni (interval/ratio).

To see how each of these measures of central tendency is calculated we will use an exract
of 20 cas¢s from the hypothctical student survey we iniroduced in Chapter 2. The distributions
for this sub-set of 20 students are preseated in Tables 9.2, 9.3, aad 9.4.

Table 9.2 Sex of respoadents

Sex - Frequency
Male 12
Female 8
Total 20

Table 9.3 Health rating ol respo:idents

Health rating Frequency
Unhealthy 7
Healthy 5
Very healthy 8

Total 20
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Table 9.4 Age of respondents

Age in vears Trequency
18 7

19 5

20 4

21 2

22 2
Total 20
The wode

Em will start with the made (A,), which is the simplest measure of central tendency, and
which can be calculated for all levels of measurement.

The'm

s the Value in 2 GISTTBHGOR With The igheSt frequicaey il

._.rm mode is the only measure of central tendency that can be calculated for nominal data
w:a its great advantage over other choices is that it is very casy to calculate. A M_Sv_m
mspection of a frequerncy table is enough to determine the modal value or category.

For example, the category for sex that has the highest frequency in Table 9.2 is male, with
12 responses. For health rating in Table 9.3 the mode is ‘very healthy’, and for age in Table
9.4 the mode is |8 years.

m»_cdocmr it 1s cxceptionally casy to determine the mode, occasionally people make the
mistake of specifying as the mode the highest frequency, rather than the score with the highest
frequency. That is, 12 might be reported as the mode for Table 9.2 since this is the highest
frequency. This is incorrect — the important point to remember is that the mode is the score
that occurs most frequently, not the number of times it appears in the distribution.

The mode has one feature that docs not apply o the median or mean as measures of central
tendency: there can be more than one mode for the same distribution. For example, assume
we have the distribution for age shown in Table 9.5.

Table 9.5 Age of respondents

Age in years Frequency
18 7
19 5
20 4
21 2
22 7
Total 25

We can ses that two categories have the highest frequency: 18 years and 22 years. This is
called a bimodal distribution. The median or the mean, on the other hand, will always
produce only a single number as the average, regardless of the distribution.

The mode has one major limitation that arises especially when it is used to describe listed
data for interval/ratio scales. Take, for example, the following scores that represent the time in
seconds for a drug 10 take effect on a sample of patients, arranged in rank order:

33,36, 36, 81, B2, 84, 86, 89, 91, 95,97, 98

It is clear to the naked eye that the data ace “centered’ somewhere in the 80-90 seconds
range. Yet the mode for this distribution of listed data is 36 seconds since this appears twice
in the distributicn, whereas every other score only appears once. Clearly, the mode is not
really reflecting the central tendency of this distribution. Io such cases, we should either use
other measures of central tendency, such as those we are about to discuss, or else organize the
aim Into suitable class intervals, and reporf the modal class interval, rather than the
individual modal score.
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The median

With ordinal and interval/ratio data we can also calculate the median (M,) score, along with
the mode. We caanot caiculate the median for nominal data since the determination of the
median requires that the cases be rank-ordered from lowest to highest in terms of the quantity
of the variable each case possesses. If all the cases in a distribution are ranked from lowest to
bighest, the median is the value that divides the data in half. Hal( of all the cases have a vzlue
for the variable greater than the median and half of all cases have a value less than the
median. In other words, if [ randomly select a case from a rank-ordered serics, there is exactly
a 50 pereent chance that it will fall above the median and a 50 percent chance it will fall
below the median.

Thus if [ lined up the 20 people in the survey (Figure 9.1), starting with the seven youngest
that are 18 years old, followed by the 19 year olds, then the 20 and 21 year olds, aod finally
the two 22 year olds who are the oldest in the group, we can sec tha! the mid-point of the
distribution (between the 10th and 1{th cases in line) is in the 19 years age group.

Mid-point
€—50% of cases /v

R EEEEEE I EEEEERE

18 years 19 years 20 years 21 years 22 years
Figure 9.1 Calculating the median for ranked data

50% of cases ™

With an even number of cases, as we have here, the median is the average of the two middle
scores. which are both 19 years, so the median will be 19 years:

median = Ewb = 19 years

However, if the 10th student was (9 ysers of age, and the 11th was 20 years of age, the

median will then be 19.5 years:

mediag = EWN|0 = 19.5 years

[f a cumulative relative frequency tabie has beea generated (Table 9.6), an casier way to
calculate the median is to ider:ify the value at which the cumulative percent furst passes 50.

Table 9.6 Age (in years) of respondents

Total 20

The median has one limitation that is worth noting that atises especially with ordinal scales,
such a5 that we have for the health ratiag of students. Although technically we can rack order
cases from lowest to Lighest and find the middle score, it does not make much sense tc do so
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when we only have a small number of points in the scale and therefore have a hi gh proporti

of cases in cach of the categories. [t does not really tell us much about the ﬁ___mﬁ._v::osﬁ_o o
:__2 50 percent of cases are ‘Healthy or above’ and 50 percent are ‘Healthy or below’; in ﬂa%v
circumstance the mode is a preferable measure of central tendency. M :

Example
Consider the following data;
93,25,87,3,56,64, 12

To find the median of these data we first rank-order them from lowest o highest. Since
there are seven cases (an odd number) the median value will be the 4th in line, i.e. 56:

Score: 3 12 25
Rank: (st 2nd

5 64 87 93
3d fdth . s 6 T

If the same data set included one additional value of 98 the rank ordering will be:

Score: 3 12 25
Rank: Lst 2nd 3rd

37 93 98
6th 7th 8th

We now have cight cases (an even number). The median will thereft
e ) will therefore be the average of the

median = % = 60 years

The mean

With _Eme:B:o data .._E (anithmetic) mean can be calculated in addition to the mode and
the Sa_&s:, The mean is the notion of average that is most commonly used, and in fact is
oflen (incorrectly) synonymous with the term average.

K When calculatiog the mean for an entire population we use the Greek symbol u (prenouaced
.:.EQ. ,i__o: calculating the mean for a sample, we use the Roman symbol X (pronounced
X&_E ). The actual formula we use to calculate the mean depends on whether we have the
data in listed form, or in a frequency table, or arranged into class intervals.

Listed data

If we have the raw dat in listed form (with each individual datum listed separately) the
equation for the mean of the population and the mean of a sample respectively are:

we Ny H
N n

.E_u,nqn 2 is the size of the population, 7 is the size of the sample, and X; is each score in a
A__MSW::O‘P The I (pronounced ‘sigma’) means ‘the sum of (or ‘add up’), so we read these
equations in the following way: ‘the mean equals the sum of all scores divided by the number
of cases’. Thus if [ have the listed distribution of sample scores of 12, 15, 19, 27 the mean is:

= 7] 17
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Frequency data

We sometimes do not have data presented in listed form, but instead have da:a grouped info a
frequency table such as in Table 9.5, In this table we do pot have the zge for each person
listed individually. Instead we have a frequency distribution of data grouped by years. In this
case we use the following formula to calculate the mean for a sample:

X,

n

X =

This formula instructs us to:

1. multiply each value in the distribution by the frequency (/) with which it occurs;

2. sum these products; and

3. divide the sum by the number of cascs.

Here we have seven respondents aged 18, five aged 19, four aged 20, two aged 21, and
another two aged 22. The mean is 19.35 years:

(8xN+(1$x5) +20xHH21x D+ A2xD) — 1535 years

X = 20

Fregquency data using class infervals

Sometimes frequency lables oaly specify the class intervais v which data fall, rather than the
specific values aad the frequency with which cach value occurs. A slightly more complicated
procedure is involved when the data are grouped into class intervals, rather thzn by specific
values. For example, we may be reading a report that includes Table 9.7 with the following
information about children’s ages.

Table 9.7 Children’s ages grouped by class intervals

Intervals Frequency
1-5 years 7
&-10 years 10
11-15 yecars 6
Total 2

The report, however, does not calculate the average age, so il we waal this extra bit of
description we need to calculate it for ourselves. With data grouped Into class intervais we
need to caleulate the mid-points (m) and then multiply the frequencies by these mid-points:

Sfm

x- 2
n

The procedure involved in using this equaticn is:

1. calculate the mid-point of each class interval,

2. multiply each mid-point by the number of czses in that interval;

3. sum these products; and

4, divide the total by the number of cases.

Thus for data in Table 9.7, the mic-peints acd the mid-poicts multiplied by the frequency of
each class are as given in Table 9.8. Substtuting these data into the formula we get (rounding
to | decimal place):

T Xm _ 179 _
X==5=y =78
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Table 9.8 Calculations for the mean for class interval frequency data

Class intervals Mid-point, (m) Frequency, () fm
1-5 3 7 357~ 21 o
610 8 10 E1l0= 80
11-15 13 6 136=- 78
Total n=23 Lfm =179

Choosing 1 measure of central tendency

The results we have gencrated for the age of these 20 students are summarized in Tabie 9.9,

Table 9.9 Age of respondents

Measure of central tendency Value
Zoa.m 18 years
Median 19 years
Meaa 19.3 years

It is clear from this table that where more than one measure of average can be calculated we
will oot always get the same answer, even when calculated on the same raw data. This is
because cach measure defines ‘average’ in a slightly different way. In fact, unless the
distribution is perfecty symmetrical, that is if the distributicn is skewed, there will always be
some difference in the various measures of centrai tendency. We can sece examples of
symmetrical and skewed distributions in Figure 9.2.

(a)

M)

M, My ¢

(c)

{

KoM M,
Figure 9.2 The relationship between the mean, median, and mode for a (a) symmetrical, (b) right-
skewed, and (¢) lefi-skewed distribution

The symmetrical curve has a nice bell-shape, and the measures of central tendency are all
equal. With skewed distributions, though, the measures diverge. Notice also that in describing
the direction to which a distribution is skewed we refer 10 the side of the curve that has the
long 1ail, aad not the side with the *hurap’.

—— e
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Generally, wlez a distribution is keavily skewed the mean is a misleading notion of average.
As the meao is calculated from every value in the distribution, it is influenced by extreme
scores and outiiers. For example, we may szve (ac following exam scores:

Xy =60, X, =62, Xy=66, X, =67, Xs=69
With each datum listed separately, the meao for this distribution is 64.8:

5. XXi _ 60+62+66+67+69

= 64.8

n S

Consider the effect on the mean if the scores vary only stighily so thai the fifth score is 95
instead of 69:

X =60, X;—62, X;-66, X;=€1, X5-95

Even thougl. only one score has changed, causing the distribution to skew to the right, the
value of the mean has changed dramaticzily:

ZX; _ 60+62+66+67+95 20
. 5

X =

Tbe ‘average’ student suddenly 100ks a lot smarter, because of this one change. The mediao

for both distridutions, though, remains 66. This is the score that the student in the middle of

the distribution receives. Since the median depends solely op the value of this one score zt the

mid-point, it is aot ‘pulled’ in ore direction or another by scores at the exireme ¢nds of the
range, and is, for iptervalratio data, therzfore best used with a skewed distributicn.

Measures of central tendency using SPSS: Univariate analysis

When we nced deseriptive statistics, such as those we discussed above, for only one group
there are at least three cifferent corunaods ic SPSS that will provide them for us. Before
discussing these, bowever, we pote that the mode and median can be easily determined from
frequency tables, and therefore for nominal and ordinal data we really do oot need any special
commands 10 assess central tendency. It is only with interval/ratio data upon which the mean
ca2n be calculated (along with other measures we will discuss in the next chapter) that the
foliowing commands are mos: relevant.

The various commands for generating measures of central tendency all appear under the
Analyze/Descriptive Statistics option (Figure 9.3).

u“..l.mu

| ™iree options. for gemerating
Mﬂ descriptive stalistics
%

Figure 9.3 SPSS commands for univariate descriptive statistics

Ironicelly, the Descriptives cormmand is the least useful of these ree. 11 we compare the
rapge of options zvzilabic uoder this command with those available under the
Frequencies/Statistics command, for example, we can see that the former only offers the
mean as a mezsure of ceamral tendency, and not the mode or median (Figure 9.4)
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Ficquencies: §

L

Figure 9.4 SPSS Descriptives and Frequencies/Statisties commands

Notice that in either command we have many options from which to select when choosing
descriptive statistics (o be generated. SPSS does not discriminate between levels of
measurement and will calculate anything we ask for. We aeed to be careful 1o select only the
measures that are appropriate to the data we 2re analyzing and the question we want 1o
apswer. If we were analyzing the sex of respondeats, for example, we would not select the
mean or median option for measures of central tendency; SPSS will calculate them but the
oumbers are meaningless for nominal data. It is up 1o us to choose only the appropriate
measures so that the output is not cluttered with unnecessary statistics.

The best option for gencrating descriptive statistics fer interval/ratio data is the Explore
command. To generate statistics using the Explore command we follow the procedure in
Table 9.10, which will produce the output in Figure 9.5,

Table 9.10 The SPSS Explore cornmand (file: Chty9.sav)

SPSS command/action
1 From the menu select Analyze/Descriptive
Statistics/Explore

Comments

This brings up the Explore dialog box

2 Select Age in years from the source list of variabies

3 Clickon » pointing to the target list headed Dependent  This pastes Age in years into the target list headed
List: Dependent List:

4 Click oan OK

The Explore command produces a Descriptives table thzt provides a number of statistics:

»the mean and the median {the mode is not usually a useful measure for interval/ratio scales
as we discussed above);

»a more refined measures of central lendency called the 5% Trimmed Mean. The trimmed
mean is the arithmetic mean calculated when the largest 5% and the smallest 5% of the
cases have been ¢liminated. Eliminating extreme cases from the computation of the mean
resulfs in a better estimate of central tendency when the data are skewed;

<other descriptive statistics (which we will cover in the gext chapter) that measure
dispersion;

sthe 95% confidence interval around the mean so that we can make inferences, as we will
discuss in Chapter 17;

* measures that help us assess the shape of the distribution, called measures of skewness and
kurtosis, to which we will refer in Chapter 11.

The Explore command also creates a stem-and-leaf plot, which is not presenied here; such
plots were useful ways of tallying & distribution before personal computers, bui with the
advent of programs such as SPSS, stem-and-leaf plots are largely redundant.

teasures of central iendency 131

A.Ew Descrynives
Statilic Std. Eqror
Ageinyears  Mean 20.64 B2
95% Confidence Lower Bound 20.29
Interval for Mean Upper Baund
21.00
5% Trimmed Mean 2045
Madian 20,00
Variance 6516
&td. Deviation 2.553
Winimum 7
Maximum 39
Range by
Inferguartile Ranpe 3
Bewness 2541 173
Kurtosis 14,158 345
©
«i306
35 -
»135
30|
2% -
20 =
15

T
Age i years

Figure 9.5 (a) the SPSS Explore command (b) Descriptives outpul and (¢) box-plot (stem-aac-leaf piot
oratied)
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Following the stem-and-leaf plot is 2 box plot, Figure 9.5 {c), which graphically presents the

statistics in the Descriptives box. The key ¢lements of the box plot are:

= the beavy line in the middle of the box is the value for the median;

* the bottom edge of the box is the upper limit of the first quartile, and the upper edge of the
box is the upper limit of the third quartile. The difference between the two, whick is the
height of the box, is thus the interquantile range;

*the ‘whiskers' of the plot represent the range of values in which scores that do not
represent extureme scores or cutlicrs lig;

*two extreme scores are identified by * and by the row number in the data file in which they
can be located. SPSS indicates any case that 1s more than 3 box lengths from the upper or
lower quartiles as an extreme score. Any score that is between 1.5 and 3 box Jengihs from
the upper and lower quantiles would be labelled by SPSS as “outliers’ 2nd indicated in the
plot by a O. Here there are no such ‘outliers’. Note that the terminology that SPSS uses
may be different from other definitions ¢f what copstituies an ‘ou:lier’ you may come
across, since there is no agreed upen criteria for designating scores as outliers. My
preference is o call all scores that are disconnected from the main tatch as outlisrs, rather
than brealang them up into outliers and extreme scores.

Measures of central tendency using SPSS: Bivariate and multivariate analysis

This chapter has discussed measures of central tendency largely in the unjvanate context. For
example, we calculated mean age for alf the students in the group for wkicti we have data.
However, this can be easily extended to the bivariate and muliivariaie contexts by simply
calculating the relevant measures for each of the groups defined by the independent variable.
Thus if [ wanted to see whether male and female students were on average different in age
(i.e. whether age of student was dependent on their sex), [ would break the data up into male
and female groups and then calculate measures of central tendency (or each so that [ ¢an
compare them.
In SPSS this can be done through a oumber of commands.

1. The Analyze/Descriptive Statistics/Descriptives and the Analyze/Descriptive Statistics
/Frequencies/Statistics commands. These commands do act themselves provide the ability
to break a dala set up into comparison groups, but we can invoke the Data/Split File
command prior to running these. The Data/Split File command is an especially useful
function in SPSS, since it can extend any procedures that do not allow for the breaking up
of data into comparison groups to the bivariate context. Once the Data/Split File command
is used, we can specify an independent variable that will create the comparison groups, and
then all subsequent commands will bz performed on each of these groups. Thus by pasting
Sex of studeats irfo the Groups Based on box, and then running the Descriptives
command for age, we can get the mean age for males and for females scparately so that we
can compare them,

2. A better option, for the szame rezasons that we discussed in the previous section, is to use the
Analyze/Descriptive Statistics/Explore command and paste the independent variable into
the Factor List:. The summary stalistics and plots that we generated in the previous
section wil! now be produced for cach of the groups defined by the variable(s) in this list.

3. The Analyze/Compare Means/Means command (Figure 9.6). If we paste Age in years
into the Dependent List: and Sex of student in:o the Independent List the default seiting
is for SPSS to previde the meao age, the number of students, and the standard deviation for
males, for females, and for the whole daia se(.
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Report
Age Inyears
Sex of student Mean N Std. Devialion
Femalg 21.28 el] 3.085
Male 2012 105 1.885
Tolal 20.66 195 2558

Figurc 9.6 The SPSS Compare Mcans/Means commard with layer variable and outpu(

There ase two points 1o note about the Compare Means/Means connasd:

1. We can compare groups in terms of more than just their respective means. [f we select
Options for this command we can add 1o the list of statistics that can be generated, so that,
contrary to the name of this command, we ¢an compare more than just the means.

2. The Compare Means command can be extended to include more than two variables in the
analysis (unlike the Explore command). The variables upon which we split the total data
set are called layer vanables, and we can bave a number of layers. Thus I may want the
data set to be first broken down by responses to Health rating and then by the Sex of
student so that [ can compare for Very healthy students whether there is a difference
between females and males in terms of age. Here the first layer is Health rating (the’
highest lcvel of division) and the secord layer is Sex of student (which is the second order
division whkich compares groups within cach category of the first layer). This layering of
variables is i-ustrated in Figure 9.7.

Layer 1: Health r2ting | Unheaithy ] | Healthy [ Very healthy |

Layer 2: Sex qmﬁrm_o male _ H,.f female _ male _ female _ male -

Figure 9.7 The logic of layer variables in SPSS

Summary

In this chapter we have worked through a number of ways of summarizing data so that we can
identify the ceoter of thcir distribution. Rather than rely oo a simple visual inspection of a
graph or freguency table to determine the centrai value for a set of scores, we can alternatively
(or in addition) use an appropriate measare of central tendency, We have also seen, however,
that each of these measures have their own peculiarities that affect their respective use, aod
that they do not always amrive at the same cooclusion as to the where the center of a
distribution lies.

O

3

il
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Exercises
9.1  Can we caiculate the mean for orcZnal data? Why or why rot?
9.2  What do the symbels iz and X represent?
9.3  In 2 set of eight scores the mean 1s 5. [f seven of these scotes are 9, 3, 4, 5, 6, 4, 7 what
must the remzining score be?
94  Calculate the mean and median for each of the following distributions:
(a) 5 9 13 15 26 72
B2 134 145 202 289 306 167 380 452
(c)1.2 14 1.9 20 24 35 39 43 52
95 A siudent swilched (rom one class to another. This student’s ‘friends’ commented that
such a mave raised the average IQ of each class. What does this comment suggest
about the relationship of this student’s 1Q 10 the average in each class?
9.6  Cozsider the following daa sel:
43,22, 5¢, 39, 55,73,60.75, 80, 11,36, €6, 45, 57, 20, 35, 68, 87, 50, 68, 9.
(a) Rank-order these values and determine the median,
(b) Caiculare the mean.
(<) By comparing the value for the mean and the median, determine whether the
dismibution is symmetric, skewed to the lefl, or skewed 10 the right.
() If a score cf 194 is added to this data set, how will it affect the median and the
meac? Explain the changes 10 the previous calculation for these measures.
9.7  Calculate the mean, median, and mode for the follewing data regarding the anoual
income (in $'000) for people employed ip a particular agency:
12 40 22 30 18 36 45 19 22 22 16 23
37 35 72 28 36 29 42 56 52 35 37 26
22 29 35 52
9.8 The following data represent time, in minutes, taken for subjects in a fitness trial to
complete a certain exercise task.
31 39 45 26 2% 56 45 80 35 37 27 37
25 42 32 58 80 71 19 16 56 21 40 B2
34 36 10 38 12 48 38 37 39 42 56 28
27 3% 17 3l
In Exercise 5.5 you were asked (o generate a frequency table by grouping these data
into class intervals of 1-9, 10-19, 20-29, ctc.
(a) Calculate the mean and median, using both the raw dawa and the grouped data. Are
these values different from your calculations for the ungrouped data? Explain.
{b) If you created an SPSS data file for these datz in Exsrcise 2.2 use SPSS to generate
the relevant descriptive statistics for this variabie.
9.9  Consider the following data sets:

Course of enrollment

Course Frequency
Social science 32
Ans 45
Economics 21
Law 13
Other 8

9.10

9.11

9.12

Measures of central tendency

Time spent studying for exams

Time e g Frequency
I hour iz

2 hours 25

3 hours 27

4 hours 30

5 hours 26
Satisfaction with employment

Satisfaction e Frequency
Very dissatisfied 12
Not satisfied 25
Satisfied 92
Very satisfied 38

For each of the datz sets:

(a) lndicate the level of measurement.
(b) Calculate all possible measures of central tendency. Expiain any differences
between the measures and discuss which is most appropriate.

Consider the following data from a survey of employees of a factory:

School years completed

Years Number of employees
-4 127
5-8 500
9-12 784
13-16 59
1720 8

(a) Calculate the mean, median, and mode of this distribution.
(b) If they differ, explain why.

Is 2100 the mode for the following distribution?
Migrants in local area, place of origin

Place Number
Asia 900
Africa 1200
Europe 2100
South America 1500
Other 300
Total 5000

Using the Employee data file that comes with the SPSS program, calculate the
appropriate descriptive statistics that will allow you 1o answer the following questions.

What is the difference between mean starting salary and mean current salary?
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Measures of dispersion

We have seen that there are various ways by wiich the average of a &m:ﬁc:.oa car, be
conceptualized and calculated. But how average 15 2verage? Consider the two distributions of
cases according to annual income shown in Table 10.1.

Table 10.1 Annual incomes

Group A ($) Group B (3)
2000 20,006
6500 28.500
8000 35,000
55,000 36,000
35.000 40.00C
The mean income for each of these groups is the same:
X, - 5000+ 6500 + 8000 + 55,000+ 85,000 $31.900
* 5
Xp = 20,000 + 28,500+ 35,000 + 36,000 + 40,000 _ $31.900

5

These distributions have the same mean, yet it is clear that there is also a major &Qﬂo:&
between the two. Although the mean is the same, the spread or dispersion of scores is very
different.

We will begin with measures of dispersion for interval/ratio data: the range, interquartile
range, standard deviation, and coefficient of relative variation. We will then explore a
measure of dispersion for categorical data: the index of qualitative variation.

The range

The simplest measure of dispersion is the range.

This 1s a quickly and easily calculated measure of dispersion, aoomcmn.: .5.,8._7.8 a
straightforward subtraction of one score from another. Thus for the two distributions of
income the ranges io Table 10.1 will be:

R, = 85,000 — 5000 = $80,000

Rz = 40,000 - 20,000 = $20,000
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We can immediately see that even though the two dstributions have the same mean, there 3s
considerable difference in the spread of scores around this average; Group A has much more
veration.

The advantage of the range as a measure of dispersion is that it is very easily calculated,
since it is simply the subtraction of one nuriber from another. However, this advantage of the
range is also its major limitation: it only uses the extreme scores, aad therefore chaoges with
the values of the two extreme scores. Consider the distribution of income for group B: all the
cases fall in a $20,000 range between $20,600 and $40,000. If we add a sixth person to this
group, whose annual income is $150,000, the range is suddenly stretched out by this on¢
score. It is now $130,000. To compensate for the effect of such outliers, a slight variation on
the rarge, called the interquartile range, can be generated.

The ioterquartile range

The Interquartile range (IQR) overcomes the problems that can acise with the simple range
by iguoring the extreme scores of a distribution. The IQR is the range for the middle 50
percent of cases in a rank-ordered series (Figure 10.1).

Interquartile

range
i N

Median

25th percentile  75th percentile
Figure 10.1 The interquartile range

To see how the IQR is calculated we will use the age data from the 20 survey respondents.
There are 20 cases. so each quartile will consist of 20 + 4 = 5 cases. The first quartile ends
with a person who is 18 years of age. The third quartile ends with a person (the 15th) who is
20 years of age (Figure 10.2).

Ist quartile 2rd quartile
,—~ <—50% of cases—> @
BRI R IR
18 years 19 years 20 ycars 21 years 22 years

Figure 10.2 The interquartile range
The icterquartile range is 2 years:
IQR =26 - 18 =2 years

Unlike the simple range, the interquartile range will not change dramatically if we add one
or two people who are much older or much younger (o either end of the distribution.
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The standard deviation

Many readers will have had the experience of dining out with a large group of people where
one or two people proceed to order expensive meals and lots of drinks, and when the bill
arrives these same people suggest dividing it up evenly to make the calculation of everyone’s
share easier! Everyone at the dinner table will be aware of the difference between the value of
their own dinner and the cost of the ‘average’ meal so that they can gauge whether paying the
average will put them ahead or behind. In this situation everyone is aware of the difference
between average and spread, and how the mean may be a misleading representation of a
distribution when taken just on its own.

In a similar manner the standard deviation tries to capture the average distance each score is
from the average. The standard deviation assesses spread by employing in its calculation the
difference between each score and the mean. As with the calculation for the mean, the
formulas we use vary slightly depending on whether we have the data in listed form or in
grouped form. In either case we use the Roman symbol, s, to symbolize the standard deviation
for a sample, and the Greek letter, o, for the standard deviation for a population. With listed
data the standard deviation for the sample and population are respectively given by:

x(x;-n)’

P (population)

{sample), o =

A close look at each of these formulas indicates how they capture the notion that the
standard deviation is the average distance that each score is from the average. The numerator
is simply the difference between each score and the mean, and the denominator adjusts those
differences by the number of observations. The formulas are slightly more complicated, since
the differences are squared and the square root of the whole lot taken (for reasons that are not
necessary to the present discussion), but the basic idea is still evident.

To focus on the notion of the standard deviation more sharply, consider again the
distribution of ages for our 20 survey respondents. We have already calculated the mean age
1o be 19.3 years. All the scores deviate from the mean, either above or below it, 10 a greater or
lesser degree. This is illustrated in Figure 10.3.

The age of each person is ploticd on a graph, with the line for the mean age running down
the middle. The distance from the mean 1o each person’s age is then drawn in. Respondents 7
and 13 are relatively a long way above the mean, while respondents 5, 8, 12, 14, and 18 are
enly slightly below the mean. What is the average of these distances?

Unfortunately, we cannot simply add all the positive deviations (scores above the mean)
with all the negative deviations (scores below the mean), since by definition, these will sum
to zero. This is why the equation for the standard deviation squares the differences: it thereby
tums all the deviations into positive numbers, so that the larger the differences, the greater the
value of the standard deviation.

Let us actually calculate the standard deviation for this distribution. We can use the equation
above to do this, but we have only introduced it because it captures the idea that the standard
deviation is the average distance from the mean. In actually calculating the standard deviation
for listed data we work with a slightly different equation that is easier to compuie, but which
will always give us the same answer as the equation above:

Mx;mvu
n
n-]
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X=19.2 years
Case
20- I,
19 —hi
18 A
174 W +7
16+ ¢|.Hlu|'
151 07,
144 USA
13- _x2.7
121
111
10
il "
84 A,
74 b +27
6+ —bl
54 FUNA
4- ko
31 7,
24 PR 3 V)
N a3y
7 T T T T — Age
18 19 20 21 22

Figure 103 Deviations of scores around the mean

Table 10.2 Calculations for the standard deviation of age

Case Age In years, X; X, .
1 18 324
2 21 44]
3 2¢ 400
4 8 324
5 s 361
6 18 324
7k 2 484
8 19 361
9 12 324
10 20 400
11 18 324
12 19 361
13 2Z 484
14 19 361
15 20 400
16 18 324
17 21 441
18 19 361
19 18 324
20 ) 20 ) 400
Totsl X, = 387 4,=7523

The term M\«\_N reads ‘the sum of all the squared scores’, while the term AM.\‘SM reads ‘the sum
of all the scores squared’. For the first term we square ell the scores and then add them, while
the second term reverses the procedure: we add up the scores and then square the sum. Table
10.2 goes through these steps.
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Substituting the numbers ‘rom Table £.2 inio the equatior. for the standard deviation, we

get 1.35 years:
2 2

: | wo..;
u ._ l_.mom&
g n-1 < 20-1 2

I» Table 10.2 we listed cach respondent’s age separately. However, we may not have the
iadividual values for eack case, but ralher have data grouped in a frequency lable. With dzia
organized in a frequency tabie we use the following formula to compuie the standard
deviation for a sample:

In other words, we multiply each value by the frequency with which it appears in a
distribution. Thus if we have the data for age arranged in a frequency table, rather than as a
complete list of all ages, the computations will be as shown in Table 10.3. We obtain the same
answer of 1.35 years as when we listed each case separately.

Table 103 Calculations for the standard deviation of frequency data

2

Age Frequency (/) Xi 2.0 2.4
18 7 15 18=324 Tx324=2268 M 18=126
19 5 361 1ROS 95
20 4 400 1600 80
21 2 441 882 42
22 2 484 968 44
Total =20 S/X=7523 /X387

2 2

s 387

M§m|A|M§.v a&-r )

s = n = 20 135 years
n-1 20-1

Before moving on to other measures of dispersion, we should note that, as with the meaa
(which is part of the ca’cuiation), the standard deviation is not an appropriate measure of
dispersion for data Lhat are heaviiy skewed.

CoefTicient of relative variation

The standard deviation has some limitations that arc overcome by the coefTicient of relative
variation (CRV). The coefficient of relative variation is used:

«for comparing distributions measured in the same units but which have very different
means, and
« for comparing distributions measured with different units.

There is no absolute way of saying, in the previous example, whether 1.35 years is a large or
small amount of dispersion around the mean. Moreover, the standard deviation for one set of
observations cannot be compared with that for another set of scores in order to decide which
distribution is the more disperse. For example, two distributions may have standard deviations

R —
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of .35 years, but if the means of each are S years and 50 years respectively, 3 is clear that a
standard deviation of 1.35 represents refatively more variation for the distribution with the
smaller mean.

In other instances we may wish to compare Lhe variation for two separate vznables each
measured in different units. For example, we might be interested in whether (he 2ge of a
group of respondents, which has a standard deviation of 1.35 years, displays more variztior
than their weekly income, which has a standard deviation of $65. We cannot comgare these
two standard deviations and say one variable is more disperse than the other, because each is
measured with different units. We are effectively comparing apples with oranges.

To provide a sfandardized measure of dispersior, we calculate the coefficient of relative
vadatior. that expresses the standard deviation as a percentage of the mean:

CRV = Zx100
X

Using this formula witk the distribution of ages for our 20 survey respoodents we get:

CRV = x100 = 133
X 19.35

x100 = 7%

If ws bad another group of people aad their ages we can then calculate the CRV for that
group and compare it with *his one ‘0 see which has the greatest amount of dispersion. Thus if
I found that a second group of respondents had a stancard deviation for their ages of 5 years,
and a mean of 21 years, the CRV will be:

x100 = Wx_oo = 24%

crv = 2
X 21

This second set of people display more variation in their ages than the first. In fact we can
actually say that they exhibit 17 percent more variation.

Index of qualitative variation

The mzasures of dispersion we have just considered all apply to the highest level of
measurement of interval/ratio, since they require us to measure the distances bstween scores.
Scales of measurement, as we know from Chapter 1, do not always permit these operations.
How cac we express variation in a distribution where the data arc only categorical? A
measure of dispersion is available for such data: the Index of qualita@tve variation (JQV).

The IQV allows us to measure the amount of variation contained in 2 distnbution, even
where we only have nominal data. For example, in our earlier exampie we had a nominal
variaole, sex of respeondents, whose variation cannot be captured by any of the measures of
dispersion we have previously looked at (Table 10.4).

Table 10.4 Scx of respondents

Sex Frequency
Male 12
Female 8
Total Z0
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The IQV locates the actual amount of variation contained in our data as falling somewhere
between two possible extremes. One extreme possibility is if there is no variation in the data.
This occurs when all the cases fall into the same category; in this example, if all the cases
were either male or female. By definition, if all the cases have the same score for a variable,
there is no variation. This then constitutes the minimum amount of variation that it is possible
to observe.

The maximum amount of variation that we could possibly observe in a distribution is if the
cases are evenly distributed across the categories of the variable, as would be the case if we
obtained the results in Table 10.5.

Table 10.5 Sex of respondents: maximum possible variation

Sex ___Frequency
Male 19
Female 10
Total 20

I this disttibution we have 100 differences: each of the 10 females is different to each of the
10 males in terms of their sex.

There is a simple method for calculating the maximum possible number of differences that
can be observed for any set of categorical data, using the following formula, where k is the
number of caiegories.

:ﬁ»t;

maximum possible differences = "

We can use this formula to arrive at the maximum number of diffcrences for the namber of
cases and categories in our example for respondents’ sex:

rk-1)  20%(2-1;
% 22)

= 10C

maximum possible differences =

If we look at the actual distribution of responses in Table 10.4 it is evident that it more
closcly resembles the extremie of maximum variation (Table 10.5) thao the situation of no
variation. The IQV allows us to express this quantitatively. To do this we need to determine
the number of observed differences in the distribution of scores we are analyziong,. Take one of
the 8 females. How many other people in the distribution are they different to in terms of sex?
Clearly these are the 12 males in the distribution. For each of the 8 females there will be 12
other people in the distribution from whom they are different, producing a total of 96
observed differences.

The [QV for the sex of respondents will therefore be:

10V = _oawAEqﬁ_ a.%_,ﬁc.neu _ 9% _ 0.96
maximum possible differences 100

An IQV of 0.96 indicates that we have a very high amouat of variation in the data for this
variable. [f, on the other hand, we did have all females or all males, so that there are no
observed differences in the data, it is relatively easy to see that the IQV will equal 0,
indicating no varation,

Lel us now calculate the amount of variation, using this measure, evident in the distribution
of respenses according to health rating (Table 10.6).
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Table 10.6 Health rating of respondents

Health rating Frequency
Unhealthy 7
Healthy 5
Very hea 8
Total 20

How many times do cases in this distribution differ from other cases? Sianing with the 8
very healthy people, each of these are different in their health rating ‘o the S healtliy and 7
unhealthy people, producing 96 differences. To this can be added the 35 differences between
the 5 healthy people and the 7 ughealthy people, The total number of observed differences is:

observed differences = (8x 5) » (8x 7) + (§x 7) = 131
The maximum number of differences we could observe (if tic cases were evenly spread
across the three categories) is:

maxioum possible differences = —-—r = ———= = 1333

The IQV will therefore be:

1oV - .cvmc?ﬁ_ .“m:#_.o.:?.m ) 0.98
maximum possible differences 1333

This indicates that there is almost the maximoum possible variation between these cases in
terms of their ficalth ratings. We can also say that there is about the same amount of variation
among these cases in temas of tkeeir health rating as there is in terms of their sex.

Example

To see how all these measures, and those we discussed in the previous chapter for centrai
tendency, apply in a given instance, let us go back to the data we introduced in previous .
chapters for the weekly income of 20 people in a sample: ’

$C, $0, $250, $300, $360, $375, $400, $400, $400, $420, $425, $450, $462, $470, $475, $502, $520,
$560, $700, $102¢

Notice that we have the data individuaily listed so that we will use the appropriate {ormulas,
where relevant. Notice also that the data are interval/ratio, which opens up a wide choice in
selecting measures of central tendency and measures of dispersion.

Starting with measures of central tendency, we begio with the mode. We can see without 100
much effort that the value that occurs the most is $400:

M, = $400

The data are also rank-~ordered, from lowest to highest, so we can also calculate the medias
with relative ease. With 20 cases to work with (ae even aumber) the median will be the
average of the two midd'e scores; that is, the average of the incomes for the 10th and 11tk
people 10 line. These scores are $420 aad $425, giving a median of $422.50:

420+
My = J& = $422.56
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Tbe mean for this set of data is $424:

X = = —" = $424
20 $42

X, 8439
n
We can see (hat the mean is only slightly higher than the median, which is higher than the
mode, indicating that the data are skewed slightly to the right. This is obviously due to the ane
very high income earner who receives a weekly income of $1020 (not an uncommon feature
of income distribution data). However, the fact that these differences are not too large
indicates that the distribution is only slightly skewed. [
We will now calculate the measurcs of dispersion appropriate to this set of data to see the [
extent to which this average is a fair representation of the distribution. The range is the largest
score ($1020) minus the lowest score (3C):

R=1020~0=51020

The one high score of $102C, though, renders the simple range inaccurate as a measure of
dispersion, so we will calculate the interquartile range as well. The first quartile ends witk the
income for the Sth person in the rank order ($360), and the third quartile ends with the inceme
for e 15th person in the rank order ($475):

IQR=475-360=8115
We can see that this is a ‘truer’ reflection of die sgpread of scores around the mean, whick
cver aa ‘eyeball’” inspection of the listed data tells us is not very large.
We will now calculate the standard deviation. To help calculate the relevant numbers o put

iato the equation I construct the following table (Tablc 10.7): |

Table 10.7 Calculations for the standard deviation of income

Case __Income (3}, X, N X;
] 0 i 0 T
2 0 0
3 250 62.500
4 300 90,000
s 360 129,600
6 375 140,625
7 400 160,000 i
8 400 160,000 |
9 400 160,000 i
1] 420 176,400 |
1 425 180,625 w
12 450 202,500 ]
13 462 213,444 |
14 470 220,900 |
15 475 225,625
16 502 252,004
17 520 270,400 |
18 560 313,600 |
19 700 490,000 |
20 1020 1,040,400
Total X X, = 8489 I X,'= 4,488,623
2 [ 2
2 (ZX) . (8489) [
- 4.488.623-"— L m
. n — —
s — 20-1 3216 “
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The standard deviation falls somewhcre between the range and the interquartile range. [
does not completely ignore the extreme cases, such as $1020, which the [QR leaves aside, but
it also does not give them as great 2 weight in the measurerneat of dispersion, as is We case
with the simple range.

Assume that T am now presented with another set of cases tnat have a mean income of $510
and a standard deviation of $300. Which of these two distributioas cisplzys the greatest
variation? It might be tempiing to compare the standard deviations, but we kaow this is ot an
appropriate comparison given the differeaces in the means around which the scores deviale.
Instead we need to calculate the CRYV for each se: of scores. For the first sct of data the CRV
will be:

CRV = 2x100 = —28 100 = 5)
X 424 45
For the second set of scores the CRV will be:
CrV = 23300 = 225100 = s9
X 510

Thus T cap say that the secoad distribution possesses 8 percent more variation in incorres
thao the first set of cases. It a0t only has a higher average, but is relatively rcore dispersed.

Measures of dispersiou using SPSS

Measures of dispersion ¢an be genereled through (ke same commands that we discussed io the
previous chapter for generatiug measures of central tendency (see pages 129-33). A summary
of these commands is presented here:

t. The Analyze/Descriptive Statistics/Descriptives corsnand, for univariate acalysis, or for
bivariate analysis using the Data/Split File command.

2. The Anatyze/Descriptive Statistics/Frequencies/Statistics command, for univariate
analysis, or for bivariate analysis using the Data/Split File command.

3. The Analyze/Descriptive Statistics/Explore command, for univariate analysis, or for -
bivariate analysis by placing the grouping variable into the Factor List:.

4. The Apalyze/Compare Means/Means coramand, for bivariate analysis by using ooly ooe
layer of variables, or for muitivarizte analysis by usiog more than one layer of variables.
Despite ‘ts misleading name, this very useful command provides more descriplive statistics
than just the mear under the Options sub-command.

None of these commands uofcriunately provide the CRV or 1QV, and only the Analyze/
Descriptive Statistics/Explore command provides the interquartile range,

Summary

In this and the previous chapter we have worked through a number of ways of summarizing
data and displaying a distribation. Many formulas and rules have been encountered and the
options may seem a little overwhelming. Fortunately, compuiers have made life easy for us,
and all the measures we have introduced, as we have seen, can be generated with the click of
a button. However, life should Lot get 100 easy. There is a Jevel of undersianding that can cnly
be obtained by working through the kand calculations, especially an understanding of the
limits to many of the techniques we have introduced.
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Exercises

10.1  What are the advantages and disadvantages of the range as a measure of dispersion?

J0.2 What do the symbols s and o represcnt?

103 Calculate the range and standard deviaticn for each of the following distributions:

@ 5 9 13, 15, 26 72
(b) 121, 134, 145, 212, 289, 306, 367, 380, 453
© 12, 14, 19, 20, 24, 35 39, 43 52

10.4  Consider ._:n following data regarding the 2nnual income (in $°0C0) for peopie
employed in a particuiar agency:

12 40 22 30 18 36 45 19 22 22
37 35 72 28 36 29 42 56 52 35
16 23 37 26 22 29 35 62

Calculate the rarge, iaterquartile range, and standard deviation for these data.

10.5 Us'ng n.ro maﬁov\ﬁ. data file that comes with the SPSS program, calculate the
appropriate descriptive siatislics that will allow you to answer the following questions,

(a) Which of the two variables, mean starti 1
the n : ing salacy and mean current sal displa
the most variation? o chpiays
(b) What is the interquartile range for the amount of previous experience of employees
expressed in years? B

The normal curve

In Chapter 4 we discussed the way that we can gederate a frequency table {o show the
distribution of scores for a particular variable. In Chapters ¢ and 10 we discussed how we can
enter the frequency distribution of scores inlo specific equations that can give us precise
numerical measures of the center and spread of that distribution. It is possible, though, 10
work ‘backwards’; if we know the standard deviation and mean for a particular distnbution,
we can work out the frequency distribution from which these measures were calculated. To
derive the frequency distribution of scores from these numerical measures, we need to assume
that the distribution resembles a normal curve. The term ‘normal’ is not meant 10 signify
‘usual’ or ‘common’. In fact, it might seem like a very artificial construct that is anything but
normal. However, it does play a central role in statistical analysis and is the basis for many of
the procedures that follow in later chapters. So while the reasons for studying this particular
curve (among the mul(itude on which we can focus) may not be immediately apparent,
hopefully they will become evident later.

The normal distribution

This chapter will &y to ‘circle ir.” on the nature of the normal distribution. We will begia with
a very simple and approximate definition, gradually exparding oa this definition as we
become more famibiar with it.

These features of the normal curve are illustrated in Figure 11.1. We can use the properties
of the normal curve illustrated in Figure 11.1 to derive specific conclusions about a frequency
distribution of scores that we think is normally distributed.

Jix)

Figure 11.1 Areas unger the standard normal curve

For example, we might be intereszed in peopic’s ages aad have the following descriplive
statistics for the average and spread of ages for a poptlation of 1200 people:

p =135 years, =13 yeass
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If age 1s pormally distributed, 68.3 percent of pecplie in this population will fall within |
standard deviation of the mean. In other words, 820 people (68.3 percent of 1200) will hav,
ages somewhere between 22 years (35 - 13) and 48 years (35 + 13), :

This property of the normal curve holds true regardless of the particular values for the
standard deviation and mean for the cases we are dealing with. For example, we may have
three different groups of 1200 people with ages described by the following statistics (Table
1.1, Figure 11.2).

Table 11.1 Average age and spread for three populations

Group Mean age Standard deviation Age range of middle 68.3% of cages
(years) {years) (years)
I 35 13 221048
w uu. 7 28 1042
35 20 1510 56

All three distributions have Lhe same average age, but are differen: in terms of Lhe spread of
ages around the mean. [f we can assume that they are each norma! distributions we c2n A_Q.:a,v
;._a age ranges for the middle 68.3 percent of people in each group. If these are normal
distributions, it follows that 820 people in group 1 will have ages between 22 and 48 years,
820 people in group 2 will have ages ranging fcom 28 to 42 years; and for group 3 the range _m‘

15 to 56 years.
b_\U M >
35 35

Figure 11.2 Three normal distributions with different standard deviations

This process of staling the spread of cases in terms of the aumber of standard deviations
(rom the mean is called standardizing the distribution, and produces the standard normal
distribution (Figure 11.3). The standard normal distribution has a mean of zero and a
standard deviation of one (by definition, the mean is zero standard deviation units away from
itself, and one standard deviation is one standard deviatien unit away from the miean).

SX)

|

w

=-1 0 S=+1
Figure 11.3 The standard normal distribution

N
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This standardization procedure allows us to measure all norwal distributions in terms of
common units — standard deviations — regardless of the units in which the variable is initially
measured. It is analogous to expressing the price of various goods from different countries in
terms of a common currency. We may have a whole list of prices, some of which are
expressed 10 US dollars, some in British pounds, others in Euros. But if we convert all the
priccs into a common unit such as the amount of gold each unit of currency will purchase, a
comparison can be made. Similarly, a distribution may be expressed in terms of years, or
crime rates, or births per thousand. But expressing these various distributions according to
standard deviation units gives a common scale of measurement.

We noted that the normal curve is symmetrical. Since the curve is symmeincal the same
percentage of cases that falls within a certain range above the mean also falls within the same
range beiow the mean (Figure 11.4). In other words, if 68.3 percent of al cases fall within one
stapdard deviation unit either side of the mean, haif of this (34.15 percent) will fall above the
reax, and the other half (34.15 percent) below the mean. For group 1 in Table Li.1, this will
imply that 410 people will be between 22 and 35 years of age, 20d ancther 410 will be
petween 35 and 48 years of age.

15.35%

-1s X s
22 years  35years 48 yeass

Figure 11.4 Distribution of age for group 1

The ozher thing to notice about the spread of cases under a normal curve in Figure 11.4 is
that the percentage of cases falling further than one standard deviation from the mcan is equal
to the total number of cases (100%) minus the percentage that fall within the range (68.3

percent):
100-68.3=31.7%

Again we can divide this region in two so that 15.85 percent of cases have ages abave one
standard deviation {rom the mean (i.e. for group 1 this is older than 48 years), aud aoother
15.85 percent of cases are al the other end (or tzil) of the curve. Thus if 2 woman from this
group informs me that she is 52 years of age I will also know that she is in the oldest 16
percent of the population.

This siraple exercise hopefully illustrates the usefulness of the normal curve. 1 we know. or
caa assume, that a distribution is normal, and we know its mean and stacdard deviation, we
can then make a conclusion about the frequency distributon that underlies these measures.
This makes the use of the normal curve inportant for two reasons, as follows.

X. The normal curve as an aid to data description. There are sotie empirical distributioos (i.c.
they exist in the ‘real world’) that arc fairly close 10 being normal, which allows us to
determine that a certain percentage of cases fails a specific distance above and/or below the
mean. This is similar ¢ the way io which we apply the equation for the area of the circle. A
circle is defined as 2 shape where every point along the circumference is equidistant from
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[ the center, or, to put it another way, the radius is constant. A figure defined in this way las This information can be presented in a simple table (Table 11.2).

& an area cqual to 7%, but there are very few shapes that we encounter that exactly conform |

& to this definition. This does not limit the applicability of the exact formula for a circle Table 112 Areas under the standard normal curve
because there are many shapes in ordinary life that are close enough to a circle (they ! Standard deviations from the Area under curve Area under curve Area under curve
‘approximate’ a circle) such that using this formula to calculate their areas is not _ fuean beaween both points c&am%_wﬁ_m__wwm:a ggﬂﬂmwwm_ﬂo:_ﬂ

unreasonable. Just as with figures that are *close enough’ to being a circle, there are
instances when il is not unrealistic to assume that a distribution 1s ‘close enough’ to being
normal, cven though, strictly speaking, it isn’t. In other words, just as we never encounter
perfect circles, yet still use the formula for the area of a circle in everyday life, we can |

make statements describing any empirical distribution that (we think) is approximately +! 0683 0.317 0.1585
normal. Sometimes near enough is good enough. Many physical characteristics of people, 12 0.954 0.045 0.0230
such as height, are approximately normal. If we took a random sample of people and 3 0997 0.003 0.0015
measured their height we would actually find that about 68 percent of cases fall within one
standard deviation of the mean. There are two aspects to Table [1.2 werth noticing:

2. The normal curve as a tool for inferential statistics. The second reason for understanding *Instead of expressing the area under the curve as a percentage, il is expressed as a
the properties of a normal curve is that it forms the basis of the procedures that allow us to proportion: 68.3 percent is couverted to 0.683, and so on.
make inferences from a random sample to a population. The role of the normal curve in *The values in the first two columns will always sum 1o one (e.g. 0.683 +0.317 = 1). This is
inferential statistics will be covered in Part 3, where the convenience of knowing the | because the two areas together must equal the total area under the curve.

percentage of cases thac (all above and below a certain distance from the mean will become . . y .
very apparent. The normal curve is a very specifically defined polygon, a type of graph we introduced in
Chapter 3. This allows us to interpret the proportions in the table as probabilities. A
probability in this context is simply the chance that any given case will have a certain value,

Using normal curves to describe a distribution Yo k ;
or fzll witbin a certain range of values. For cxample, assume that someone is chosen at

The rest of this chapter will employ the normal curve as a descriptive tool, leaving its use as a random from group ! and you hzve to guess their age. We can use the table to conclude that
tool for making an inference from a sample to a population for Part 3. We proceed by the probability that this person’s age is somewhere between 22 years and 48 years (i.e. it is
expanding slightly the definition of the normal curve, defining the percentage of the total area | within one standard deviation either side of the mean) is 0.683, or around 68 in 100. The
under the normal curve within two standard deviation units from the mean, and within three m:.ocm_um—mq that the person has an age of less than 22 years is 0.158S, or around 16 in 100.
standard deviation units (Figure 11.5). This is common sense: there is usually a high probability that someone chosen at random

from a set of cases wil! reflect the average. It is more likely that someone will be ‘typical’
rather than ‘unusual’. This way of interpreting the area under \he normal curve as a
probability will be especially useful in the following cbapters on inference.

z-§¢ores

lostead of using the expression ‘numbers of standard deviations from the mean’ we will
instead speak of z-scores. A z-score of +1 indicates one standard deviation above the mean. A
| z-3core of —1.5 indicates 1.5 standard deviations below the mean. For a normal population or
| normal sample, we can work out the z-score associated with any actual value using the
{ _ respective formulas:

_ —

_ Z = ﬁ (population), z = X=X

5

(sample)

where:

> 62.3% X, is the actual value measured in original units,
18 the mean of the population,

ois the standard deviation of the population,
i8 X is the mean of the sample,

T 1 T I 5 15 the standard deviation of the sample.
35 2s -ls 0 Ix 25 3s | P

’ 95.4% -, _ For example, consider the population of 1200 people in group 1 above, with a mean age of
: s 99.7% | I 35 years and standard deviation of 13 years. A member of this group tells me he is 61 years of
Figure 11.5 Arcas under the standard normal curve | age. Even before we compliczte the matter with equations and z-scores, it is fairly clear that
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this person is much older than the average, so intuitively we can conclude that very few
people will be this old or older. In fact, J can, at this point, use a verbal description and say
that given the mean and standard deviation for this group only a ‘handful” of people will be 6]
years of age or more. We can, however, be more precise than this, and acfually calculate whai
this ‘bandful’ of people is as a proportion of the total. To do this I put the information into the
formula for calculating z-scores for a population:

X:: m._tuu
Z= St w — = =7
g (3

This immediately tells me that 61 is two standard deviations above the mean. By referring to
the last column in Table 11.2, we conclude that the proportion of people that are 6! years of
age or more is only 0.023, or 2.3 percent of the total.

In fact, statisticians have worked cut the area under the standard normal curve between the
mean and every point along the horizontal axis of the normal curve. This information is
summarized in a table that appears in the back of every statistics textbook (including this one,
sce Table Al in the Appendix). Since we are going to work with the table for arcas under the
standard normal curve frequently throughout this chapter, and to familiarize ourselves with it,
it is reproduced in Table 11.3.

Table 11.3 Areas under the standard normazl curve

z Arca under curve Area under curve Arca under curve
between both points beyond bath points beyond one point
+0.1 0.080 0.920 0.4600
+0.2 0.159 0.841 0.4205
+0.3 0.236 0.764 0.3820
+0.4 0311 0.689 0.3445
*0.5 0.3%3 0617 0.3085
+0.6 0.451 0.549 0.2745
+0.7 0.516 0.484 0.2420
0.8 0.576 Q.424 0.212¢
0.9 0.632 0368 0.1840
+] 0.683 0317 6.1585
1.1 0.729 0.271 0.1355
+].2 0.770 0.230 0.1150
+1.3 0.300 0.194 0.0970
+].4 0.338 0.162 0.0810
1.5 0.866 0.134 0.0670
1.6 0.890 0.110 0.0550
+1.645 0.900 0.100 0.0500
+1.7 0911 0.089 0.0445
+1.8 0.928 0.072 0.0360
+19 0.943 0.057 0.0290
+1.96 0.950 0.050 0.0250
2 0.954 0.046 0.0230
2.1 0.964 0.036 0.018Q
+2.2 0.972 0.028 0.0140
+2.3 097 0.021 0.0105
+2.33 0980 0.020 0.0100
+2.4 0.984 0.016 0.0080
EYA] 0948 0.012 0.0060
+2.58 0590 0.010 0.0050
*2.6 0.991 0.009 0.0045
.7 0.993 0.007 0.0035
+2.8 0.995 0.005 0.0025
£29 0.996 0.004 0.0020

3 >0 996 <(),004 <0 0020
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It may help at this point to reiterate why we bother defining the normal curve in such minute
detail. Why bave statisticians goue 10 such lengths as (o actually work out and have printed a
table that indicates the number of cascs that fall within defined regions of a normal
distribution? After all, there are an infinite number of possible frequency distributions we
could come across — the distribution of families according 10 total income will be different
from the distribution of cities according to crime rates, and neither will be remotely like a
normal distribution. Why don't we construct tables hat define the areas under these curves?
First, there are many erapirica! distributions that are approximately nermal so that this table
will provide an aid in describing such dist-ibutions, and, second, because there is 2
distribution at the Eeart of inferential statistics that is normal, and which we will see in later
chanters renders the normal curve exceptionally useful in making an inference from a sample
to a population.

The rest of this chapter will work ihrough a scries of examples. The objective is to
familiarize ourselves witk the use of (be normal curve as a descriptive tool. In the process, we
will also familiarize ourselves with the procedures for looking up values in the area under the
standard normal curve table, which will b useful for later chapters.

For exampie, assume that | bave exam grades out of 100 for a sample of 100 students and
oblain the following results:

X=60,5=10

[ graph these data on 2 frequency polygon and observe that the distribution looks
approximately normal. Alternatively [ can run the Explore command i SPSS that we
introduced in Chapter 9 and refer to the measures of skewness and kurtosls that are printed
in the Descriptives box:

I. The measure of skewness is a measure of the asymmetry of a distribution. The normal
distribution is symmetric, and bas a skewness value of zero. A distribution with a
significant positive skewness has a long right tail. A distribution with a significant negative
skewness has a long left tail. As a rough guide, a skewness value more (han twice its
standard error is taken to indicate a departure from symmetry.

2. The measure of kurtosis indicates the extent to which the scores are ‘bunched’ around the’
meao (o form a ‘tall peak’ or else spread to form a ‘flat hill’. For a normal disribution, the
value of the kurtosis statistic is 0. A positive kurtosis value indicates that the observations
cluster more and have longer tails than those in the normal distribution ard a negative
kurtosis value indicates the observations cluster less and have shorter tails.

If cither method of assessing normality (‘eyeball’ inspection of the histogram or measuring
skewness and kurtosis) iadicates that this group of students is normally distcibuted (or close to
it) according o exam scores | can then proceed to answer various questions about frequency
distribution of this variable.

The area between the mean and a point on the distribution

I might want to know how many smdents are between the mean of 60 and a score of 65,
which [ consider to be a reasonable range of scores for students to achieve. The first thing to
do is convert 65 into a z-score:
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The nex: step is 1o cefer to the lable for the area under the standard normal curve aand find the
area betweer: this point acd the mean. A condensed version of the table is presented in Table
11.4 to skow its use. For a z-score of 0.5 we get lhe result shown.

Table 11.4 Areas under the standard normal curve
| Area under curve between

Arcs under curve beyond botk Area under curve beyond ane

z points point
9920 0.4600

0 841 0.4205

0.764 0.3820

0.689 0.3445

A, 0.617 0.3085

0.451 0.549 0.2745

0516 0.484 0.2420

0576 0.424 02120

C 632 0368 0.1840

0683 0317 0.1585

+3 >).99€ <0.004 <(.0020

In other words, 0.383 of all cases will have a grade of 5 marks above or below the mean,
Since we are interested in only those students that are 5 marks above the mean, we divide
0.383 in half. This is illustrated in Figure 11.6

proportion of students with grades between 60 and 65 =

0.383 ‘

. 35 L2 95
Figure 11.6 The area between (he mean and one point

Thus, 1 can say that just over 0.19 (19 percent) of the studen:s received grades between 60
and 65 (remember that = proportion can be transformed into a percentage by moving the
decimal point two places to the right).

The area beyond a point on the distribution

A very similar logic applies to finding the percentage of cases that fall beyond a certain point
on the distribution. For example, | right be interested in the percentage of students who did
exceptionally well, which ) regard 1o be a score over 65.

From the previous exercise we kaow that the z-score associated with 2 grade of 65 is:

X;-X =
Lo X=X -0
3 10

SRR
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This time, whea referring to the table for the standard normal curve, we refer to the column
for the zrea beyond the point defined by a z-score of 0.5. In other words, we are only
interested in (be area under one tail of the distribution (Table 11.5).

Table 11.5 Areas under the standard normal curve
Area uader curve

Area under curve

z between both points bevond both points
0.1 0.080 0.920
0.2 G.159 0.841
0.3 0.236 0.764

0.689

= Bl IS

0.6 0.549
0.7 (0.484
+0.8 424
09 0.368
$1 0317
43 >0.99¢ <0.004 <0.0020

This indicates that 0.3085 (30.85%) of students scored over 65.
If we look at the answers to these two problems we can sce that the percentages sum to 50
(Table 11.6). This is because tbe two arcas we have defined together make up exactly balf the

curve (Figure 11.7).

Table 11.6 Areas under the curve
Range of ¢xam scores

Percentage of cases (%)

Between 60 and 65 19
65 or over 31
Toual 50
50%
%
L 19% |
50 53

Figure 11.7 A-eas under the normal curve

In 2 similar fashion I may b¢ lnterested in the proportion of students that have failed the
exart. | calculale the z-score associzted with a grade of less than 50:

X=X _ 50-60 _
s 10
Looking at Tabic 11.5 [ can see that there is 0.1586 of the curve beyond 2 z-score of 1,
which indicates that acarly 16 percent of students failed.
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The area berween two points on a normal distribution

Anather question in which I might be interested is the percentage of cases that fall within a
range not bounded on one side by the mean. For example, I might be interested in the
proportion of students that received a credit grade, which is a grade between 65 and 75.

The solution to this puzzle is apparent by looking at Figure 11.8. The area between 65 and
75 is the area left over if we subtract the area between 65 and the mean from the area between
75 and the mecan. [n other words we need to calculate two proportions, that bounded by :he
mean and 65 and that bounded by the mean and 75.

_43%

——2 ]

€0 63 7
Figure 11.8 The area undex the curve not bounded by the mean

We kaow from our earlier exampie that [9 percent of cases will have grades betweer. 60 and
65. To determine tne percentage of cases that will have a grade tetween 60 and 75, [ first
calculate he z-score for this range of scores:

X,-X _ 75-60
7= TS = S = s
5 10

From the table for the area under the standard normal curve (Table 11.3) 0.865 (86.6
percent) of cases will fall 1.5 z-scores above and below the mean, so that half of this (43.2

percent) will fall above the mean, with grades between 60 and 75. The result is 24 percent of
students received a credit grade.

Calculating values from z-scores

In the above examples we wanted to identify the percentage of cases that have a cerain range
of grades. Howcver, the problem we want to address might be slightly different. We might
already bave a predeficed proportion of cases in which we are interested, and want to derive
the grade range within which this percentage falls. For example, we might be interested in the
range of scores that identify the middle 50 percent of students. Another way of posing this
problem is to ask which scores mark the upper and lower bounds of the interquartile raage.

We begin by jooking at Table 11.7 to find the z-scores that will mark off the 0.5 (50 percent)
region. We look down the column for the area uader the curve between points and (ind the
cell that has a probability of 0.5 (or the closest to it). The closest value 10 0.5 is 0.516, which
is associated with z-scores of +0.7 and —0.7. To convert these z-scores of —7 and +7 ioto the

actual units (exam grades) in which we are measuring the variable, we rearrange the basic
formula slightly:

2= 22— X, = Xz21s)
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Table 11.7 Areas under the standard normal curve

e Area under curve Azea under curve
beyond both points beyonc one poing

0.920 0.4690

0.841 0.4205

0.764 ¢ 382C

0.639 0.3445

0.617 0.3085

0.549 02745

0.484 0.2420

0.424 02120

0.368 0.1840

0.317 C 1585

+3 >0,996 <0.004 <0.0626C

1f we put the two z-scores (hat define the region into this equation we oblajn:

X, = X+z(s) = 6040.10) = 67
X, = X-z(s) = 60-0.7(i0) = 53

Therefore the *raiddle’ 50 percent of students scored between 53 and 67 in the exam. This
ais0 means that 25 percent of students are below £3 and 25 percent of studeals are above €7.

Normal curves on SPSS

We introduced the concept of the normal curve using a hypothetical survey of all 1200 people
in a community, with mean age of 35 years and standard deviation of 13 years.

The data for this hypothetical survey have been entered into SPSS that will allow us (0 use
SPSS to coafirm the results we obtain from hand calculations. First, we can use SPSS to
assess the extent 1o which the spread of scares can be described by a normal distribution. To
do this we simply extend the procedure we learnt in Chapter 3 for geoerating a histogram. We
can ask SPSS to generate a histogram, and also to ‘fit” a aonmal curve onto this EmSm.a::. By
looking at the resclis we can see the extent to which the distribution of data approxumates a
normal distribution. To geverate a histogram, and a normal curve centered oo the meap
superimposed on the histogram, we use the procedure sbown in Table 11.8. This procedure
will generate (he output sbown in Figure 11.9.

Table 11.8 Generating a histogram with a normal curve on SPSS (file: Chl].sav)

SPSS command/action OoEEn.:u ) ; o
{  From the menu select GraphwiInteractve/Histogram  This brings up the Histogram dialog box

2 We drag Age of respondent into the blank box along the
horizontal axis

3 Click or the Histogram option

4 Click on the small square next to Normal curve A v will appear in the check-box to indicaw that
normal curve will be ‘figed” to the histogram

S  Clickon OK

Looking at the histogram with the normal curve superimposcd on it, we can see :::. :_.o
histogram ‘sort of’ has the bell-shaped, symmetric featuces of :E. _..o.:sm__ curve; it is
approximately normal. A normal curve is a smooth continuous &mﬁ__z:._ca - En:u. are no
‘jumps’ from one value to another. We, on the other band, are using a Eﬁo_muwa .i:r data
arranged according to discrete units of measurement (age in whole years), Since _:m.Sm\B.Bu
have jagged edges, brought about by the use of discrete units of measurement, they will not fit
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Count

0 @

) Age of respondent
Figure 11.9 SPSS histogram with normal cwrve

the sm i
i %%M”__Mc.au,:m and falling normal curve. There are also some bars in which the H
i &m&czzwmum mx_“_r:w ;:ﬁor__m: the mid-point. For example, Lhe bar for the _._._an__nuo:uw_
i , with a mid-point of 35 years, has more peog!le in it than would be Ew_.wcv
i ion was perfectly normal. Despite this vanation, the distributi o the
ye to be approximately normal. ’ fomioution appesss 10 the
Alternatively, or in additi i
y ion to this, we can run the Analy: i
i ° 3 4 alyze/Descriptive Statisti
oo om.mahwaﬂ“_cnﬁ to the measures of skewness and kurtosis in Snvr._zn. mN.H.MMn\wwﬂo_.m
e Mwwc“wn nwm MMM“\MMww\_,ﬂm 0.026, which is very close to 0, indicating EE. M_M
istributi . The measure of kurtosis i indi
b i : osis is —0.26 5
Lnﬂwﬂmﬁmsﬁ_wﬁm only m__m»_:mw fatter tails (is less ‘peaked’) than a :w_.w”%n”ﬁv Eﬂ e
Sasur .rw %N.M_erﬁ wreanng this a.mma.mc:mo: of scores as approximately normal _M_ﬂmm?”ﬁn
oxpn_v_n. » _-mcw vg.:ﬁo_ﬂ. 1S mﬁu_.ox._EnZ_x normal, we can use z-scores (o msw_._ ze m“r 3
Sl .o,. So:m . v,_m.w_,uﬁ_.awﬁn_ in A:.o proportion of people who are not m:wmw_o 6.<.n.=.
oSy \_,_“5 i Mﬂv mmmwo_ﬂg_“u ﬁ:m_ﬁm the proportion of people who are Jess than 18 vﬁMnM
. . etermine how many z-s¢ i8i
s : . ne how many ores 18 is from th
¢ we are working with a population distribution the appropriate .,o_.z.__.__“ M_.nm: s
X;-u 18-35

zZ= 1" = =
o 13 -t

M._,u_h( Ww¢ ate onuy EFnGmnﬂa in the area in one tai of -.Tﬂ &—V:_—UE:OB we refer 10 the column
MOH the area under the curve ~w.wtﬁl one poinit i:d_— _ﬂmr‘v:_:m to Table 11.9
> y fi 10 th

Table 11.9 Areas under the standard normal curve

Arca under curve A

, ; v rea under curv
z between bath points beyond both _..om:ﬂ
.ro. 0.080 0.920
=03 0.159 0841

0.236 ;
=0 0311 o

s 0183 0.617
0.729 0271

0.770

0806
0.838

0.230

L B 0.866 0134
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On.y 0.097 (9.7 percent) of the curve iies beyond 3 z-sc0T€ of —' .3 (Figure 11.10).

0.097,

18 years
2=-13

Figure 11.10 Arca beyond z=-1.3
percentage cf cases whose age is less than 18

urve to describe the distribution we are very
propostion of cases that fall

In the data Gle you will find that the actual
years is 10 percent. Thus by using the normal ¢
close to the actual results. We can confirm this by lcoking 2t the
within coraio ranges around the mean. As we discussed above, for 3 porral curve we know
that 68 percent of cases will fall within | z-score from the mean, and for tbis population this
was bounded by 22 and 48 years of age. If we generate a frequency tatle and add the
percentage of cases that have ages berween 92 and 48 (inclusive) the sum wiil be 68 pereent,
which is consistent with the percentage of czses we expect to fiad in this range based on the
pormal curve.

This little exercise indicales {hat wken a disiripution is approximately normal, the
ceiculaticn of z-scores can be 2 quick way of determining the frequency of cases within any
range of values that may interest us. Of course, because aay distribution is only approximately
pormal, the proportions obtained by using z-sCOres will not always be exactly cqual to the

ithin the range of values we are interested in.

actual proportion of cases Wi

Unfortunately SPSS does pot provide the facility for calculating z-scores or associated areas
ander the normal curve, if we determine that a particular distribution is approximately normal.
That is why we have so \aboriously worked through so maoy hand calculations. An altemnative
<0 the hand calculation of z-scores and areas under the curve is to use the various web pages
available that perform the calculations for you. A list of such pages IS located at the web '
address mernbers.aol.com/johnp? :?<&§&§§?Eom. One of these that is particularly well

constructed is A_usn__s__uco85§§QHMSQN|SEP:§_ which calculates z-scores based on
desired areas and vice versa, and aiso illustrates the results with normal curves witn clearly

shaded areas.

Exercises
11.1 From the table for the arca under the standacd normal curve find the probability that a
pormally distributed variable will have a z-scere:

(a) above 1.3

(b) below 1.3

(c) between 0.5 and 3.4

{d) between 2.3 and 2

(¢) greater than 2.3 and less thap —1.4

(f) less than 1.6 and greater than 1.6
(g) less than -1 196 and greater than 1.96.

For each of these regions draw a sketch of the normal curve apd shade in the

appropnate area.



150 Statistics for Research

11.2  Ifa set of cases is normally distributed, using the table for the area under the standard

normal curve, find the z-score(s) that define the following proportions of cases: ‘N N
(a) the middle 0.683 of cases
(b) the 0.018 cases with the highest scores Qo rrelation and Hmmﬂammmab

(c) the 0.05 cases with the Jowest scores
{d) the 0.134 cases which together form the extremes of the distribution,

m‘ = 3, 3 1 iy 4 * 3
or cach of these regions sketch the normal curve with the appropriate area shaded. fo Chapters 58 we explored methods for describing data that are grouped into categorics.

11.3  If X is a variable with a normal distribution, a mean of 60, and a standard deviation of | With only a few categorics to express the range of variation, our initial means of describing

10, how many standard deviations from the mean are the {ollowing values for X,? such data is in the form of a crosstabulation. The crosstab shows the joint distribution ﬂ: two

variables and allows us visually to gauge whether there is an association between the two

(a) 60 (b) 52 (c) 85 ()43 )73 variables. If inspection of the _..W_M:?w m.mx_:annv, distribution in the table leads us to suspect

11.4 A (hypothetical) study has discovered that the income of families headed by a single (bat these two variables are related, the next slep is to calculate measures of association that
mother is normally distributed, wilb an average annual income of $17,500, and give a precise numerical value (o any such suspicion.

standard deviation of $30G0. If the poverty line is considered to be $15,000, how many However, if the data for Lhe two variables under investigation have been collected at the

families headed by a single mother are living in poverty? Skeich the normal curve to ! jnterval/ratio level, and they have a large number of values, crosslabufations are not a

illustrate your answer. convenient means of describing the distribution. The equivalent descriptive technique to a

11.5  If the mean life of a certain brand of light bulb is 510 hours and the standard deviation crosstabulation for interval/ratio daia s a scatter plot.

15 30 hours, what percentage of bulbs lasts no more than 462 hours? (Assume a normal
distribution.) Scatter plots

11.6  The average selling price of a new car is $19,800 and the standard deviation is $2300. | It is difficult to arrange interval/ratio data into a nwoww.m_uim:oa, Interval/ratio data do not
usually fall into a small number of discrete categories such as large or small, old or young,
elc. Since there are usually many values for variables measured at the interval/ratio level, a
contingency table will have 1o bave as many rows or columns as there are values in the data.

{(a) What proportion of new cars will sell for less thaa $16,000?
(b) Within what limits will the middle 95 percent fall? (Assume a normal distribution.)

11,7 The reaction time of a motorist is such that when travelling at 66 km/h his average | If we are looking at the distribution of age in years for a country’s _uov:_»:o.z we will need
breaking distance is 40 meters with a standard deviation of 5 meters. ; over 100 rows of data to take 2ccount of the fact that age m_.zo.m& out over a ,sw_n range. Such

it i data can of course be collapsed into a few values, bul this is at the cost of information. A

(a) If the motorist is travelling at 60 ki/h and suddenly secs 2 dog crossing his path 47 . scatter plot, which allows for the greater range of values that we usually have with
meters away, what is the probability he will hit it? interval/ratio scales, is the best way to organize such data to get an initial impression as to

(b) How far away will the dog have to be to have a 95 percent chance of not being hit? : whether any correlation exis's. A scatter plot (just like a crosstab) shows the combination of

(Assume a normal distributicn.) {

values that each case 'scores’ on two variabies simultaneously.

11.8 (a) In the example used in this chapter for the distribution of the ages of 1200
community residents, calculate, using z-scores, the proportion of cases that are of

working age, that is between |8 and 65 years old. f
(b) Calculate the range of ages that determine the middle 50 percent of cases. Confirm

your calculations by referring to the SPSS frequency tabie for this distcibution. 2

For example, we might be interested in the relationship between unemployment rates and the
level of civil unrest across citics. From official statistics we obtain the information in Table

11.9 Based on past results, a charity organization expects that donations for the forthcoming i 12.1, which preseats the rate of unemployment (which we think is the independent variable,
year can be modelled using a normal curve. It expects 1o receive donations of $1.5 ! X) and the number of civil disturbances (which we think is the dependent variable, ) for five
million in the following year, with a standard deviation of $200,000. Jis target is $1.7 “ties.
million in donations.

(a) What is the expected probability of meeting this target? Table 12.1 Uzemployme:t argd n_ms; 5:9..~ :h\m:\n cities P T S r—
(b) If the chariry considers $1.2 million to be the minimum amount it requires to cover Gy Unemp oﬁww.:_ Loz 7 -
costs and meet the basic needs of the poor in its area, what is the expected m 03 15
probability that it will receive enough to meet this minimum? c 5 10
i . : i : D 10 5
11.10 A local energy-generating program is proposcd using wind power. This form of evergy E 2 4

generation is only viable if wind speed in a certain area is over 15 km/h for at least 25

percent of the time. The average wind speed is 12 kin/b with 2 standard deviation of 6 . o L dat: er o ‘read’ i

km/h. Is there sufficient evidence 10 suggest that the project will be viable? Arrangiog this information in a scalter plot (Figuse 12.1) mzkes these data easier io ‘read” in
order to determine whether ac associaticr. exists.
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Figure 12.1 A scatter plot of data points

It is the convention to put the dependent variable, Y, on the vertical axis and the independent
variable, X, on the horizontal axis when constructing a scatter plot. If we look at any one of
these points and draw a straight line down to the horizonial axis, we can find the
unemployment rate in that town. Similarly, by drawing a straight line across to the vertical
axis we can ‘read off” the number of civil disturbances. Grid lines for C have been drawn to
illustrate this procedure. For this towa the unemployment rate is 5 percent and there are also
10 incidents of civil unrest.

Looking at Figure 12.1, it can intitively be seen that an association exists, because we can
imagine a sloping line runoing through these five points. The direction of association is
indicated by whether this imaginary line slopes up (positive) or down (negative). In this case
the slope is positive, indicating that an increase in unemployment rate is associated with an
increase in the number of civil disturbances. We can give quantitative expression to this
imaginary line through the calculation of linear regression statistics. This extension of a
scatter plot by calculating regression statistics for variables measured on interval/ratio scales
with many points is directly analogous to the extension of crosstabulations by calculating
measures of association when working with categorical data.

Linear regression

Each and every straight line that can be drawn in the area defined by the scatter plot has a
unique equafion that distinguishes it from every other line. Deriving this equation for aoy
particular line is like giving a person a unique combination of first and last names so that this
person can be differentiated from everybody else. The general formula for the equation of a
line is much like a form with a space entitled Firstname and another space entitled Lastname.

Y = Firstname + Lastmame
We write in the specific combination of names that identifies the relevant individual. If I try

to identify somebody using just their first name, say Pablo, this will not differentiate that
person from all the other people with the same first name. Similarly, if I identify someone just
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by their last name, say Picasso, this will not differentiate ::m person from mz oGQ.v.noEn
with the same last name. But writing both names Swi:.ﬁ‘ will identify a unique individual.
Similarly with identifying a line. Thousands of straight lines can be A_E.E: .Ec:mr._rw space
marked out by the vertical and borizontal axes of a scatter w__onxm:_.po _n_oo_._@ the individual
line that we think best fits the scatter plot we need to provide :»,<:w a unique first .u:.a last
pame. The line’s first name is its point of origin along the Y-axis. But ccﬁoﬁ_w.::m G_E_:
enough to distinguish it from the multitude of lines that can start ?o.:. the same point. This is
iMustrated in Pigure 12.2, which shows only some of the lines that will share the same value
fo- a i their equation.

Y

X
Figure 12.2 Straight lines witk: the same value for a but different values for b

ifyi i i i 1 insufficient to distinguish it from all
Speci the slope of a steaight line on its own is also :.%ﬂ.ﬁg to I :
Enmo&MWmﬁﬂm_um_ could occupy thae space. This is illustrated in Figure 12.3, which prescnts lines
that will alt have the same slope, but different origin.

X
Figure 123 Straight lines with the same value for b but different values for o

However, if we specify borh the point of origin on the %‘.wm,_m and the slope cm_..:n.::n from
that point, then we are able to identify uniquely any line «,55:__ the %.anﬁ The trick is to come
up with the unique combination of values for ¢ and b EN_._ _n@:@ the line of best fit.

Regression analysis is simply the task of fitting a straight line tarough a scatter plot of cases
that ‘best fits’ the data, Any straight line can be expressed in a mathematical formula, The
general formula for a straight line is:

Y=axbX
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where:
Y is the dependent variable
X is the independent vanable
a is the Y-intercept (the value of ¥ when X is zero)
b is the slope of the linc
+ indicates positive association
— indicates negative association.

This formula says that 2 line is deficed by two faciors. One s its starting point along the
vertical axis, a, and the second is the s'cpe of the line from this point, £b. It is the value of b
that we are most interested in since acy slope, cither positive or negative, indicates some
correlation between the two variables. In Figure 12.4 we sec three different lines reflecting the
value of b in the three alternative situations of positive, negalive, and po correlation.

(8) Positive correlation Y

Y=a+ bX
a—
X
(b) Ncgalve correlation Y
d -]
Y=qu-b6X
X
(¢) Mo cerrelation Yy
a Y=a
X

Figure 12.4 Three lincs exhibiting (a) positive, (b) negative, and (c) no correlation

Looking at the data for the five cities, we can draw many straight lines through this scatter
plot, and each of these lines will bave ils own unique formula. For example, in Figure 12.5 [
have drawn a line that looks to me to fit the data pretty well. 1 could call this ‘line 1’ or ‘line
A’ or ‘my line’. Instead, [ have called it by its mathematical pame: ¥ =5+ 0.6X.
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Figure 12.5 Determining the slope of 2 regression line
How did [ arrive 2t the values in this equation?

*The value for a (5) is the point on the Y-axis where the line ‘begins’. This is the number of
civil disturbances we expect to find in a city with an unemployment rate of zero.

*The + sign means that the line has a positive slope, which indicates a positive correlation
between these two vaniables.

*The value of 0.6 for b is the slope, or coefficient, of the regression line. The regression
cocfficient indicates by how much civil disturbances will increase if unemployment
increases by 1 percent. Since the slope of any straight line is ‘rise over run’, to actually
caiculate this value [ 1ake aoy ‘rise’ in civil disturbances, such as the increase of 3 becween
5 and 8. [ then ‘read off’ the corresponding increase in the unemployment rate, which gives..
a ‘run’ of 5, Dividing risc over run, the slope will be:

|1..ua 3
rug 5

b =

The line we have just identified gives us a range of expected values for civil discurbance,
depending on the value of the unemployment rate. The difference between the expecied value
and the actual value for civil disturbance at a particular unemployment rate is called the
residual or error term.

Notice that no straight line will pass through all the points in a scatter plot. In fact, a ‘good’
line might not touch any of the poiats: there will usually be a gap between each plot and the
regression line. Unless a point falls exactly on the line there will be a residual value. For
example, my line predicts that, for city D with unemployment of 10 per cent, the number of
civil disturbances will be 1i:

Y=5+0.6X=5+06(10)=11



165 Statistics for Research

Instead, there were five civil disturbances for ¢ity D with an unemployment rate of 10
percent. The error () term at this poiat is —6 (Figure 12.€):

¢ = Vot~ Yopooaeg= 5= 11=—6
m 4 Y=5+06X
= 184
m -
Z 16+
.-m -
T 14
c 14
12
10+ . {
8- _ vrror = 6
I
6 | expecied = 11
10
4 . _
actual = 5
2- _ =
i
T

T T T T T T T T
10 12 4 16 18 20 22 24 26
Unemployment rate (%)

P
o
=

1
2
Figure 12.6 Observed and expected scores

1 drew the particular line in Figure 12.6 on ihe basis of what looked to me, with the naked
eve, to be the line that best fits ihese dala, Someone else might think that they could draw a
better line through these points, and this new line would bave its own equation to define it,
and the residuals between the expected values and actual values will be different to the ones |
derived. It might be hard to determine which of these lines is the ‘best’ one just on the basis of
our eyeball impression. We obviously need an objective principle for determining which line
is the *best’. Of all the possible lines that could run through the points, it seems plausible to
suggest that the best line is the one that makes the residuals as small as possible: the one that
minimizes the residuals.

Regression analysis uses this idea (although in 2 slightly more complicated form). The logic
is called ordinary least squares regression (OLS): we want a line such that the gaps between
the estimated values of Y and the actual values of Y (squared) are as small as possible. (We
square the residuals, rather than just sum them, because the sum of residuals for any line that
passes through the point that is the mean for both the dependent and independent variables
will equal zero, To eliminate the effect of the positive and negative signs, the residuals are
squared so that we are only dealing with positive numbers.)

We could find the OLS regression line through a process of trial and error, We could kesp
drawing lines through the scatter plot, working out their respective equations and residuacs,
until we finally hit on the one that minimizes these residuals.

Fortunately there is an alternative. If we usc the following two rules, we can derive ‘be OLS
regression line directly without having to go through an indelerminate process of trial and
error.
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L. The OLS regression line must pass through a point whose cocrdinates are the averages ¢f
the dependent and independent variabies (Y, X}. The average oumber of civii
disturbances, Y (pronounced ‘Y-bar’). is 11:

= Y: 5
w\u|_n|mu:
n 5

The average unemployment rate, X (rrozounced ‘X-bar’), is 10.2:

X=24 =2 =102

Thus the OLS regression line will pass through the coordinate point (10.2, 11).
2. The slope of the regression line, b. is defined by the formula;
P
. H0-T-7)
of =\
X~ X)
While this equation captures the essectial idez tha: the line needs to mininize the squared

differences between actual and expecied values, the valye of b is easier to calculate using the
following formula:

nDX,Y;)-(zx;)z7))
rEX?-(2x,)’

Although this formula still looks intimidating, if we work through il step ty stcp we will see
that it is a rather straightforward calcuiation. The calculations for city A are included in Table
12.2 to show how the numbers are derived.

Table 12.2 Calculations for the slope of the OLS rcgression Line

City  Unemployment rate, X Civil unrest, Y ﬁu 3~ .04
A 25 17 23x13 = €25 17%17 = 289 25x17 =423
B 13 15 166 225 195
C 5 10 25 100 S0
D 10 5 00 25 50 -
E s 4 4 16 8
1y- 55 Y= 51 IX =923 T ¥, =655 XY~ 728

Putting ali tkese data into the equation for the slope cf the regression line, we get 0.53:

n(X;¥)) - (2X;)zv;) _ 5(728) - (ss)(su}

b =
2 2 2
nEX} - (zx;) 5(923) - (s5)
-2
_ 3640 - 2805 o
4615 - 3025
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The value of b, called the regression coefficient, is very important because it quantifies any
correlation between two variables.

fficient indicates by ho
change in the independent v
Now that we have fixed the regression lioe through a specific point (the averages of X and bg]
paa also given it a ‘last pame’ by calculating the slope of the line through this point, we can
give it a complete label by deriving the value for a. We use the following formula, which uses

both of the features of the regression line we have identified (it passes through the average of
X and Y, and has a slope equal 10 b):

a =Y -bX
Therefore the value of a will be 4.4;
a=7Y - b5X=102-051) = 44
Thus we car define the lice of best fit, for this set of cases, with the following equation:
Y=44+053X

[ Figure 12.7 this regressicn line is drawn through the scaticr plo:,

18 Y =44 +3.33X

Civil disturbances

L ,

T T T T T T T ’

{ T T T T 1
2 4 6 8 10 12 14 16 18 20 22 24 2%
Unemployment rate (%)

Figure 12.7 The OLS regression line

What docs this tell us about the relationsbip between unemployment rates and civil
disturbances, for this set of cases?

* There is a positive relationship between the two variables: an increase (decrease) in the
uoemployment rate is correlated with an increase (decrease) in the number of civil
disturbances.

*We can quantify this positive correlation: an increase in the unemployment rate of [
percent is correlated with an increase of 0.53 ¢ivil disturbances.
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[ can now use this formula for the purpose of prediction: | can predict the number of civil
disturbances a city is likely to have, given a certain rate of unemployment. For example, if |
was told that another city has an unemployment rate of 18 percent, my best guess will be to
say that it experiences 13.9 civil disturbances:

Y=44+05318)=139

If you are still a litle confused about what this all means, imagine that you are arranging for
2 repairmaa to come and fix an appliance in your home. The charge is a flat fee of $50 for the
visit plus $20 for each bour spent working in your home. We can summarize what we are
required to pay the repairman using the following equation:

$payment = 50 + 20(aumber of hours)

For any givea amount of time spent it the hooe we can calculate the total cest. For example,
if the repairman comes and finds nothing wrocg and therefore does nct charge for tume, we
will still be obligated 'c pay $50 (the constant fixed amount) for the visit. 1f it takes 2 hours to
fix a problem, on the other hand, we zre up for $90. The regression line does cssentially the
same thing: it tells us what we predict will de the value of the dependent variatic, givea a
certain value for the isdepeadent variable. The only difference is that we will never get the
¢xact amount, since the data poir:s do cot 2{l fal. exactly on the regression lioe, so we kave to
allow for error.

Pearson’s product moment correlation coefficient

We have seen that the value of 5 is an indicator of whether a correlation exists between two
vanables measured at the interval/ratio level, and also the direction of such correiation. But
does it also indicate the sfrength of the relationship? Does a value of 5 = 0.53 indicate a
strong, moderate, or weak association? Unfortunately it does not. g

The problem is that the units of measurement vary from one situation to another. For
example, if [ use proportions rather than percentage points to measure unemployment rates, so
that instead of using in my calculations 22, 20, 15, 10, 9, I use 0.22, 0.20, 0.15, 0.1, 0.09, the
estimated value of b will be 53 rather than 0.53. The actual relationship I am looking at has
not changed, only the units of measurement. [n other words, the value of b is affected not only
by the strength of the correlation, but also by the units of measurement. Therefore there is no
way of knowing whether any particular value for b indicates a weak, moderate, or strong
correlaticn.

To overcome this problem, we convert the value of b into 2 standardized mcasure of
correlation called the product moment correlation coefficient, Pearson’s r. Pearson’s r w:ll
always racge between —! and +1, regardless of the actual units in whick the variables ar¢
measured. The formula for r is:

Hx,-X\y;~¥)

(x,- %) v~

y = £ -]

nEX? - AMx_.wu—zmsu z \AM:%_
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Fortunately, we have already calculated the elements of this equation in the table we used
above for calculating b (Table 12.2). If we substitute the statistics from this table iato this
second formula we get 0.81:

. n3(X.Y,) - (2x;)zY;) _ 5(728)-5551)

y nzx? - AMENM;M«_.N < AM:.L %EIQNTG&IMj

3640- 2805
= = 0.81

%a 1530253275~ NQS_

The value of r tells us the strength as well as the direction of association. A value of 0.81
indicates that the correlation between these two variables for this sct of cases is a strong,
positive oae.

The problem with the correlation coefficient is that its relative values are not proportional Ic
the relative strength of the relauonship. In other words, an r of 0.6 is not twice as song as an
r of 0.3. This makes it difficult, and sometimes misleading, to compare the correlation
coefficients for different pairs of variables. More generally, the correlation coefficiert does
not have any direct interpretation in PRE terms so it does not indicate the confidence we can
place in our estimates, especially when making predictions. These problems arc overcome by
the square of the carrelation coefficient, called the coefficient of determination, /.

Explaining variance: The coefMicient of determination

We have already used the regression line to predict the number of civil disturbances in a city,
given a particular rate of unemployment. But we also saw that there will usually be a margin
of error in this prediction, depending on how closely the plots are clustered arcund the line.
We can use the regression line 10 say that a certain increase in X will produce so much
increase in Y, but if there are large error terms between the regression line and the actual data
poinls to the likelihood that our predictions will be wrong and will be greater than in a
situation where the scores are tightly packed around the regression line.

We can see in Figure 12.8 that even though the same regression line best fits both sets of
plots, we will have a greater confidence in our predictive ability in (a) than in (b). This is
because the regression line in (a) explains a greater proportion of the variance of Y than the
line in (b). We therefore need some measure of how much of the variaticn in the dependent
vanable is explained by a regression line.

(a) (h)

- . X I

Figure 12.8 Regression lines that explain (a) a high amount and (b) a low amount of variation
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Fortupately we can do this by simply squaring r and obtaining the coelficient of
determination, 7, the variacce exglained by the regression line relative to the variance
exp:ained in the case of no association:

7 =(281 =065

The coefficient of determination can be interpreted as an asymamelzic PRE measure of
association, much like the PRE measures we encountered i Chapters 6-7. In fact, it has a
logic very similar to lambda, but applied to interval/ratio data. We make predictions about the
expected value of the dependent variable withous sny informaiion about the independent
variable. We then make predictions wirh knowledge of the independent variable and compare
the ervor rates.

For example, if we have t¢ gress the number of civil disturbances in each city, and all we
know is that the average number of disturbascss for all five cities is 10.2, the best guess we
can make is 10 say that the nuraber of civil disturbacces in each city is 10.2, regardiess of the
actual unemployrment rate. [o other words, we draw a straight horizontal line at this value as
the regressicn line through the scatter plat (Figure 12.9).

m 18~ \,_..,
=
4 16 B _
= =638
m H- .— _\
”..la.m |
12 H
_ | -
104 =07 T Y=102
C
L =52
§— €=-62
D
4
E
24
T T T T T T T ™1 Iy 7
2 4 6 8 10 12 14 16 18 20 22 24 26
Unemployment rete (%)
Figure 12.9 Regression line witheut knowledge of the independent variable N

This horizonlal live is the line we draw if there is no correlation between these (wo
variables; knowing whetker the unemployment rate is bigh or low will aot cause me to change
my expected number of civil disturbaoces from the average. Sometimes this line comes very
close 10 the mark. For city C we see that this line predicts, at an unemploymen? rate of 5
percent, there will be 10.2 civil disturbances. There were in fact 10 civil disturbances
producing an error (e) for this city of only —0.2. However, in otker instances we make a lacge
crror using this line. For city A, at an unemployment rate of Z5 percent we aga’n precict 10.2
civil disturbances, but in fact there were 17, producing an error of 6.8.

Now we compare these errors with the errors we make when predicting oo the basis of the
ordinary least squares regression line (Figure 12.10). Does the OLS line substactiaily improve
our guesswork?
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18— Y=4.4+053X

Civil disturbances
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Figure 12.10 Regressico lice with knowledge of the independent variable

We can see that if there is a close correlation between these two variables, the Icast squares
regression line will reduce the error rate. The gaps between the data points and the line will be
much smaller when using the least squares regression line than when using the horizontal lice
based on the assumption of no correlation. It is precisely this aspect of the regression line that
the coefficient of determination captures. A value for 7 of 0.65 indicates that the least squares
regression line explains 65 percent of the variance of the dependent variable relative to the
variance explained by the horizontal line. This is a substantial reduction in the error rate.

It may pay 1o stop at this point and discuss the differcace between r and #* since they are
very closely related. The correlation coefficient is a standardized measure of the relationship
between two variables; that is, it indicates the extent 10 which a change in one variable will be
associated with a change in another variable. Thus r (like b) is primarily a tool for prediction.
The coefficient of determination, on the other hand, is a PRE measure of the amount cf
variation explained by a regression line, and therefore gives a sense of how much confidence
we should place ip the accuracy of our predictions.

Plots, correlation, and regression using SPSS

The data from this example have been entered into SPSS. To generate the results we obtained
above on SPSS, we can use either of two separate commands, cach of which produce different
amounts of information, neither of which is (unfortunately) completely ideal. One commaond
generales a graphical description of the data in the form of scatter plot along with a regression
line and value for #* (but not the inferential statistics that we will discuss in Chapter 26). The
other command provides the numerical descriptions in the form of the regression equations
and correiation cocfficients, along with the inferential statistics, but not the scatterplot.

Generating an interactive scatfer plot with a regression line and statistics

To obtain a simple scatter plot of the data, we use the procedures given in Table 12.3 and
Figure 12.11, which also present the output from this set of commands, Note that point 4 is
optional, but with graphs that only have few data points, such as this one, it is helpful to label
the plots with an identification variable (such as city letters in this instance) to help us better
‘read’ the graph.
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Table 12.3 Interactive scatter plots using SPSS (file: Ch12-1.sav)

SPSS command/action C —
T From the menu select Graphs/Interactive/Scatterplot  This brings up the Create Scatterplot dialog box.

This pastes Number of ¢ivil disturbances as the
vanable to be displayed on the ¥-axis (dependent)

2 Drag Number of civil disturbances into the empty
box on the vertical arrow

3 Drag Unemployment rate into the emp?y bex on the This pastes Unemployment rate as variable to be
horizontal amow displayed on the X-axis (independent)

4 Drag city into the box nextto Label Cases By: This will place the city fabel next to each of the
(optional) points on the scalter plot
5 Click on the Fit option

This will fi the QLS regression line in the scatter
plot and also the regression equation with the graph

& From the drop-down menu next 1o Method: sclect
Regression

7 Click on OK

Bumber of cinl L0653
R-Squarc - 6.85
o |A
- -
b4
m Ll
£
m 12
E
3
3 °¢
k3
s ¥
£a
E
3
z
oD
4490 E
T T T T s N
[} 10 “ » b}
Unemployment rate

Figure 12.11 The Slmple Scatterplot dialog box and output
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Regression statistics

To generate the statistics behind this regression line we follow the procedure in Table 12.4
and Figure 12.12.

A wealth of output is generated as a result of this command (Figure 12.13), much of which is
beyond the scope of this book. The two parts of the output that concern us now are the tables
headed Model Summary and Coefficients.

Table 12.4 Regression with curve estimation using SPSS (file: ChI2-1.sav)
SPSS command/action Comments
1 From the menu seloct Analyze/Regression/Linear  This brings up the Linear Regression dialog box

2 Click on Number of civil disturbances

3 Ciickon » that points to the Dependent: This pastes Number of civil disturbances as the dependent
target variable list variable

4 Click on Unemployment rate This highlights Unemployment rate

5 Click on » that points to the Independeni(s): This pastes Unemployment race as dhe independent
target variabies list variable

6 Clickon OK

Figure 12.12 The Linear Regression dialog box

In the Model Summary table we see that Pearson’s product moment correlation coefficient,
R, is .807, and the coefficient of determination, R Square, is .651, which are the same as owr
hand calculations. The important part of the Coefficlents table is the column headed B under
Unstandardized Coefficients. This tells us that:

= the value for the Y-intercept (which we called a in the aralysis above but SPSS calls the
Constant) is 4.423, and

« the slope of the regression line, which is the coefficient for Unemp.oyment rate, is .525.

Again these are the same values we calculated by hand. The figure under Standardized
Coefficients, .807, should look familiar: this is the value for Pearson’s r, which was also given
to us in the other table.

In addition to SPSS there are a number of web pages listed at the following address that
allow you to perform correlation and regression analysis:

* members.aol.com/johnp71/javastat. html#Regression

These pages are usually limited by the amount of data points that can be eatered; ai most
some of these pages allow for 84 points to be entered.
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Regression
Vartables EnteredRemaoved®
Varlables Variabies
Mogel Enteted Ramoved Methad
L CDmBn_nﬁ Enter
meni rate

&. All requestad variables entered,
b. Dependent variable: Number of chil disturbances

Model Surunary
SW.Emor
Adjusted R A the
tadel R R Sguare Square Eslimale
1 8074 651 534 386
a, precictors: (Constand, Unemployment rate
ANQVA®
sum ol Mean w.
Model Squares df Square F ig -
1 Regression 87.701 3 87.701 5.586 089
Rezidual 47.099 3 15.700
Total 134.80¢ 4

a Pregictors. (Constany, Unempioyrnent rate
b. Dependant Varfable: Number of civil disturbaaces

Coeflicients®
Standardi
zed
Unstandardized Coemclen
Coefficiens, ts
Big.
Mods) 8 Std. Eror Beta t
1 {Constand) 4423 | 3.018 1.465 233
Unempl ent 1ate 525 ~ 222 807 7.364 .93

a. Dependent Variable, Number of el disturbances

Figure 12.13 SPSS Regressian command output

Example

A museum keeps track of the number of visitors on randomly selected mm&a across the year, 2
order to help it plan for crowds. It suspects that the daily .HnEvnBES is a good predictor .om
the number of people who will pass through oo any given day. The n_.mS on the A_mm_z
temperature, measured in degrees Celsius, and the number of vnw_u_a, attending. together with
the calculations needed to construct a regression line, are included in Table 12.5.

We can use this information ta calculate the mean for each variable:

FoTh A2 _ g,
n 20

o I 02 sy
n 20
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Table 12.5 Calculations for the slope of the regression line
1 2

Temperature, X; Peaple, ¥, X, Y XY,
13 501 169 251,001 6513
28 175 784 30,625 4900
32 390 1024 152,100 12,480
20 452 400 204,304 9040
1 550 121 302,500 6050
15 734 225 538,756 11,010
9 620 81 384,400 5580
33 199 1089 19,601 6567
16 390 256 152,100 6240
29 223 841 49,729 6367
12 768 144 589,524 9216
i5 679 225 461 041 10,185
18 410 324 168,100 7350
26 320 676 102,400 8320
13 550 324 348.100 16,620
17 650 289 422,500 11,050
27 258 729 66,564 6966
32 201 1024 40,401 6432
28 as3 784 209,764 12,824
23 . 534 519 285,156 12,282
X, =422 XY, =9102 M\/...u = 10,038 M*..w = 4,798,966 X Y)=170,122

These figures produce the equation for the slope of the regression lice:

nX{X,Y)) - (2X,)(£¥}) _ 20{170,122)-422(9102) _

b = =
n2x? -(2x,)’ 20(10,038)- (422)°

19

\:.6. value for a will be 863;
a = Y-bX = 455.1-(-19.34)(21.1) = 863

The OLS regression line therefore is defined by the following equation:
Y=23863- 19X
If we want to use less mathematics and use plain words rather than symbols, this equation is:
estimated number of patrons = 863 — 19(daily t¢mperature)

A negative correlation exists between the temperature and the number of people attending
the museum. We predict that for every degree that the temperature increases, 19 fewer people
will attend the museum. The value for a indicates that when the temperature falls to zero the
museum should expect 863 visitors.

To assess the sirength of this relationship, and the confidence we caa place in the predictioas
based on it, we also calculzte the correlation cocfficient and ihea the cocfficiect of
determination. These indicate that there is a strong negative relatiocship and that the OLS
regression line explains a high proportion of the variance in the dats, allowing the museum to
make confident predictions.

Correlation and regression 177

n% X, X;)-(2x 1))

2 Iy V2 2 2
.,__Mk_. -{ZX,) —ams -{z¥,) _

)
20(170,122) - 422(9192}

2010,038) -_“S%To?.am. 966) - (9 _S%_

= -038
7 =(-0.8) =054

The assumptions behind regression analysis

We have used the concept of least squares regression to cerive a measure of correlation
between two interval/ratio-level variables. However, implicil in ke usc of OLS are certain
assurnplions, which, if violated, will mean that this wili not be the best rule for fitting a line
tbrough 2 scatter plot. It is worth noting these assumptions, although a more detailed
discussion would take us t0o far from the needs of this boak.

Linear relationships

Least squares regression assumes that the line of best (it is a straight one, or in more lechaical
terms that there is a linear relationship. However, this is not always the case (Figure 12.14).

4

Figure 12.14 A nen-linear relationship

It is clear that the line of best fit for this scatter plot will be curvilinear. We can ask SPSS to
fit a regression line through these data points, and it will give us the best straight line, but
clearly @ straight line is not the best line!

Stability

Looking back at the example regarding the relationship between unemployment Ei civil
unrest, the range of values for the independent variable was 2-22 percent. It B_m_:»___,n
lempting to use the regression line fitted for these data to predict the number of civil
disturbances in a city with an unemployment rate of 30 percent. In other words, we might try
to project the regression Jine out past the right-edge of the scatter plot when employing it as a
100! for prediction, To do this we have to assume that the relationship is stable: that the
correlation coeflicient will be the same for the whole range of values over which we want to
make predictions. This is analogous to the concept of consistency when looking at a crosstab.



178 Statistics jor Research

~ This can sometimes be a very dangerous assumption. The statistics we have generated apply
just to the cases for which we have information, and to extend their domain to cases for which
we don’t have information requires some justification. It may be, for example, that when
unemployment rates hit a certain threshold level, such as 25 percent, the crime rate juraps up
dramatically.

The other aspect of stability relates to time. Unlike the physical sciences, a relationship
between two variables in the social sciences is not always the same over time. The
relationship between force and mass seems relatively permanent, but the relationship between
::n_Bv_C%_:E: and civil disturbance may not be, because history brings about changes to
social institutions that may alter the character of the relationship. For example, governments
may respond (o a strong relationship between unemployment and civil disturbance by creating
new sacial institutions such as income support schemes and community programs that could
soften the effect of unemployment. Using the information from one historical period for
another historicai period may therefore be inaccurate.

Homoscedasticity

The m.._.m.Q definition of homoscedasticity is that the variance of the error terras (residuals) of a
regression line is constant. The best way 10 explain this is through an illustratior. (Figure
12.15).

(a) (b)

X = X
Figure 12.15 Regression where the errer terms are (a) hemoscedastic and (b) beteroscedastic

In Figure 12.15(a) we can see that the spread of the daw points around the regression line is
fairly constant over the length of the regression line. The data points form 2 ‘cigar shape’
around the line. In Figure 12.15(b), though, the data points lie far away from the line at one
end, and gradually get closer as the value of the independent variable decreases. Graph (a) is
the case of homoscedasticity, whereas graph (b) shows heteroscedasticity. The presence of
heteroscedasticity causes any significance test on the value of r to be invalid, so that we are
not able to generalize from a sample result to the population. Usually a simple inspection of a
scatter plot will be sufficient to detect whether this assumption is valid.

Reversibility

This is not so much an assumption regarding the construction of a regression line but rather ao
assumption in its use. A positive correlation, for example, implies that when the value of ao
independent variable increases, the value of the dependent vanable increases as well, and that
when it decreases the dependent variable decreases as well. However, it is not always (he case
...rm_ the same relationshig holds for increases as it does for decreases. We all know that there
is a positive correlation betweer. income levels and consumption levels: when we have more
to spend we spend more! A researcher may look at a period of rising income levels and
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calculate a value for the regression coefficient (b) of 0.8: when income increases by $100,
consumption will go up by $80. Can this researcher then argue that if income decreases by the
same amount, consumption levels will go back to where they were before the initial increase?
The answer is no. Most people adjust their spending patterns to the higher income level, and
do pot tend to give it up very easily, even if income falls agaia. People go into debt or sell off
assets in order to maintain the higher speuding patterns they have become accustomed to, 50
that the correlation observed in one direction may not be the same as that observed in the
gther direction.

Spearman’s rank-order correlation coeflicient

In Chapter 7 we discussed the use of crosstabs and measures ol association as means of
describing a relationship between two variables measured at least on ordinal scales. These
techniques apply in situations where the scales do nof have too mary categories (five or less
categories is a good rule of thumb for the appropriate raoge of scores). In this chapter thus far
we have discussed an alternative set of statistics we van use to describe the relationship
between two variables, where both variables nre measured at the interval/ratio level and the
data have many different values. There are situations, though, where we have ordinal scales
for two variables and each have a wide range of possible scores and we are reluctant to
collapse these scores down to a few calegories just (¢ be able to fit the data into a crosstab.
This is especialiy the case where the underlying variables are continuous. Ao example is an
attitude scale. People's attitude 1o the quality of health care services, for example, is
essentially a continuous variable. We may try to capture this iatrigsic characteristic of the
variable by ensuring that there are 8 wide number of scores on the scalec we use 1o measure the
variation that exists in people’s attitude to health care services, from one extreme of ‘very
unfavorable’ to the other extreme of ‘very favorable’. We may in fact have a 10 point scale
with these two cxtremes at either end. If we collapse Lhese scores into a smaller oumber of
categories in order to ‘fit’ them into a crosstab we will lose the scale’s sepsitivity 1o small
differences in people’s attitudes.

Where we have two ordinal scales with a large number of scores {or one ordinzi and one
interval/ratio) we can describe a relationship between the two variables using Spearman’s
rank-order correlation coefficient, which is also known as Spearman’s rho. Spearm2n’s
tho, ir: fat, is a particular application of Pearson’s correlation coefficient, which we discussed
above for relating variables measured on interval/ratio scales that have many values. We can
use the logic of Pearson’s r, even though tte raw data come from ordinal scales, by working
with the ranks rather than with the origipa! data. In other words while the raw scores may be
ordinal, the ranks of these scores are interval/ratio, and hence we can calculate correlation
coefficients on these ranks.

The basic iogic underlying rho is the same as taat for other PRE measures of association, in
s0 far as it tries to predict the ranking of pairs of cases ou the dependent variable given their
renkirg on the independent variable. To illustrate the calculation of rho, we will work through
the foliowing hypothetical example. A physiotherapist uses a new trezlment on a group of
patients and is interested in whether their age affecls their ability to respond to the treatment.
After taking into account a number of othier variables, such as the severity of the injury, each
patient is given a mobility score out of 15, according to his or her ability to perform a numoer
of tasks.

The results of the study are shown in Table 12.6, along with the rank of each person in terms
of each variable. Notice in Table 12.6 that Jordan and Alana had the same mobility score so
they each are assigned the average rank of 7.5. To calculate the value for rho we first calculate
the difference in rank far each person, D, and then square these differences. D”. The last step
is to enter these results into the equation for rho, which produces a rark-order correlatiot
coefficient of -0.8.
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Table 12.6 Calculating rank differences

¥

Patient Age Rank onage  Mobility score Rank on mobility Rank difference, D o
Dani 23 ! i4 15 I-15=-14 196
Christine 25 2 15 16 2-16=—14 196
Leanne 28 3 12 13 13=-10 100
Maric 30 4 8 3 -1 1
Erin 35 5 13 14 -9 8!
Ben 37 ] 10 10 —4 16
Luke 33 7 11 12 -5 25
Sophie 39 8 8 s 3 9
Elli 40 9 10 10 -1 1
Jordan 41 10 9 75 2.5 65
Timothy 45 11 10 10 L i
Alana 50 12 9 75 45 20.25
Amanda s2 2 7 K 10 100
Lisa S5 14 8 S 9 81
Siacey ] 15 4 | 14 196
Chlog 62 R 6 2 14 196
0= 12255
2 812255
o= _Al[\m.MD = ]-= 5 v = -038
nin? 1) _A_a(;

Spearman’s rho is a PRE measure, and therefore has a concrete intcrpretation. A value of 9.8
indicates a strong correlation between these two variables, and the ncgative sign indicates that
this is a negative correlation. In other words, increase in age strongly reduces the effect of the
treatment. The older the patient, the less benefit received from the program.

Spearman’s rho using SPSS

The comgands to calculate rho for these data are shown in Table 12.7 and Figure 12.16 along
with the output (note that this is also a third way by which we can generale Pearson’s
correlation coefficient, in addition to the two commands we used above),

What does all this mean? SPSS calculates the corrclation coefficient {or each variable with
itself and all the other variables we pasted into the target variable list in te dialog box.
Looking at the first cow of the Correlations table we sce that age has a correlation coefficient
with itself of 1.000; 2ny variable by definition is perfectly correlated with itself, AGE has a
correlation coefficient with Score on mobillly test of —0.814, which is the same as our hand
calculation. Note the minus sign indicating a negativs correlation: as age increases, mobility
scores decrease.

The second row of the Correlations table does the same thing in reverse. It gives the
correlation coefficient for Score on mobility test correlated with age which is —0.8)4. [n other
words, since rho is a symmetric measure of association it does ot maiter which way we view
the direction of causality (age 1o mobility or vice versa) since the value calculated will be the
same. AGE is also correlated with itself, which produces a perfect correlation of .

The table also provides a row of information titled Sig. (2-taited). This deals with issues we
will discuss in Chapter 26, where we will refer 1o this output. For those who are already
familiar with the logic of statistical inference, or have read ahead and arc coming back to this
chapter, I will quickly explain this portion of the output. Although we have significance of
.000 this does not mean a zero significance. The exact probability is less than $ in 10,000 (e
p <0.0005), which SPSS has rounded ofY to .000. Thus this probability should be read as ‘less
than I in 50,000°, which is clearly a significant result. The strorg relaticnshis we have
detected in the samiple is due to such a relationship holding in the population, and ot just due
to sampling error.
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Table 12.7 Gepera(ing Spearman’s rho on SPSS (file: Chl2-1.sav)

SPRS comunand/action

Comments

1 From the menu select Analyze/Correlate/
Bivariate

2 Click on age in the source vanable list
3 Click on »
4 Click on Score on mobility test in the source

variable list
5 Clickon»
6 Chick on the box nex! to Pearson

7 Click on the box pext 1o Spearman

8 Click on OK

This brings up the Bivariate Correlatons dialog box. You will
notice an area called Correlation Coefficients, with the box
next 1o Pearson selected, This is the default setting. Pearson’s
coefficient is applicable to interval/ratio data, so is not
appropriate here where at least one vanable is ordinal

This highlights age

This pastes age into the Variables: target list

This hightights Score oa mobility test

This pastes Score on mobllity test into the Variables: target
list

This removes v from the tick-box so that this measure of
correlation s no longer selected

This replaces v in the tick-box so that this measure of
correlation is seiccted

Corretations
gcore on
maobillity
AGE test
Speamman's tho  AGE Conretation Coefliclent 1.000 - 814
8lg. (2-aileq) ; 000
N 16 16
Score on mobilitytest  Correlation Coeffictent -814 1.000
8ig. {2-alled) Joo

N 16 16

. Correlation is significant atthe 01 level (2-tailed).

Figure 12.16 The SPSS Bivariate Correlations command, dialog box and output
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Example

An instructor is interested in whether the heavy use of formal exams as a form of assessment
is biased agains! students who might perform better under different exam conditions, such as
verbal presentaticns. A group of 15 students is selected and each student is assessed in terms
of their verbal presentation skills and in terms of their formal examination skills. These 15
students are rank-ordered on each of these variables as indicated in Table 12.8, along with the
calculations we need to generate rho.

Table 12.8 Calculating rank differences

Srudent Rank on exam Rank on presentation Rank difference D DN
i 4 15 ~11 121
2 6 3 3 9
R} 9 14 -5 25
4 12 9 k] 9
5 3 10 -7 49
6 13 11 2 4
7 5 6 -1 |
by 1 4 -3 9
9 14 8 [ 36
10 2 1 1 1
it 10 2 8 64
12 7 5 2 4
13 15 7 8 o4
14 8 12 -4 15
15 1 13 - 2 4

D =416

6z0? &(416)

auT:nL : 15152 -1
(i-1) sty

This indicates a weak, negative association between the twe types of skills. The instructor
might therefore conclude that exams are not a good indicator of other forms of learning skills:
students who perform poorly in exams might perform well in verbal presentations. Similarly,
studerts who do well in exams might not relatively do all that well when other skills are
required. A mix of assessment methods might give a better indication of students’ leaming.

Correlation where the independent variable is cateporical: Eta

Before completing this chapier on correlation and regression, one last variation of the
correlation coefficient is worth discussing. This is eta, which is a PRE asymmetric measure of
correlation where the dependent variable is measured on an interval/ratio scale and the
independent variable is categorical. Eta is therefore extremely useful in situations where we
want to compare groups defined by a nominal scale in terms of some interval/ratio scale. An
example is comparing males and females in terms of age in whole years. We can calculate a
range of umvariate descriptive statistics such as the mean and median for each group and
compare these (as we discussed in Chapter 9). As an alterative, or in addition to these
Comparisons, we can use eta to measure the correlation between a person’s sex and their age.
Eta will only range between 0 and 1, since the categories of the independent variable are
treated as unordered (i.e. essentially nominal), and it is therefore aot appropriate 10 talk of the
relationship being either positive of negative in direction. We can generate eta in SPSS under
the Analyze/Descriptive Statistics/Crosstabs/Statistics sub-command. This is unfortunate,
since it is unlikely that we would want to generate a crossltab on data for which etz s
applicable; an interval/ratio dependent variable will usually result in a crosstab with far too
many rows. It would have been preferable for SPSS to offer ela as an option under the
Analyze/Blvariate/Correlations command, but this is not the case.
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Summary

This chapter has introduced the concepts of correlation and regression. But we have only just
skimmed the surface. We could spend a whole course discussing this topic alone, and still not
give it adequate ireatment. Moreover, you will have noticed that there were many options
within SPSS that we did not explore, sticking only to the bare minimum needed to get the
results we were after. 1t is not within the scope of this book to pursue these issues in more
detail — we only want (o introduce the key concepts and methods. There are many other books
that delve into regression analysis in far more depth. Nevertheless, the key ideas hopefully
have emerged by sticking to the basics and not elaborating further on more advanced topics.
Having digested chis much, the task of absorbing the more advanced material may prove a
little easier.

Exercises

12.1 Why should we draw a scatter plot of data before undertaking regression anslysis?

12.2  What does the Y-intercept of a regression line indicate?

123 What is the principle used for drawing the line of best fit through a scatter plot?

12.4  For cach of the following regression cquations, state the direction of the relationship:
(a) ¥=130+42X (b) Y=30-0.38X (¢) Y=-05+038X
(d) Y=-0.5 (e) Y=-0.5X

12.5  Greph cach of the following equations on graph paper. On your graph indicate the Y-
wotercept and the slope:
(a) Y=30+42X (b) Y=30-0.38%
(d) Y=-0.5 (e) Y=-0.5X

12.6 Explain the difference between the correlation coefficient, r, and the coefficient of the
regression line, b.

(c) Y=-0.5+0.38%

12.7 (a) Using graph paper draw a scatter plot for the following data:

X . s 3 9 10 10 13 15 18 2 27

y | 35 28 30 22 28 28 20 21 15 18

(b) Looking at the dzta, what do you expect the sign in front of the coef¥icient to be
(i.e. is there a positive or negative correlation)?

{c) Draw a regression line through these data using the naked eye. Determine the
equation for your line, and predict ¥ for X = 12, )

(d) Calculate the least squares regression line through these data. What is the least
squares estimate for ¥ whep X =127 ;

() What is the sum of the squared ervors for your {rechand lire aod the OLS line?
Which of these sums is smalles(?

() Enter these data oo SPSS and run the regression coounand fo confirm your results.

12.8 A regression line is ploned through data on life expectancy in years and government
expenditure on health care per head of population (in $°000) for a group of aﬁwio?:m
nations. Life expectancy is considered the dependent variable and expenditure the
independent variable. The equation for the regression line is ¥'=40 +0.7X.

(2) Wha: will life expectancy be if the goverament spends no money on health?
(b) What will life expectancy be if the government spends $30,000 per head on health?
(c) Can you say tha( there is a strong relationship berween the two variables?
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12.9

12.10

Statistics for Research

A university fecturer in statistics wants to emphasize to her students the value of study
to exam performance. The lecturer monitors the amount of time in minutes that all 11

students in the class spend in the library per week, and the final grades for each

student. The figures are recorded in the following table:

Library time {minutes) Exam score
41 52
30 44
39 43
48 65
55 62
58 60
65 74
80 79
94 %0
100 90
120 86

dua lecturer analyzes these data using the regression command in SPSS. Eater these
data yourself into SPSS and from the output answer the following questions:

(2) Write down thc equation for the OLS regression line for these data.

(v) What is the strength and direction of the relationship between these variables?

() Will a studeni who spends no time in the library fail?

(d) A student wants 10 use this information to work out the minimum arount of time
the student needs to spead in the library in order to get a bare pass grade (50). What
is the minimum amouat of time he needs to spend in the library? Can the student be
very confident in this prediction? What is the problem with using the regression
line for such a purpose?

{c) Draw a scatter plot of these datz to check that it was appropriate fcr the lecturer 10
use linear regression.

(f) Use these data to calculate by band the same values presented in the SPSS ourput
and check the results are the same.

A real-estate agent wants to explore the factors affecting the selling price of a house.
The agent believes tha( the main factor explaining differences in selling prices is house
size. In this model which variable is cast as the independent and which is the
dependent? The ageat collects data on these two variables, with the results:

Seling price (§,000) House size (squares)

260 20
2410 15
245 20
210 13
230 18
243 14
295 28
238 16
287 24
252 20
270 23
275 25

(a) Calculate all the relevant statistics necded to assess the agent’s model, both by hagd
and by SPSS.

(b) In SPSS create anoiter column to enter the data for ‘Lc seiling price of houses, but
this time enter the data witkout rounding to tke neares: $,000, i.e. enter 250,000,
240,000, 243,00C, etc Recaleulate your regression salistics. What, if anything, is
different. Inte:pre: any changes.

1211

12.12

12.13
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Boter into SPSS the daa we used in :he example above relating visitors to a2 museum
with the daily iemperzature, acd generate all the relevant descriptive statistics.

A study investigates the factors that may lead to a reduction in the number of working
days lost due to illness at a certain factory. Ten people are studied and the following
information about their respective numbcr of bours of exercise per week and the
number of working days they were absent due to illness is recorded in the following
table:

Days lost
12
10
10
15
13
7
7
14
9
16
8
10

Hours of exercise

WO ODWANSNLEOSO =

(a) What is the correlation between these two variables?
(b) [f someonc exercises 8 hours a week, how many days do you predict that they will
be absent from work due to illness over the course of the year?

Using the Employee data file can we say that bepinning salary is a good predictor of
current salary?

12,14 From the World95 data file that comes with SPSS, a social worker finds the

12,18

[2.16

correlation between female life expectancy and birth rate per 1000 people to be —€.862.
What does this mean? Use SPSS to determine the full regression equation for this
relationship and interpret the results.

Eleven coun'rics are rank-ordered in terms of two variables: infant mortality rate and
expendicture on the military as a proportion of national income. These ranks are:

Country Rank on infant mortality Rank on military spending
A S 8

B 4 S

L8] [} G

D 2 2

B 7 8

F 3 4

G 0 7 .
H 5 3

I 8 9

J 1 {

K 11 10

(a) Calculate Spearman’s rank-order correlation cocfficient for these data. What can
you conclude about the relationship between these variables?
(b) Ester these data into SPSS and calculate rho to check your results.

Does price reflect quaiity? When people pay more for something are they actually
gelting something better? To assess this, 2 number of expert judges are asked 1o taste
aad rank 15 wines whose identity and price are not disclosed to them. The wine rated
15 is considered the highest quality, while the wine scoring 1 is considered the most
inferior. The rank of each wine according to the judges and its price is listed in the
following table:
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12.17
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- Qualiry

Price

O W™ AE b —

L& N

3.00
4.00
5.50
5.90
11.99
6.80
7.50
7.00
18.00
3.50
11.50
12.00
7.0¢
4.5C
13.00

Caiculate Spearman’s rho t¢ assess the nature of any relationship berween quaiity and

price. Check your answer by calculating rue with SPSS.

A group of ten runners is icterested in whether running ability is associated with age.
They record their ages in years and aiso their order in finish ing a run. The results are:

Name Age . Place
Kenny 54 4
Schuey 45 |
Scony 2% 6
Pat 28 2
Garth 25 3
Les 3¢ 9
Michael 15 10
Garry 26 )
Linda 18 8
Qecqma 34 7

Calculate Spearman’s comrelation coefficient 10 assess whether there is any relationship
betweer 2ge and running ability. Enter these data on SPSS 10 assess your answer.

13

Multiple regression

[n Chapter 12, Exercise 12.10, we cocsidered the following problem. A real-cstate agent
warsis to explore the factors affecting the selling price of a house. The ageat collects data on
these two variables for 12 bouses, with the results given in Table 13.1.

Table 13.1 Hous¢ size and selling prices

Selling price ($.000} House size (squares)
260 20
240 i5
245 20
210 13
230 18
242 14
295 28
235 16
287 24
252 20
270 23
275 25

The purpose of the analysis is 1o determine the seliizg price, which is the dcpendent vanable.
The agent believes that the main factor expiaining the variation in selling prices is the
variation in house sizes. As discussed in Chapter 1, we call this a model of the faclors
determining the sale price of a house, siace it is a thecretical depiction of a relationship that
may or may not hold up to empirical scrutiny. Let us compare for example two Liouses from
the samole, such as the house that sold for $252,000 and the one that sold for $230,000.
Indeed, we find the more expensive bousc is also the larger house, so tha! these two houses
scem to be corsistent with the agent’s model. Does this reiatiooship hold true for ali"12
houses? .

A simple regression analysis op these data from Exercise 12.10, using the method of
o-dinary least squares, procuces the {oltowing results:

Y=157+4.88%
7 =083

On tke basis of these resuits we can conclude the foliowirg:

* There is a positive relationship between house size and selling orice.

« For every one square increase in house size the seliing price increases by $4880.

= The relationship is strong and highly reliabie for making predictions,

*The variation in house size does nol perfectly predict selliog price. The coefficient of
determination is higb (0.85), bul not equzi to one. Therefore ather factors also affect the
sale price of houses in our sample.

This last point means tbat or: a scatler plot of the daia in Table 13.1 not ail the ¢ata poirts lie
right oo the regression lice, as eviden! in Figure 12.1, which presents an SPSS-generated
scatter ploz witk the regression lizie for these data.
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Graph

Seiiing price ($000)

=X
8

2 14 % 18 20 »n 2

House stze (squares)
Figure 13.1 SPSS scatter plot with regression line

The actual sale price for any given house can in fact be expressed by the following equation:
Sellizg price = a + b(hiouse size) + e

This equation states that the sale price of houses varies primarily because of differences in
their size, but also because of random factors, represented by the error term (e). The error
term expresses the difference between what we predict the price of a house wil be, given its
size and what it actually sells for.

We should stop for a moment and be clear about what we mean by the ‘error term’ and
‘random variation’. We can all agree that many factors affect the specific price at which a
house sells. It would not be hard to provide a long list of such factors. Our bivariate model of
the sale price argues that among all these factors there is one variable — house size — that plays
a major role in determining sale price and it does so in a systematic and consistent way. This
is why we have singled out the variable ‘house size’ and given it an explicit position in the
equation. But we also do not want to ignore all the other factors. The error term bundles up all
these other factors, factors that affect the sale price of houses in a haphazard, unsystematic
way. One house may have sold at a high price because the estate agent was particularly
aggressive in his or her sales pitch; another house may have sold well because the buyers
particularly liked the color scheme; still another may have sold for a low price because that
particular vendor had to sell quickly in order to repay a bad debt. It is because these and other
factors spring up randomly from one sale to the next that we do not treat them as separate
independent variables, but allow the error term to capture their collective influences. These
random factors sometimes cause the sale price 10 be higher than what we predict based on
knowledge of the house’s size, and sometimes they cause the sale price to be below the
predicted value. Knowing a house’s size will allow us to predict a value for sale price that will
be close to the mark, but we concede that for any given bouse the effect of these random
factors will mean that the actual sale price will not necessarily equal the predicted sale price.

Introduction to multiple regression

We may, however, regard the bivariate model as overly simplistic, We may feel that there are
factors other than house size that are not random, but which operale in a systematic way 1o
cause sale prices af houses (0 vary independently of their size. In other words, if we compare
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two houses of the same size, the difference in their respective sale prices is not only due to
randoimn factors such as those we just discussed. We have three bouses in our sample, for
example, that are each 20 squares in size. One sold for $260,000, the other mw.k.mbeou ,maa .Eo
third for $252,000. Why the differences in sale price? We could put faith in our bivariate
model and argue that random factors explain these differences, or we could argue 5& another
model that allows for the operation of other variables to systematically affect sale price offers
a better explanation. o .

We may, for instance, belicve that the age of a house also (partly) explains its mu_o, price.
That is, the age of a house is pol a variable that may occasiopally impact on En sale price of a
house, but instead is a commoa factor that systematically impacts on the prices that houses
sell for. Our new model may hold that it is reasonable 10 expect that the older the house the
cheaper will be its price; we expect a negafive relationship between _.Hocmo ﬂ:.mnwm MEA_. age.

If we suspect this to be the case, we need 1o extend our regression u:ua\m.m to include the
operation of this otber variable, much in the same way that in the previous chapter we
extended our simple bivariate crosstab analysis to account for the possible n.nmnoc_. of third
variables. When working with intervalratio data (as we have here) this is the task of
multivariate regression.

With this new multivariate mode! ia mind we collect data in Table 13.2 for the ages (in
years) of the 12 houses we origipally surveyed (this example is adapted from A. Slevanathan
et al., 1994, Australian Business Statistics, Mclbourne: Thomas Nelson).

Table 3.2 Selling price, house size, and age of 12 houses
Selling price ($,000) House size (squares)

Age (in yeurs)

260 20 s
240 15 i2
245 20 9
210 13 15
230 18 9
242 14 7
295 28 1 )
235 16 12
287 24 2
52 20 5
270 23 5
275 25 s

Gengerally we caa express the relaticoship between acy dependent variable 20d any k)
aur:5¢r of independent varizbles in the followiog way:

Y=a+ b, + bX; ...+ hXy + e

For tne specific example we are jovestigating we thercfore cao regpresent the modei of the
reiationship in the following (erms:

Selling price = a + b;(0use size) - byage) + e

In other words, we believe that the sale price of a house is pulled i one direction or anotber
by its age and its size. We expect an old bousc thzt is also relatively small to have its w_..mno
pulled in a dowaward direction through the independent operation of coE age and size.
Conversely, we ¢xpect a new house tha: is also relatively large to a»«.& its price pulled
upwards. In other instances, house size and age may be pulling in opposite directions.
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in our equation we still allow for random factors to have an infleence 50 thal age and price
do not exacrly determine sale price in every instance. But if this multivariate model is a better
explanation of house selling prices than the bivariate model, the amount of variation left over
10 be explained by the error term will be much smaller than in the bivariate model we started
with. If, on the other hand, introducing age tato the equation does not reduce the proportion of
sale price variation attributed to the error term then kmowing a house’s age does not improve
our ability {o predict its sale price. We have information on a variable that is not helpful in
statisticaily accounting for the dependent vaniable.

The task of multivariate regression is to try and appertion the variation in house prices ¢
each of these competing ‘pulls’ on the dependent variable. Does one dominate the
determination of selling price, such that we can say age or size is clearly more important, or
do they have similar influences? And what is the role left over to random factors?
Multivariate analysis, through the calcuiation of the regression coefficients and the partial
correlations for each variable, gives us precise measures of the respective influence of these
independent variables on the dependent vanable.

It is possible to use formulas to calculate the regression cocfficients between each of these
independent variables and the dependent variable. However, these (echpiques are very
cumbersome, and with large data sets, overwhelmingly time consuming. No ooe today would
consider conducting muitiple regressioa by hand. To save ourselves the hassie we will leave it
to SPSS to conduct the calculations, and we will simply interpret the results.

Multiple regression with SPSS

The procedure for calculating the equation statistics for multiple regression is the same as that
for simple bivariate regression from Chapter ]2, except for the fact that we paste more than
ote varigble into the Independent(s) variable target list. This procedure is presented in Table
13.3 and Figure 13.2. Figure 13.2 also presents the output frem this procedure.

Table 133 Multiple regression using SPSS ({ilz: Ch13.sav)
SPSS command/action

1 From the menu select Analyze/Regression/Linear
2 Click on Selling price in the source variable list

3 Click on the » that points to the Dependent: Larget
vanable list

Commenis

This brings up the Linear Regression dialog box
This highlights Selling, price

This pastes Selling price as the dependent venablo

4 Click on House size in the source variable list and while  This highlighis both House sixe aad Age in years
holding down the Shift key click on Age in years

$ Click onthe » that points to the Independent{s): target
variable list

6 Click on OK

This pastes both House size and Age in years as e
independent veriasles

A great deal of information is presented in the SPSS regression output (some of it repeated
several times); we wili concentrate on just the mest important parts.

* The table headed Variables Entered/Removed provides a simple verbal description of the
model(s) we are estimating. It is possible in SPSS to run several multiple regressions
simultaneously, using different combinations of independent variables to see which
combination ‘best’ explains the variation in the dependent variable. Here we have only
estiznated one model, called Model 1, which uses the vanables Age in years and House size
in squares as the predictors of the dependent variable, Selling price ($000). We will detail

the various optious that SPSS provides for cotering the selected independent vanables inte
the regression model below.

Multiple regression

Regresslon

Varjanies Erter edRemoved®

[ Variables varfables

Entzred

House sizg
(squares)

a A requestedvanables entered,
»_Qependent Variable Sailing price ($000)

Model Sunmary

Std Error
Adjusted R af the
m Square m_u:dE mmcaﬁb

a. mu_ma_n_bﬂw ﬁau:ﬂa_._c Age inyears, Iacm@ size
(squares)

ARV

Mean

Sum of
macm,mm

Square =
Regression 3124379 m_ 298 aoa
%0.906
Residual :
Tolsl _
3 Pradiclors Aaa_..nﬁ:olucm In yoars, Mouse sl (5quares)
b Dependent Variable: selling price ($000)

Coeflickams?

Standsrd F
1ed
Unetandardized Coefliclen
Coefficients
[ n | sts Ermor |
{Consland 26222
Huuse size (squares) d a3
Age ifi YR 2rs d 1.076

4 Depengant Variable: 58liing prite ($000)
PFigure 13.2 SPSS Linear Regression dialog box and autput
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*The second table, headed M i :
; odel( i i 1
indicates the strength of the a_m:o:mmﬂﬁﬂw“w%“o:”wn_mwﬂwﬂnnog_mw.cﬂ coeflicient, which Tsble 13.4 summarizes the role hat the various measures generated by SPSS play.
in the model and the dependent variabl e, el i
: . ¢. The value for R of .959 indi
relationship. R is the multivariate equi ivariate e ot
_ quivalent for the bivariate correlati i
iy ) t e on coefficient, r. Of i
- ”r ﬂ_.ﬂo_.wm.__m %ﬂnﬁ»ﬁo for Mah_”_m.mm_ R Square (the coefficient of multiple determ ination)
is .901. ¢ used the bivariate model to explain selling pric ing i
i e (corr
Mwwﬂ ,M_E :ocma size) the value for the coefficient of determination immuc 85 As\wn.w_v““ﬁ wm_nn
aaﬁ..iﬁ%wam.ﬂwamﬂu% MMM Mm_m o.sap_uo house to predict selling price the coefficient of 8
: -901. This indicates that our ability to explain edi i |
price of a house has increased when we al infi i s s o
1 so have information about its age as w i
. ~ - . 0——
Wﬁ“nﬂmm oh the variation in mu._n price that we had previously attributed .omB:aoE anm_o.m
>n_.cwnwau_\» w:o to the systematic om...uo. of age. Note that in multiple regression we use the
axunc. o érmﬁma rather than the simple R Square, since the latter may overestimate the
ot 1o ich our sample data explain the varance in the dependen! varizble, partl
use it is affected by the number of variables included in the mode! &

Table 134 Interpretation of SPSS output

Allows us to make predictions for the dependent variable based on the values of the
independent variables, in terms of the original units of measurement

Sandardized cocfliciem  Allows us to distinguish the relative importance of each independent variable in
determining the value of the dependent variable

Indicates the strength of the relationship between the combination of independent
variables and the dependent variable

Indicates the amount of vanation in the dependent variable explained by the combination
of independent variables in the model, thereby indicating whether the model is 2 good
predictor of the dependent variable

Regression cocefTicient

Adjusted R-squared

Testing for e significance of the multivariate model

You may have oliced in the output some of the inferential statistics we will come across in
later chapters. Although we have yet to deal with inferential statistics, we will note their
geaeral meaning here so that we have a relatively complete coverage of multiple regression
output. Afler covering these statistics in more detzil in later chapters you may wish to return
ta this section. [nferential statistics tell us whetber we can generalize from 2 sample result,
such as that io our example, to the population from which the sample is drawn. Will the
rejationship between selling price and house size and age still bold if we surveyed all houses
sold in the area?

The critical information for this inference test is contained ia the table headed ANOVA.
SPSS conducts a0 F-test on the whole model, which tests the hypothesis that the correlation
coefficieats for all e variables included in the model are zero. In this example, the F-statistic
for the model has a significance level of 0.000. This tells us that at least one of the
correlations between cach of the independent variabies and the depeadent variable is not equal
10 zero in the population.

This conc.usion is confirmed in the Coefficlents lable, where we can see that the f-statistics
for each independent variable are significant at the 0.05 level. Thus we use the F-test to see
whether a' least some of the independent variables in our model are significant, and the ¢-
statistics for each individual vaniable indicate which ooes are sigpificant.

T

Thae ins i
wa?_mmww nMMMc _NM.“_M.A_ >J_o<>__u8___§am inferential statistics that allow us to make an
ampie to the population of all houses. W
fron > ula . We are at the mo :
mwnnwuﬁ.:aw Just on the descriptive statistics for the sample, so we wili skip this m.”oan
¢ output for now, and retumn (o it in the discussion below. e

~_._O _.N.U_n —HONQGQ 000___n_m—._n D e n ¢qu M 3V
s provid es the m_n—:O_:.M of the regressio F{t] Ve (7
E 1 C h

Seclling price (§,000) = 224.29 + 2.578(house size in squares) — 2.974(age in years)

When reading 2 regression equation it is important to keep i i
wdin ] : cp 10 miad the uni

“MM..MJHHMM_M .E_ﬂ.._o_u En.<m:m¢_nu —.m_<n been measured. Here we see that for n<:nﬂw_quM
e ha_.moo%wﬁ_n wa‘muwnowﬁcﬁm price .:_n_.n&,nm ».vv. $2578. Independently of this
uﬂoo Aoo?.g o v o %wwcmnmwwwu_.. increase in the age of a house, its selling
. _UMFW_MMME. m__m.r:w more pracacal meaning let us assume that we are now presented wit
e is going up .»,2 sale. We measure it as being 15 squares in size and also S ye .

; ¢ do we predict it will sell for? According to the equation it will sell for $248 oWoE.u

Alternative methods far sclecting variables in the regression model .

In multiple regression apalysis we enter a ‘block’ of independent variables that we want {o

model in the Independent(s): list. Depending on the nusober of independent variables in this

block, there will be numerous combinations of these variables that could be included in the
cottTimti af fbt regression model. In our example, we only have two Eanvnua.nm_ variables iEN which to

: ot 2 etermination, these random factors should not cause the ac(ual sale price o predict selling price: 2ge and house size. Two independent variables, though, give us three
= much from this predicted value. potential models: with each of the variables oo their own and with the two variables together.

21 < It is difficult to use th i ol fici s The Method: option in the Linear Regression dialog box (Figure 13.2) provides alternative
independent variable M__.Mwﬂﬂmd_%.ﬁ_. ooom_”._n_a_:m to assess the relative importance of each means by which the variables in the block of independents are included in the regression
independent vaniable is measured h_w M_WWGNMW_@:MM%”M nn,uozn_mi MM—.SEﬁ e aeRek
i s peeL ne s measured wn years, the ol
5 meiamv,m: iw Bam.mE.ﬁ_ __.o:uo m_mn,s another unit, such as square mno_.v,Eo ..nm.aum_ca.“.

icient for this variable will be different because of the unit of measurement. In other

Selling price (3,000) = 224.29 + 2.578(15) — 2.974(5)

=224.29 +38.67 - 14.87 = $248.09

Of course we do not ex eCl M 48 000 to be ﬁnﬂ exact price _ON__NOQ when G-& house is
p 2 >
NO“GN__V SO n_u because random actors will sti — p ay a role. But givea the _“—_@_u value o ¢

« Enter. This is the defaclt sefting an¢ produces a single regression model that includes all
the variables in the block.

words i
» We cannol say that, because the coefficient for house size is 2.578, whereas the !

Mﬂwﬁmﬂ. ~?q age is —2.974, age is a more powerful force acling on selling price. The
s E_o:.._w NJ_M._EQ_.@_MoR provides a column of Standardized Coefficlents imr_uo:.
e detatls of how these standardized coefficients. al ’
; , also called beta-w.
MMMo:_EH». we simply note 92_ they ‘wash out’ the effect of the units of BSMEMM_M”‘ ﬂ_\,M
see that age (-.508) bas a slightly stronger ‘pull’ on sale price than house size A.AQJ.

« Stepwise. This adds or removes variables in a number of steps, depending on the extent to
which such addition or removal will increase R-squared. In essence, it finds the ‘best’
combioztion of variables in the block that maximize R-squared. The Stepwise method will
be discussed in more detail below. It is especially useful in exploratory analysis, or where
predictive accuracy as such is desired, but can be used atheoretically in a *fishing’
expedition o discover statistical relationships that have no substantive basis.
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*Forward. This is a stepwise metbod, where variables are added based on their relative
semj-partial correlation coefficients with the dependent variable.

*Backward. This is a stepwise method, where all the variables in the block are entered in
the model in one siep and those that do not make a significan! contribution to predicting the
dependent variable are then removed.

*Remove. Used only in hierarchical regression, which we will cover below. All the
variables in the block are removed in one step, based on their collective impact on the R-
Squared.

Stepwise regression

The previous SPSS example useG the Enter method for generating the regression model,
which uses all the variables in the independents block. This method of variable inclusion is
generally favored, siace it requires us to think in advance of the statistical analysis what our
theory suggests about the nature of the relationships in which we are interested.

There are instances, however, where multiple regression agalysis is used for more practical
purposes than testing theoretical models, We may be purely interested in baving a model with
predictive accuracy, without being interested too much about the underlying theoretical
understanding of why the model has such predictive accuracy. Similarly, our theory may
suggest a small set of potential independent variables, but is not prescriptive as to which
members of this small set of variables will actually make up the model in a given context.
Having determined a ‘short-list’ of variables we believe may influence the dependent variable
(on the basis of theory or past research), we can then use the stepwise regression method we
are about to detail to select the specific variables thai actuzlly do bave significant influence.

For examgle, our real-estate agent in the example we have used is probably not too
interested ir the underlying causal structure of variables that determine the sale price of a
kouse. She may just want to know with the highest confidesce what the likely sale price will
be, given certain features of a house. Imagine that she has observed the calculation above and
yet believes that we have still left out other important faciors :hat determine the selling price
of houscs in the area. Despite the high explanatory power of our model with only two
independent variables, the agent may argue that our zbility to predict the sale price of houses
will be even further improved if we include the size of the land as another indepcodent
variable. The agent therefore goes back and gathers the data for the 12 houses we are
analyzing, measuring the land area in meters squared (Table 13.5).

Table 13.5 Selling price, house size, age, and land size of 12 houses

Selling price House size Age Land size
(5,000} (squares) (in yvars) (meters squared)
260 20 5 420
240 15 12 640
245 20 9 500
210 13 15 590
230 18 9 700
242 14 7 720
295 28 1 624
235 16 12 590
287 24 2 719
252 20 3 630
270 px) 5 700
275 25 5 710

With three independent variables that can be used in various combinalions, we now have
seven models to potentially explain the sale price of houses:
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selling price = a + by (house size) + ¢

selling price = a + by(age) + e

selling price = a + b\(land size) + e

selling price = a + by(house size) + by(zge) + ¢

selling price = a + by(house size) + by(land size) + ¢

selling price = a + b (age) + y(land size) + ¢

selling price = a + b (house size) + by{age) + bs(land size) + ¢

We discussed abeve that the way we judge whether a variable adds to the explanatory power
of 2 model is by looking at the impact its inclusion has on the value for R-squared. If the
value for R-squared increases significantly when a variable is added to the modcl, then the
¢xtra information provided by this vanable increases the model’s ability to explair. the
variation in sale price.

One way (o decide between the various models is to undertake separate linear regressions
based on the particular combination of independent variables we wanl to include. We can then
compare the R-squared values to sec the extent to which our ability to explain the variation in
sale price is maximized by each combination of independent variables. For example, if we do
conduct a multiple regression including land size R-squared is 0.922, which is the same as
that for the model with only age and house size. In other words, land size does not increase
our ability to explain sclling prices; the time and cffort in measuring this variable is wasted.

The problem with this approach is that it is tedious to run separate regressions for each of the
possible models we can construct. It is also difficult to judge how much of an increase in R-
squared justifies the inclusion of a“variable in our model. A way of assessing all the possible
combinations of variables is to use the variable inclusion method of stepwise regression,
which determines the combination of possible independent variables that best explaios the
dependent variable, [t does this by adding in and taking out variables from the calculations
according to whether each makes a statistically significant change to the value of R-squared.

But before illustrating how this is done, we nced to zgain raise 2 word of caution. We can
potentially provide SPSS with a whole list of variables that may or may not affect a particular
dependent variable, and then run a stepwise regression on SPSS to find the ‘best’
combination. This kind of fishing expedition is not appropriate since it selects variables based
on statistical results alone. We should try, where appropriate, to be guided by our theories of
the world and/or past research as to the variables to consider for apalysis.

To choose the stepwise oplion we foliow the procedures Iisted in Table 13.3, but also click
on the Method: opiion in the Linear Regression dialog box (Figure 13.3). The output is
presented in Figure 13.4.
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Figure 13.4 The SPSS Stepwise regression output

In the fisst able headec Variables Entered/Removed we sce that SPSS has generated two
mcdels from w_.._n three variables we suggested: one with Age in years only (our original
w.c.»:u_o mode:) which SPSS czlls Model 1, and another with age and House size Ampcmamv
whick SPSS calls Mode! 2. The rest of the output is exacily the same as that we generated

MO@EN&GAV\ .00?:0 ».O~ eack of ﬂ_wﬁ ] (C1S < P
se models here we _—.N<G he two ode resented in the
N t models h
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The new part of the output is the last table, headed Excluded Variables. Tkis tells us that ot
the basis of the F-test on cbanges in R-squared, land size is not a useful variable to include in
any of the models. All of this means that complicating the model ty adding this new variable
does not *buy’ us any more accuracy in terms of estimating the dependent vanable. Parsimony
suggests that we should leave it out of the picture.

Extending the basic regression analysis: Adding categorical independent variables

Regression analysis s usually conducted with variables measured on intervaliratio scales, Eut
it is possible 10 include in a number of ways categorical independent variables in 2 regressior
analysis.

l. A simple bivariate scatterplot ¢c2n incorporate the possible impact of a third categoricel
variabie by running for each category of the third variable separate plots with regression
lines and statistics. For cxample, [ may be interested in the selationship between years of
education and the salary which employees are paid when they commence work. 1 might
beiieve that the pature of such a relationship is affected by the sex of the employee, such
that men receive a higher pay-off for education than women. To account for this possibility
1 can rux scparate regression analyscs; one relating education and starting salary for males
and oae refating education and starting salary for females. I can then compare the
regression coefficients to assess the extent to which an increase in education will *buy’ an
increase in starting salary for men 2s compared to women. In SPSS this can be done
through the Graphs/Interactive/Scatterplot command, by placing the relevant categorical
variable (suck as sex of empioyee) inlo the Panel Variahles: box, and tacu under the Fit
option selecting Subgroups under Fit Lines For.

2. Where the categorical variable is binomial it can bc added directly as an independent
variable in multiple regression. Thus in the example we just discussed, comparing male
and female employees in 1erms of startiog salaries, sex of employee czn be added along
wilh years of education in the same regression model. In analyzing the regression
coefficients it is necessary to keep in mind the coding scheme for the categorical variable
50 that the pattern of any relationship can be properly interpreted. For example, if we find
the coefficient for sex of cmployee to be positive in value (greater than zero), and females
are coded | and males coded 2, then beicg male rather than female produces a positive
impact on starting salary for a3y given level of education, If on the other hand males were
coded as 1 and females coded 2, a positive sign will indicate that being female increases
starting salary, thercoy confounding our expectations. The actual value of the regression
coefficient measures the amount that salary increases for one sex over the other.

3. Where Lhe categorical variable is multinomial (i.e. has more than two categories) it can be
indirectly included io a multiple regression by first transforming it into a oumber of
dummy variables. An exaragle is the best way 10 undersiand the nature of dummy
variables. Assume we want to asses the impact that cthajcity has op starting salary along
with education level. Ethnicity has three categories: ‘English-speaking’, ‘non-English
speaking European’, and ‘other non-English spezkiag’. From this on¢ variable T can create
threc dummy variables:

» English-speaking or pot,
» non-English speaking European or not, and
« other non-Englisl speaking or Lot

[a other words, for each category of the original variable, a separale dummy variable is
created indicating whether a case falis into that category (coded with 1) or noi (coded with
0). [n SPSS dummy variables can be created through the Traosform/Recode command,
whereby the value for the relevant category of the oid varisble is recoded as | aad all other
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old values are coded as 0. The dummy variables are then added as separate independent
variables in the multiple regression ard the results are assessed in a similar manoer to the
Interpretation of a binomial categorical independent variable. If we find, however, that our
regression model is largely comprised of such dummy variables, rather than variables
measured on interval/ratio scales, it might be worth using multivariate analysis better
suited to such data, such as logistic regression.

Further extensions to the basic regression analysfs: Hicrarchical regression

There are many more elaborate extensions of the basic regression model such as Cox
regression and (wo-stage least squares regression. Introducing these forms of regression
analysis will take us beyond the aims of this text; any advanced statistics text will provide a
detailed guide for those wishing to pursue these topics. One exiension of the basic multiple
regression analysis is worth mentioning, though, since it appears as an option in the Linear
Regression dialog box which we have zlready covered in sore depth. This is hierarchical
regression, whereby scparate blocks of independent variables are entered into the regression
analysis in sequential stages. Hierarchical regression is used where we belicve, on theoretical
grounds, that there is a particular causal structure among groups (blocks) of independent
vanables. An example from G. Francis, 2004, Introduction to SPSS for Windows, Sydaey:
Pearson Education, pp.120-2, illustrates this type of regression (this text should be comsulted
for a more detail explanation of this procedure and the associated SPSS output). In predicting
English achievement of studeuts, we belicve that socio-economic status, sex, attentiveness in
class, and frequency of English homework are all useful predictors. However, we believe that
socio-economic status and sex of students are ‘background’ variables that affect the
behavioural variables of attentiveress and homework frequency, which then affect English
achievement.

To enter these two blocks, cach comprising two variables, in an hierarchical order, we enter
the first block of backgrouod variables into the Independent(s): Vst ic the Linear Regression
dialog box, then click on Next, and then enter the second block of behavioural variables,

The assumptions behind multiple regression

While multiple regression is a powerful 100l for assessing the impact of many independent
variabies on a dependent varieble, there are a pumber of assumptions behind it that limit its
applicability. All the assumgptions we covered in the Ciscussion of bivariate regression in
Chaprer 12 still apply in the case of multiple regression.

1. The dependent variable is measursd on an interval/ratio scale,

2. The independent variables zre measured on interval/ratio scales or are kinomial (although
some argue that ordinai sca’es with many points will produce valid resclts).

3. Observatiors for each case in the study arc indcpendent of the observations for the other
cases in the study.

4. The relationship between the indepeadert variables and the dependent variable is lipear.

5. The error terms are normally distributed for each combination of the values of the
ndependent variables.

6. The ervor terms are 20moscedastic (i.e. are of equal variancs).

To this list, though, we must add aaother very importaat assumption. Multiple regressior
assumes that each of the independent variables is independent of ezch ather (there is no
multicollinearity). In the exampie we used in this chapter for predicting sale price of houses,
this can be depicied as shown in Figure 13.5.
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Age

H/%
L

House size¢
Figure 13.5 The assumption of no multicollinearity

Age and house size cach affect price but do not gffect each other. This may seem fairly
reasonzble for these particular variables: if a house was suddenly enlarged, this would not also
suddealy make it older or younger! Similarly, as a house grows older it does not usually grow
larger or smaller. o

This assumption vnderlying multiple regression makes it a little more restricted than the
multivariate techoiques we looked at in the previous chapter. There we used :E_:E:L.mma
analysis 10 determine which rodel out of a range of models best explains the R._u:cnm:_m
between three or more variables. With regression analysis we assume a specific modei.

Exercises

13.1 The study described in Exercise 12.12 inves:igating the factors that cause employces to
be absent duc to illness at a8 cezain factory is extended to include data o the
cmployees’ ages.

Hours of excrcise Days lost Age in years
12 36
10 35
10 54
15 42
18 41
7 25
7 32
14 39
9 43
16 29
8 32
19 50

L = — R e ==

(a) Which variable is the dependent variable?

(b) What do you expect the sign in front of the independent variables to be? A
(¢) Enter these data into SPSS and conduct a multiple regression. What is the
regression equation? ;
{d) Has the inclusion of age added agything (o our ability tc predict aumber of working

hours lost due to illness?

13.2 la Exercisc 12.14 you were asked to gencrate, from the World95 data file that oomes
with SPSS, the regression equation relating female life expectancy and birth rate per
1000 people. Are there any other variables in the data file that you feel unc.c_a be
included in the equation? Test your model by running the appropriate regression on
SPSs.

133 Using the Employee data file, select variables you think will be good predictors of
current salary, and conduct a stepwise regression to see which ones are actually worth
including in your model.




PART 4

Inferential statistics: Tests for a mean
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Sampling distributions

So far, we bave looked at ways of summarizing informztion; we collect measurements from a
set of cases and then reduce these bundreds (sometiries thousands) of numbers into
descriptive statistics such as the mean or standard deviation. We have seen how such
descriptive statistics provide a useful summary of the overall distribution, drawing out those
features of a distnbution that will help us answer our rescarch question.

If the set of cases from which we take 2 measurement includes all the possible cascs of
interest — the population — data analysis ends with the calculation of these descrip(ive
measures. An investigation that includes every member of the population is a census and the
descriptive statistics for a population are parameters.

When using mathematical nolation, parameters are denoted with Greek symbols, such as g«
and o for the popuiation mean and standard deviation respeciively.

Sometimes we actually bave informeation about the whole population of interest, such as
when a government agericy conducts a censs of people and can tell us the age distributicn of
the catire population at a certain date. Other times we don’t have information about (ke
population — it is ou: there but we just can’t get our hands on it. Therefore, in research we
oftea work with a smaller sub-set; a sample of the population. The descriptive measures used
to summarize a sample are sample statistics. These sample statistics are denoted, in
mzthematical shorthand, with Roman letters: X for the sample mean, and s for the sample
standard deviation.

There are several reasons why we may draw a sample rather than conduct a complete
census; -

* Samples are usually cheaper and quicker.

*It is sometimes impossible to locate ail the members of a population, either because a
complete list of the population is unava:lable, or because some of its members are difficult
to reach or unwilling to pasticipate in the study.

*Research sometimes destroys the units of analysis so that a census would destroy the
population. For example, a faclory might be interested in a quality control check of the
baiteries it produces. Testing that the products have sufficient battery life may invdlve
wniing the units down until they are out of power, a process that will cause bankrup:ey if
it is applied to all the batieries that the firm produced.

*Sometimes sampling is more accurate. If there is reason 1o believe that the survey process
geoerates errors, then a full-scale census may amplify these errors. For example,
assembling the research team required to undertake a census may lead (o0 inexperienced
survey staff being used to collect data, whereas a smaller team might be better trained and
more experienced (see Lipsiein, B. 1974. In defense of small samples. Journal of
Advertising Research, February, p. 35).

For whatever reason sampling is undertaken. a central problem arises. Are the descriptive
statistics we get from a sample the same as the corresponding statistics we would get if a
complete and accurate census was undertaken? Are the sample statistics in some sensc
‘represeatative’ of the population from which the sample is drawn? Even though we may do
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everything in our power to draw a ‘representative’ sample Som a population, (he operatior. of

random variation may cause the sample to be ‘¢ft’. Orn wha? basis then can we make a valid
generalization from the sample to the population?

For example, we might sample a group of 120 people from a certain area and ask each their
age in years. Here the variable of interest (age) is measured at the interval/ratio level. We can
describe the information contained in the data by calculating a measure of central tendency to
give a sense of the average score; by calculating a measure of dispersion to give a sense of the
spread of scores around the average; and by drawing a graph to give us an overall impression
of the distribution. These are not the only ways of describing a distribution (as we have seen)
but will often satisfy many of our research questions.

This information might be interesting in itself, but usually we compile information about a
sample because we have another issue to address: what is the average age of all people in this
area? If the average age for this sample is 36 years, can | generalize from this to the whole
population? This is where the operation of random variation may cause us to feel uneasy
about making such generalizations from the sample statistics. How can we be sure that our
sample did not by chance include a few disproportionately old or disproportionately young
people, in relation to the population? We address this problem with inferential statstics.

To undertake statistical inference we generate three separate sets of numbers:

. Renv data. These are the measurements taken from each case for a variable (e.g. the age of
cach person, measured in years). This will often be 2 very large set of numbers, depending
on the actual sample size.

2. Sample statistics. These are the descriptive statistics that summarize the raw dala obtained
from the sample (e.g. the mean, standard deviation, or frequency distribution).

3. Inferential statistics. These help us to make a decision about the characteristics of the
population based on the sarnple statistics.

Although the detailed steps involved in making an inference vary from sifuation to situation,
we use the same general procedure, which involves generating these three sets of numbers.
This procedure is illustrated in Figure 14.1.

Raw data Descriptive statistics Inferential statistics
These are the values that These summarize the raw These allow us to

each case in the sample sample data. Examples include: generalize from the
takes for a variable —> | = measures of central tendency - sample to the population
* measures of dispersion
* relative frequencies

* measures of association

Figure 14.1 The process of inferential analysis

Random samples

The most important condition that must apply if we are to use inferential statistics to
gencralize from a sample to a population is that the sample must be randomly selected from
the population.
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A telephone survey of the population is not perfectly random. Only people in a household
with a telephone at the time of the survey have a chance of being included. This excludes the
homeless and households without a phone. Similarly, it gives households with more than one
clephone number a greater chaoce of being included. In fact, very few surveys will be
perfectly random in terms of the strist definition. The important consideration is whether the
deviation from random selection is likely systematically 10 over-represent or under-represent
cases of interest such that the results will have a bias. A biased sample favors the selection of
some members of the population over others.

Sometimes there are good reasons to deviate from simple random selection by using
stratified random sampling. A stratified random sample is used on a population that has
casily discernible strata. Each stratum is a segment of the population that we suspect is
homogenous in terms cf the variable we want to measure. We first predetermine the
proportion of the total sample tkal will come from each stratum. We then randomly select
cases from within each stratwn. For example, we might feel that men are similar to cach other
in terms of a particular variable and that women are also similar to each other in terms cf this
variable, but there is a difference between men and women. Thus we might stratify a sample
to ensure that 50 percent of the sample is women 2nd 50 percent men. We then randomly
select the required number of women and required number of men.

Random sarapliog is often called probability sampling. But there is a whole range of Bon-
probability (non-random) sampling techniques, such as snow-ball sampling. Snow-ball
sampling involves selecting cases on the basis of information provided by previously studied
cases, Such a sampling method is particularly useful when cenducting research on close-knit
populations that are difficult to get to, or whose exact size and composition cannot be known
in advance.

There is no inherent reason why probabiliry sampling sheuld be considered ‘better’ than
non-probability sampling. Each method is appropriate for differen: resezrch questiors, and
sometimes a research question will be betier addressed by choosing a non-probability
sampling method. Ove of the implications of using a non-probability szrcpling method,
though, is that we cannot use the inferential statistics we are about to leamn. This is oot
necessarily a bad thing, and other ways of interpreting information are as valid as statistical
inference, and sometimes more so.

Unfortunately, the professional and academic worlds do not always see it this w2y. Research
seems to acquire a ‘scientific’ look when dressed in terms of inferential statistics, and often
research is forced into this framework just to suit the fashion. Inferential statistics are
sometimes calculated on samples that arc not randomly selected. In other instances, the
research project is structured in such a way as 1o make inferential statistics applicable, even
though other methods may have been more insightful. This is a problem with the practice of
research that raises broader issues than can be dealt with here. All we will do now is issue a
word of caution: the choice of rescarch merhods should never be undertaken on the basis of
the technique to be used for apalyzing data. It should be chosen on the basis of best
addressing the research problem at hand, 2nd if that happens to involve the kind of statistical
anzlyses we will be learniog below, then we will know how to deal with it. If not, then the
project is not lost. It simply meaas other avenues should be pursued.

The sampling distribution of a sample statistic

Inferential statisiics only apply 10 random samples because the central tool used to make
aferecces s based oa the assumgtion of random sampling. This tool is the sampling
distributlon of a sample statistic. Before defining tae sampliog distribution, we will
i:lustrate the idea behind its consiruction through a very simple experimen(. Assume that we
lhave a board Lha: consists of rows of nails that are evenly spaced and protrude from the board
(Figure 14.2).
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!
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Figure 14.2

A Dall is dropped directly above :he middie nail in the top row and allowed te find its way
down to the bottom. The path the ball takes will depend on a whole host of factors, but
eventally the ball will bounce around and emerge somewhere at the bottom. The point at
which any individual ball will fall is a random event, However, if I dropped 100 identical
balls from the same position and let each find its way down the rows of nails to pile up at the
bottom, we might get a distribution hat looks like Figure 14.3

Figure 14.3 The distribution of repeated random drops

Most balls will bounce around, but since they are dropped from the same point plenty of
balls will pile up in the center. But not all the balls will travel this path. Some will just happen
to bounce to the left of each nail more often than they bounce to the right, and therefore
emerge over to one side, and some will happen to keep bouncing to the right more often and
come out on the other side. In fact the occasional odd ball will land way out to the left
(position —10) or way out 1o the right (position 10). But we can see that the chances of a ball
landing way out to the left, if allowed to fall freely, is only 1 in 100. In other words, although

the Jocation of any individual ball is 2 random event, the shape of the overall distribution of
repeated drops is net random ~ it has a definite shape.
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What has all this got to do with research statistics and p:_,oﬁ:now \_,o see hew the same _omwo
applies n the ‘real’ world rather than just with balls and E:_ww let’s go back to the exampie
where pecple from a small community are surveyed and their age in years recorded. The
parameters for this population of 1200 are:

u= 135 years, 0= 13 years

Let us assume, however, (hat we do not survey all 1200 members of this community. Instead
we carry out the following experiment. We randomly select 120 people and ask only ﬁ._nmn
120 their respective ages and calculate their average age. We ...:nu vE.ano people back into
the community and randomly select another 120 residents Ai:._o: may include BaA_._.__uﬁm, of the
first sample). We proceed to draw a third sample of 120 residents. We keep doing E_m over
and over again taking a random sample of 120 community members and calculating the

¢ age for each sample.

Eﬂ_“mummm_kmu_m sound a :ﬂ_o like the experiment of dropping 100 balls down p.ro board aod
seeing where they land, except instead of balls, we are taking _mm:é_am s.:& seeing érw:u ::w
sarple means ‘fall’. | have actually performed this hypothetical experiment (ot with rea
people but using SPSS, as will be jllustrated below), and :.E RmE_m of these 20 repeated
random samples are displayed in Table 14.1, in the order in ir__ow .Eo.w were generated,
rounding to the nearest decimal point. These results are also plotted in Figure 14.4 to show ths
spread of sample means.

Table 14.1 Distribaton of 20 random sample means (1 = 120)

Sample numbez Sample mean
i 347
2 359
3 355
.» u.:
u
m
q
m

345
354
357
34.6
374 -“
wa 3153 -
11 341
12 355
13 349
14 362
15 3586
16 350
17 35.1
36.4
19 156 :
20 33.6

1| o |® dosn
33 34

oe » | o |
36 37

Agc in years

Figure 14.4 Distribution of 20 random sample means (1 = 20)
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We can sec thal most of the results are clustered around the population value of 38 yea:ss,
with a few scores a bit further out and one ‘extreme’ score of 37.4 years. This is obviously a
sample that just happened by chance, through the operation of random variation, to include a
few relatively older members of the community. Even so it is interesting that despite the fact
that the individual ages of the 1200 people in the community range from 2 years to 69 years
of age, the means of the samples have a very narrow range of values. Nearly half of the 20
samples 1 took produced mean ages within hall a year of the ‘true’ population average. This
gives us some sense of the value and reliability of random samples.

Let us push this hypothetical example a liftle further, and imagine that we theoretically take
an infinite number of random samples of equal size from this population and observe the
distribution of all of these sample means. The patiern we have already observed with just 20
random samples will be reinforced. Most of the samples will cluster around the population
parameler, with the occasional samplie result falling relatively further to one side or the other
of the distribution. Such a distribution is a sampling distribution.

A sampling distribution is a theoretical distribution in that it is a construct derived on the
basis of a logical exercise — the result that will follow if we could take an infinite number of
random samples of c¢gual size. The distributior. of 2 sample and the distribution of a
population, on the other hand, are emgirical distribufions in the sease thal they exist in the
‘real world’.

Here we are deaiing with the sampling distribution of sample means sicce it is the
distribution of 21l the means obtalned from repeatec random samples. This sampling
distribution of sample means will have three very niportant propertics:

L. The mean of the sampling distribution is egual to the population mean. In olier words, the
average of the averages (ug) wil! be the same as the population mezn. This is writier

formally in the following way:
Uy =p

2. The standard error will be related ic the standard deviation for the population. The
standard deviation of the sampling distribution is known as the standard error (oy), asd

its value is affected by the sample size and the amouat of variation in the population. [ we
are only taking a sample of five people, and one of the people in this small sample happens
to be 60 years of age, the average for this sample will be greatly affected by this ore score.
In other words, we expect small samples to be less relizble thao large samples, sioce they
have a higher probability of producing a very wide dispersion of results. If our sample size
is 200 the effect of one large score will be diluted by a greater number of cases that are
closer to the population mean. So repeated large samples will be clustered closer to the
population value; they will be more reliable. Similarly, if we were drawing samples frem a
population where age spreads from 2 years of age 10 102 years of age, the range of scores
we would get (rom these samples will be much greater than if we were sampling from a
population where age only ranged between 20 and 30 years. The more homogeneous the
population, the more tightly clustered will be random samples drawn from that population
These two factors are captured by the following formula for the standard error:
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1. The sampling distribution will be normaily distributed. The proportion of 8..:6_0 that will
£a]7 within a certa’n range of va'ues will be given by the staadard nermal distribution.

These features of the szmpling distribulion of satople means are illustrated ia Figure (4.5,

{a) Population

1
y=35

L \
R T
P

I = 35
Figure 14.5 Sznpling distributions with different sample sizes v

(b) Sampling, distribution. n =20

35

(c) Sampling distribution, n =100

Figure 14.5(a) displays the distribution of all 1200 people which is the populatioa o,j_un
community. Figure 14.5(b) is the sampling distribution of sample mezns for samples of size n
= 20. In other words, it is the distribution of means we will get if we repeatedly sample 20
people from Lhis community. Figure 14.5(c) is the samplicg distribution of sample meaas for
samples of size n = 100, We can see that both sampling distributions will be centered on the
population mean of 35 years. Both will also be normally distributed. However, the MS:A,Ed
error for each sampling distribution will vary. Witk repeated samples of size n = 20 there 1s 2
greater spread of sample means, with a standard esror of 2.9 years, whereas with the larger
samples the sample results are clustered more tightly around the population value. Both
sampling distributions are normal, in that 63 percent of all cases fall within one mﬁuau._d
deviation Gorn (he mean. But for the sampling distribution where n = 20 this range will be
between 32.1 years and 37.9 years:

35£29=32.1and 37.9 years

whereas for the second sampling distribution this range will be mmuch aarrower, having a
lower limit of 33.7 years and an upper limit ¢f 26.3 years:

35 % 1.3 =33.7 and 36.3 years
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The central limit thcorem

We have looked at the properties of a sampling distribution derived from a population that ig
normally distributed. In panticular, the sampling distribution will also be normal. However,
there are few populations in the social world that are even approximately nornal. What if the
ages of the 1200 people in our small community are distributed as shown in Figure 14.67

o8

—— Age in years

Figure 14.6 A skewed distribution

The distribution is skewed to the lefl, indicating that there are relatively more older people
than younger people in this community. It would seem that repeated random samples from
this skewed distribution will produce a skewed sampling distribution as weil. However, this is
not so. According to one of the key principles in statistics, the central limit theorem states
that under certain conditions the sampling distribution will be normal, even though the
population distribution from which the samples are drawn is not normal.

a population, the 52
...mm&ﬁ_nwhmw«ﬁwwm

The population may be non-normal, yet repeated sampling will (theoretically) generae a
normal sampling distribution. la fact, the sample size does not bave to be as large as
suggested in the formal statement of the theorem: once the sample size is greater thaa 100, the
sampling distribution of sammple means will be approximately normal.

Generating random samples using SPSS

We can generate repeated random samples on SPSS (0 see the spread of sample means. Ia fact
this is how 1 got the results presented in Table 14.1. This is a fairly repetitive procecure, since
we need to generate a large number of random sample means. There are two steps repeated ia
sequence over and over. The first is to select a random sample, and the second is to calculale
the mean for the sample.

Selecting a rardom sample

Using the data that have been entersd on :he ages of the 1200 residents of our hypothetical
community, the first step is to ask SPSS 10 randomly select a certain number of cases, which
in this instance will be (20 (Table 14.2, Figure 14.7).

When you have completed the commands listed in Table 14.2 and refer to the Data Editor
window you will see that SPSS has placed a slash through most of the numbers in the shaded
column on the left of the page. These cases are the ones that are not included in the
calculation of the mean — the ones that have not been randomly selected. Similarly, you will
notice that SPSS has created a new ‘variable’, which it calls filter_$. We do not actually use
the filter ourselves, even though it will appear in variable lists. SPSS uses this variable to
choose some cases in the sample and ignore others, by assigning a value of | to cases without
a slash through their case number and 0 to those that have been *slashed’.
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Table 14.2 Generating repeated random samples on SPSS (file: Chid.sav)

SPSS command/action Comments

| Fram the menu sefect Data/Select Cases This brings up the Select Cases dialog box. The SPSS
default setting is to use all cases, indicated by @ mn tie radio
button next to All cases

2 Select Random sample of cases by clicking on A @ will appear in the radio button next to Random sample
the small circle next to this option of cases and the text below it will darken

3 Click on the Sample button This brings up the Select Cases: Random Sample dialog
box. This gives us the option of selecting a certain
percentage of cases, or a certain number of cases, Here we

want a certain number of cases (120)
4 Click on the small circle next o Exactly The cursor will jump to the box next 0 Exacdly
$ Type 120 This is the size of the sample we wish to éraw

This is the total number of cases from which we want w
draw the sample

& Type 1200 in the box next (o (rom the first

7 Ciick on Coatinue
3 Clickon OK

i Select Cases: mmm_.nn_.._ Sample

Figure 14.7 The Select Cases and Random Sample dialog boxes B

Calculating the sample mean

The next step is to ask SPSS tc calculate the mean for this sample using the
Analyze/Descriptive Statistics/Frequencies command we learnt in Chapter 4. It might be
helpful to select only the mean in this option, so that we do not get a frequency table and other
descriptive slatistics for each repected sample, since this will generate more output thao is
necessary for our purpose liere.

Repeating the sampling procedure

Running these two commands in sequence will geoerate a meap for ihe randomly sclected
sample of 120 cases. To draw another random sample all that is required is that we select the
Data/Select Cases command and then click direcily on OK. It is not necessary to again tell
SPSS 1o randomly select (20 cases — it will automatically repcat the previous set of
instructions and choose 2 new sample of 120. Similarly, by selecting Analyze/Descriptive
Statistics/ Frequencies and then clicking on OK another sample mean will be calculated
without having 10 reselect all the options within this command. You will get 20 SPSS
Statistics ables that each look like the one in Figure 14.8, but each will have a different value
for the mean.
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Frequencies
Statistics
Aga of respendent
N Valid 120
Missing [y
Mean 35.7¢

Yigure 14.8 SPSS mean for a random sample

Your own set of 20 results will have different values for cach mean, since we are working
with random samples. These results do not consltitute a true sampling distribution, since there
are only 20 samples, whereas a sampling distribution is theoretically the distribution of an
infinite number of random samples. Despite this 2 general pattern should emerge from your
repsated sampling procedure:

*Mosl cf the sample results will be very close to le population value of 35 years. There will
be some variation around this, but most sample results will be clustered around the
population parameter.

*You should get one or two sample means that are relatively a great distance {rom the
populaticn parameter of 35. There is always a possibility that an individual sample may
praduce an ‘odd’ result, but most samples will tend to be ‘true’ to the population value.

Summary

We have spent a great deal of time in this chapter dealing with abswract theoretical concepts.
In particular we have played around with a thought experiment: what if we could take an
infinite number of samples of equal size from a certain population, and calculate the mean for
cach of these samples? At some point the cntical reader will have thought “but who gets to
take an infinite pumober of samples?’ Usually a social or health researcher oaly gets to take
cne sample from a population and has to determine wha( the population looks like from that
one sample. What use is the sampling distribution then? [a the next chapters we will see that it
is the basis on which inferences can be made from a single random sample to a population.

Exercises
J4.1  Whai is the difference between a parameter and a samgle statistic?
14.2  What is the difference between descriptive statistics and afereatial statistics?

143 What s random vanation? How does it affect our ability 10 make a gzneralization ffom
a sample 1o a population?

14.4  State whether each of the following statements is true or false:

(a) The reliability of random sample means depends on the size of the sample, the
variance of the population, and the size of the population.

(b) The means of random samples will cluster around the population mean.

(c) The standard deviation of random sample means will be greater than the standard
deviation of the population from which they are drawn.

(d) The sampling distribution of sample means will be normal only if they are drawn
from a normal population.

14.5 If the mean of a nomual population is 40, what will the mean of the sampling
distribution be with »n = 30; with n = 120?

14.6

14.7

14.8

14.9

14.10
14.11
14.12
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What is meant by the stzndacd error? Wili it be caual to, greater tban, or Jess than the
stapdard deviation for the dopulation? Why?

Skeich the sampling dissribution of sample means when » = 30 and wheo n = 200. In
what way are these two distributions different, and in what way are they similar?

A teacher wants 1o evaluate a coucse by surveying registered students. The teacher
writes the letters i the ajpbabet or separate pieces of paper and selects the one with G
written on it out of a hat. The (eacher therefore selects all students in class whose last
names begins with G. In what ways, if any, i3 this sampling method non-random?

A library wants to assess the condition of the books in its possession. It randomly
selects Thursday, and examines the condition of all books returned to the library on the
following Thursday. lIn what ways, if any, is this sempling method non-random?

Describe a research project tha: might use the process of strz:ified random sampling.
Why is the central Iimit theorem so important to research?

Using the data for the age distribution of the commurity of 1200 people, draw another
20 random samples, this lime using sample sizes of 30. How does the spread of results
differ from tha! 21 the text, where sample size was §2G?
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Introduction to hypothesis testing and the one sample
z-test for a mean

In research we are ofien interested in whether a population parameter, such as the population
mean, has a specific value. The information we bave collected about this pzrameter, however,
is usually obtained from a sample rather than 8 census and we therefore have (o make an
inference from the sample to the population.

Before turning 1o a detailed description of the way we make such aa inference, we will pose
this problem in a slightly different way: as a problem of betling on a two-horse race. Assums
you are at a racetrack and about t¢ place a bet on an upcoming race that only has two horses
running. From the form guide you know that onc of these horses will win one race in every
100: will you put your money on it? Probably not. If the odds of this horse winning are 1-in-
20 races, will you bet on it? Maybe. Essentially, inferential statistics involve the same mental
exercise — two ‘ruoners’ are lined up against each other, and the odds of one of these runners
‘winning’ are calculated. We then decide which one we will bet on.

The reason we have to gamble is that, as we bave seen in previous chapters, information
from a random sample is not always an accurate reflection of the population from which the
sample is drawn. To see this we will work with the 1200 people and their ages in years that
we have introduced in eaclier chapters. We know that this population has an average age of 35
years and standard deviation of 13 years.

We are also told that a sample of (50 people has 2n average age of 32 years:

X= 32 years

We want to know whether this sample did or did not come from the population of 1200,
There is a difference of 3 years between the sample and this population. Does this difference
of 3 years suggest that this sample came from another population or did it come from this
population with a mean age of 35, and the difference of 3 years is due to random variation
when sampling? In other words, there are two possible explanations as 1o why a sample result
may differ from a population that we suspect it may have been drawn from.

The first explanation is that the sample did come from the population but the sample just
happened to select, by chance, a lot of younger people. We will call this explanation of our
sample result the ‘oull hypothesis of no diference’. Mathematically we write this as:

Ho: = 3$ years

An alternative explanation is that the sample came from another popudation whose average
age is not equal 1o 35 years. We call this the ‘alternative hypothesis’. Symbolically, we write:

1, p#35 yeacs

These wo hypotheses are mutually exclusive: if one is right the other is wrong. Either the
sample came from the population whose average age is 35 or 1t did not. This is like the two-
Lorse race where only one can win. We do not know which is correct: each siatement is just
ar. hiypoithesis that may or may not be right. If [ now said the chances that the null hypothesis
of no difference is correct are [-in-100, will you bet on it? What about if the odds were 1-in-
10? Inferential statistics provide us with these odds.
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The whole hypolhes!s testing precedure proceeds on the assumption that the null kypothesis
of no difference is correct. This may 2L {irst seem strange, since usually we undertake research
in (be hope of discovering a difference. Why then assume no difference? It is because we
think this assumption is incorrect that we make it. The logical exescise invoived in hypothesis
testing is to show that the assumption of no difference is ‘incensistent’ with our research
findings, thereby leading us to argue that this is an unjustified bypothesis. We iry to prove that
there is a difference by disproving its opposite — the assumption of no difference. This may
seem like the long way to go abeut reaching a conclusion, but if we work through enough
examples in the following chapters we will see that we are festing an assumpfion by seeing
whether our research data are ‘plausibly’ consistent with it.

Ja the context of the example we have been working with, 1 may strongiy believe that the
sample with a mezn age of 32 years did not come from the population of 1200 people whose
mean age is 35 years. Despite how strongly | believe this to be true, 1 actually begin by
assuming the opposite; what [ believe o be untrue. If'] can show that it is highly unlikely for a
sample with a mean of 32 to be drawn from a2 population with a mean age of 35, then this
starting assumption will not be plausible and 1 am justified in rejecting it. This is why we talk
of ‘hypothesis testing” — we put the null hypothesis to the test by comparing our actual sample
result to it. And ofien we want it to fail the test!

Let us then assume for the sake of argument that the null hypothesis of no difference is true.
We arc assuming that the sample has come, despite the difference of 3 years, from the
population whose average age is 35. Is the sample result of 32 inconsistent with the
assumption that the population average is 357 What is the probability of getting by chancc a
sample that differs from the population value of 35 by 3 years or more?

This is where the sampling distribution of sample meaas enters the picture. Remember that
the sampling distribution is the distribution of means for repeated random samples of equal
size. We can therefore refer to the sampling distribution, whose propertics we know in detail,
1o determine the probability of getting a sample mean of 32, /f the population value is 35. This
will give us the odds to allow us to place our bel on either the null hypothesis or alternative
hypothesis. Deriving these probabilities is a fairly straightforward (although somewhat
ledious) procedure, with which we are now familiar: convert the sample statistic — the mean
age — into a z-score and look up the associated probability from the table for the area under
the standard normal curve in Table Al.

The first step then is to calculate the z-score that is associated with our sample result. 5;_0:
caleulating such z-scores for the purpose of testing 2 meao we use the following modified
formula for z:

7 = Q|t
e
For the sample of 150 people whose mean age is 32 years, the z-score is —2.8:

= 32-33 = =
\ Q]
Vn V150

This equation has standardized tbe observed difference of 3 years between the sample score
and the hypothesized population value by converting it into a z-score. The advantage of
‘washing out’ the natural unils in which the difference is initially measured (in this instance
years) is that we can now refer to the table for the area under the standard normal curve
{Table 15.1) which is prioted in every statistics textbook {0 determine the probability of
getting a z-score of 2.8 or more.

2.8
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Table 15.1 Areas under the standard normal curve
2 Arcz under curve
between both points

Arca under curve
beyond one point

2.1 0.964 0.0180

£22 0972 0.0140
+2.3 0.979 0.0105
£2.33 2.980 0.0100
+2.4 0.984 0.0080
+2.5 0.983 0.0060
+2.58 0.990 0.0050
+2.6 0.991 0.0045
+2.7 . 0993 0.0035
o e i 3 0.0025
+29 0.996 0.0020
+3 >0 996 <0.0020

You might be wondering why 1 referred to the column headed Area under curve beyond both
poinis, rather than the column headed Area under curve beyond one point. The reason for this
relates 1o the way in which I have framed the problem. I am interested in the probability of
randomly drawing a sample that differs from the hypothesized population mean of 32 years by
3 years or more, since this is the amount of difference we actually Lave between our sample
{with a mean of 32) and the population (with a mean of 35) from which it may bhave been
drawn. Since sampling variation may cause the means of random samples to be either higher
or lower than the underlying population mean, a sample may differ by 3 years or more from
the hypothesized value either by being 3 years above it (a mezn ¢f 38 years), or by being 3
years below it. We therefore refer to the middle colump to determine the probability of
drawing, through sampling variation alone, a sample that differs from the hypothesized
population value by 3 years or more.

The area under the curve beyond the z-scores of +2.8 or ~2.8 is 0.005. This is the probability
of drawing, from a population with an average age of 35 years, a sample with an average age
thal is 3 years or more above or below this racan. In otber words, caly 5-in-1000 samples wil
differ from a population mean of 35 years by 3 years or more. We are left with a cboice:

»we can still hold that the assumption that this sample came from a populatico with a mean
age of 35 is correct, and explain the sample result as a rare 5-in-1000 events; or

*we can reject the assumption that this sample came from a population with a mean age of
15; the sample statistic is no? a ‘freak’, but instead reflects that the sample is drawn from an
underlying population with an average age other than 35 years.

Given the long odds that the first choice is correct, it might be a safer bei lo reject the
assumption that the sample came from a populazion with an average age of 35. The difference
of 3 years between the sample result and the hypothesized population value is so great that it
is unlikely that it came about by random variation when sampling. I: instead reflects that we
are not sampling from a popuiation with an average age of 35 years.

To illustrate this procedure again, let’s suppose the sarmpie of 150 people yielded the result:

\ﬂnum.vﬁ:m

Again we will assume that this sample came from a population with a mean age of 35 years.
Clearly there is again a differcoce between the sample statistic and the population parameter,
this time of 1 year (36 — 35 = [). There seems to be an apparent conflict between our
assumpltion that the sample came from a population with a mean age of 35 and our
observatior: that the sample statistic is not exactly equal to the population value. Should this
cause us to reject the assumnption and argue that the sample came from a different population?
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To answer this we need to derive the probability of randomly selecting a sample that differs
from a population with an average age of 35 by | year or more. We need first to convert the
sample result info a z-score:

36-35

\s Ve

The table for areas under the standard normal curve (Table 15.2) indicates that the
probability of obtairung dhiis z-score or greater ¢ither side of the meaa is €.368.

Table 15.2 Areas under the standard normal curve

z Area under curve Area under curve
between both points bayond one point
+0.1 0.080 0.4600
+02 0.159 0.4205
03 0236 0.3820
+0.4 0311 0.3445
+0.5 0.383 0.3083
0.451 0.2745
0.2420
0.2120
0.1340
0.1585
%3 >09%6 <0.004 <0.0020

From a population With an average age of 35 nearly 37-i0-100 samples will have a mean age
that differs from 35 by [ year or more. Random variation will cause roughly one-third of all
samples to vary this much from a population with a mean value of 35. Given such a high
probability, we can say that the sample result is simply due to random variation whea
sampling from a population with a mean age of 35 years.

The material to be presented in later chapters is simply a variation oa this theme. These
differences, however, do not change the basic method of approach. In fact, we can unmaouo_._
just about acy problem of inference using the following five-step procedure:

Step ): State the null and altemative hypotheses.

Step 2: Choose the test of significance.

Step 3: Describe the sample and derive the p-value.

Step 4: Decide at what alpha Jevel, if any, the result is statistically significant.
Step 5: Report results.

Step 1: State the oull and alternative hypotheses

We begin our infercoce procedure by making two, munially exclusive, hypotheses: the null
hypothesis and the alternative hypothesis. These hypotheses bave three crucial elements:

* they identify the population(s) about which we want to make a siatement;
« they identify the variable(s) for which we wili gather data;
« they identify the relevan: descriptive statisiic that will e tested.

The null hypothesis of no difference {Hy)

This 1s a statement that the siatistic we are using to describe the poptlatien uzder
investigation will equal a specified, predefined value. The null must be clearly capable of
being rejected or not rejected; that is, it can be showr to be faisc. There shouid ¢ no
ambiguity: either the population stat’stic has a cerain value or it does oot
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An abbrevialed way of wr:t:ing the rull is in mathematical shorthand, depending on the
particular desciptive siatistic abou: which we are making an hypothesis. If we are making an
hypothesis about ¢l population mean, for example, the general form of the null hypothesis is:

Ic TH.\M\

where X is the pre-specified ‘lest’ value. For instance, in the example above we weze testing
whether 4 = 25 years.

Where does Lhis tesl value stated in the aull hypothesis come from? There are usually iwo
differeat kinds of research questions that will prompt us to investigate whether a population
parameter takes on a specific value. The first is where a particular value is chosen for
practicol or policy reasons. For example, a company may decide that anything more than a 5
percent reject rate for its product is commercially unacceptable. It therefore instructs its
quality control department to sample 300 randomly sclected products and determine whether
the reject rate is 5 percent or more. Thus the company is not simply interested in finding
whatever the reject rate happens to be; it wants 1o know whether this rate is specifically 5
percent or more. Similarly, the government may have decided that it will devote extra health
resources o any area where the mean age is greater than 40 years. It will therefore want to test
specifically whether a sample taken from a particular region indicates whether the whole
population of that region is o1 average 40 years of age or more, as measured by the mean.

The other situation in which we will bave a specificd test value is where we want o compare
the population under investigation with another population whose parameter value is known.
For example, we want to compare two pcpuiations in terms of their respective average
amounts of TV waiched per day: the population of Australian children between $ and 12 years
of age and (he population of British children between the ages of 5 and 12 years. We know
from census data that British children watch on average 162 minutes of TV cach day, but we
only have a sample of children from Australia. We have to make an inference (which is
basically 2 fancy way of saying an educated guess) whether the unknown average amount of
TV watched by ali Australian children is equal 10 (ae known average for British chi'dren,

The aiternative hypothesis (H,)

This is a statement that the population parameter does nor equa! the pre-specified value; there
is a difference:

HouzrX

It is commonly argued that the aliernative hypothesis, on the basis of theoretical expectation
or practical need, may specify a direcrion of difference between the relevant sample statistic
and a specific value, rather than simply stating that there is a difference. For example, in the
analysis above we operated on the basis that there is no a priori reason to believe that the
sample comes from a population cither on average younger or older than 35 years. As a result
we were interested in whether the sample result falls in either end of the sampling
distribution. However, we might really suspect that the population from which the sample
came is on average yourger than 35 years. Alternatively, we may really believe that this
population has a mean age older than 35 years. In either case, the alternative hypothesis
specifies that there is not only a difference, but also a direction of difference. 1o mathematical
notation we respectively write each of these in the foliowing ways:

H,: u <35
or

H,.u >35
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Where we specify a direction of difference in the alternative hypothesis, according to
conventional logic of hypothesis testing, we need to halve the two-tail significance we obtain
in Step 3 in order to determine the sample result’s one-tail significance A_Eoma concepts wil) vw
cxplained shortly). For reasons I will discuss below, I do not agree with the use of one-tail
tests (regardless of the form of the alternative bypothesis) but I present here the usual
implications of specifying a direction of difference in the alternative bypothesis so that you
are aware of the ‘standard’ procedure used in other books.

Onc thing to note about the alternative hypothesis is that it usually embodies what we really
believe to be the ‘truth’ about the werld. As a result it is sometimes referred to as the
research hypothesis. This confuses people: if we really believe the altemative hypothesis to
be an accurate depiction of the world, why do we begin the bypothesis (esting Eoonn_cqn.ou
the assumption that (he null is comect. As we discussed earlier, we begin with the assumpiion
that the null is cormect so that we cap ‘test’ i(, and if it fails the test, this lends support {0 ihe
alternative bypothesis. In other words, we are using the logic of proof by oc:qu&o:on.” we
want fo provide suppert for a statement we believe to be true by showing that its opposite is
ot true!

Step 2: Choose the test of significance

fn this chapter we have introduced the most basic significance test, the one sample z-%est for a
mean, bul there are many tests available to help us assess the rull hypothesis (Tzble 15.3).

Table 153 Tests of sigaificance

Descriptive stadstic and number Test of significance S$P8S Command:

ol samiples Analyzel...

One sample mean z-test for 2 mean (population variance  Not available
known)
t-test for a mean (population variance Compare Means/One sample T Test
uaknown)

Two independent sample means  -test for the equality of two means Compare Means/Independent-Samples

T Test

More than two independent sample ANOVA Ftest for the cquality of Compare Meag/One-Way ANOVA
means means

Two dependenl sample means t-test for the mean difference Compare Means/Paired-Samples T Test
Frequency table for one sample z-test for a binomial percentage Nonparametric Tests/Binomial d
(binomial scale)

Frequency table for one sample chi-square test for goodness-of-fit Nonparametric Tests/Chi-Square

{multinomial scale)
Crosstabulation for two or more  chi-square test for independence (can  Nonparametric Tests/Chi-Square
independent samples also use a z-test for proportions on a 2-

by-2 table). 4
Crosstabulation for two dependent McNemar chi-square test for change  Nonparametric Tests/2 Related Samples
samples (equivalent to the sign test)

Rank-sum for two independent Wilcoxon ¥ test (also known as the z-  Nonparametric Tests/2 Independent
samples test for rank sums, which is equivalent Samples

to the Mann-Whitney U test)
Kruskal-Wallis  test

Nonparametric Tests/K Independent

independent samples Samples

Rank-sum for two dependent Wilcoxon signed-ranks z-test Nonparametric Tests/2 Related Samples
samples

Number of runs in a single sample  z-test for randomness Nooparatictric Tests/Runs

Number of runs between tweo Wald-Wolfowitz z-test for the number  Nonparametric Tests/2 Independent
samples of runs Samples

Correlation coeflicient s-test for a correlation coefficient Correlate/Bivariate
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Table _m.u pravides a quick guide for selecting the appropriate test of significance, based
Eouw main m_onoqmu and the SPSS command for conducting the test. Often Enw‘w tests ow
m_m::._omq..on are given a shorthand name based on the statistician who first devised them m_._o_u
as the Wilcoxoa test. All of these tests require random samples (or at least ..muqusc_w B.ﬁ_oo
mﬁzv_m&u but they vary according to the information available 10 the researcher. Th .
important factors that delermine the choice of a test are: e

* the descriptive statistic we are testing;
* the number of samples from which inferences are being made;
« whether we have independent or dependent samples.

Emunu test, in other fo&m“ »uv_._.& in very specific circumstances. These do not exbzust all
: e qum_Em hypothesis tests available; they present only those that will be covered in this and
ollowing chapters. H_.E following chapters are basically organized around these individual
S\wﬂmw 50 _“._5 the conditions under which each is applicable will be clearly delineated

s ckapler will cover the use of a single-sample z-1est for a diti
ailow this lest to be used are: 4 Nl TR fevgiprs shat

*the ﬁau:.po_w an_uuo_.mv.?n statistic for summarizing the sample data is the meap (which itself
reqaizes that the data are measured at the interval/ratio level i istributi
s cot by e, cvel aod the population distribution
* the variaace of the population is known:
* the population is normally distributed along the vanable; and/or
> the sample size is large (n > 100).

Em:bﬂ 9.. Enmw _m.uﬁ two couditions, according to the central limit theorem, will guarantee that
3 mwaw_s.m m__ma.&c:on. of sample means is porma! (you may wish to review the section on
the central limit theorem in the previous chapter at this point).

Step 3: Describe the sample and derive the p-value

This is :wm process of S_Q_._._».Em the relevant descriptive statistic for the sample as defined by
%Wa:: nypothesis we are testing. On any given set of data we can usually calculate many
1ilerent summary statistics, as we discussed in the early chapters of this book. The statistics
iﬂ «M_M?bcu\\.\ calculate depend on the hypotheses we are testing. Thus if we want to test
whether the mean age of a population is 35 years, \he relevant statist
h A ¢ 2 tistic t | i
samp.¢ daa is self-evident: it is the mean age. © 1o calonlate om the
e usually fiad Fﬁ the sample statistic does not conform exactly to the value suggested by
the :c__ _usum_unm;. In the example above we hypothesized that the sample came from a
no_u‘:_m:ou with a mean age oau years, yet the sample itself produced a mean age of 32. The
rmere mm& that the sample differs from the value we assume for the population is not
m,noommmb_z .w cause for concern; random samples will regularly produce results different from
c .vovz_m:ou from i.._oc they are drawn. The issue is the probability of obtaining a
._Wu.m_ow__mwmmﬂvﬁm.&c: rom a population that has the value specified in the null hypothesis
18 1S the significance of the sample statisti : " ('p" for
Rl i pi¢ statstic, commonly called the ‘p-value’ (‘p’ for
. \_;w Awn:.sﬂ this probability we have to first transform the sample statistic into a standardized
st statistic using the 2ppropriate equation, such as the followj -ati
! 4 0 !
e o g the 2P wiag equation that traasforms a

_ X-a

N.é:&_?
e
vr N
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From the table for the areas under the standard normal curve (Table Al) we then determine
the probability of obtaining a particular sample z-score if the null hypothesis is true.

sample statistic = teststatistic —  p-value

In the example above where the sample mean was 32 years, we obtained a z-score of 2.8,
which had a p-value of 0.005. This is depicted in Figure 15.1, which displays the sampling
distribution of all sample means that could be abtained from 2 population with a mean age of

35 yeans.

— By o ¥ 728 years

Figure LS.1

The shaded arcas, representing 0.005 of the area uader the curve, indicate that very iew
random samples of this size will bave a mean 3 years above or below 35 years. {o simple
terms the sample mean of 32 years is an extremely unlikely outcome 1o get from a population
with a mean of 35 years.

[t is common practice at this point in the procedure to decide between the one-tail or two-
tail significance of the result (although for reasons [ will discuss later in this chapter, 1 now
regard this distinction as unnecessary). The need to choose between a two-tail and onc-tsil test
1s justified with reference to the form of the altemative hypoihesis. We noted above that the
alterative hypothesis, on the basis of theoretical expectation or practica. need, may specify-a
direction of difference between the relevant sample statistic and a specific value, rather thao
simply stating (bat there is a difference. For example, we might really suspect that the
population {rom which the sample came is oo average younger than 35 years. According to
the proponents of the use of ope-tail tes:s, we arc thereby interested in whether the semple
result falls far enough (o the left of the population mean; we are only inferested in whether the
result suggests that we have one of those few random samples that will fall in the left-tail of
tbe sampling distribution. Similarly, we may really believe that this population has a meas
age older than 35 years, and therefore need to conduct a right-tail tesi.

Ia either case, since we are only interssted in just one-tail of the sampling distribution, we
refer 1o the column for the ‘Arez under the curve beyond onc point” when using the table for
the area under the normal curve to derive the p-value associated with a specific z-score. This
wiil be its one-tail significance (we could also simply halve the twe-tail significance). Thus in
the example we have been working with, a sample mean of 32 years has a twao-ail
significance of 0.005; it therefore has a one-tail significance of 0.0025.

¥f we do use the one-tail significance, based on the direction of difference specified in the
zlternative hypothesis, we need (o be careful that we refer 10 the appropriate tail of the
sampling distribution. [f the aiternative hypothesis lioids that the population valuc will be less
than the specified value, the critical region wiil be in the left wil; if it holds that the population
value will be greater than the specified valug, the right tail is the relevant one (Table 15 4).
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Table 15.4 Ckoosing a tail for a test
Alternative hypothesis

Tail of the sampling distribulion

Hip X Both
H, p<X Left
Hop>X Right

Lefi-tail significance is often used when we want to test if some minimum requirement has
been met, whereas a right-tail significance is often used when we waat to test whether some
maximum limit or standard has not been exceeded. For example, if we wanted to see whether
the average life of a piece of hospital equipment is at least 4.5 years, we would use a left-tail
test. If we were interested in whether the time taken for a drug o have an effect on a patient
was no greater than 1.5 minutes, then we would use a right-tajl test.

In later chapters we will see that as an zlternative to hand-calculation of test scores follawed
by reference to a table of critical values, we can use a program such as SPSS to calculate the
relevant sample descriptive statistic and also determine the p-value for this statistic (Table
15.3). Alternatively, we can turn to calculation pages on the internet that allow us to enter the
values we are testing and have calculated for us the relevant results, Many of these resources
can be found from the Stalpages.nei bomepage located (at the time of writing) at the
following web address:

* members.aol.com/johnp71/javastat. html

Step 4: Decide at what alpha level, if any, the result is statistically significant

In the examples we used above to analyze the age of a sample of people, the decision whetber
10 reject or oot 1o reject the null hypothesis was easy. [n the first instance, with a sample mean
of 32 years, the probability that this sample came from a population with a mean of 35 was
very small; in the second instance with a sample mean of 36 the probability was very large.
But what if the sample result falls somewhere in between? At what point does the probability
gel small enough for us to say that the null hypothesis is not valid? Determining this cut-off
poiot is called choosing the alpha (a) level.

There are two broad approaches we can take to this issue. One is the (raditional approach
that involves determining in advance a critical alpha level that delineates ‘high’ scores from
‘low’ scores so that we can decide 1o reject or not reject the null hypothesis by comparing the
sample result to this specific cut-ofY point.

The other approach, which we will generally follow in this book, is less deterministic than
the traditional hypothesis testing method. It involves reporting the p-value of the sample
statistic and whether this is ‘siatistically significant’ at the lowest of two conventional alpha
levels, 0.05 and 0.01 (although occasionally 0.0 and 0.001 are of interest). This method
indicates at what alpha level the null bypothesis can be rejected, but leaves some room for the
reader of the results to judge whether the null hypothesis should be rejected or whether 2 more
striggeal alpha leve! should be set (it is interesting that the origioal formulation of
sigaificance esting by R.A. Fisher, 1925, Statistical Methods for Research Workers, Oxford
University Press: Oxford, advocated this less deterministic approach; see also W.R.
Rozeboom, 1960, The fallacy of the pull-hypotbesis significance test, Psychological Bulletin,
vol. 57, pp. 416-28 for a pewerful critique of the deterministic approach to hypothesis
testing).

This method is illustrated ir. Figure 15.2, which displzys various reglons of rejection,
defined by the two common alpha levels of 0.05 and 0.01, which ray lead us to reject the null
hypothesis.
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Reject Hy, a=0.05% eject H. =005
Reject Hy, a=0.01 ¢——0 Rejoct Hg, «=0.01

Figure 15.2 Rejection regions st o= 0.05 and a= 0.01, two-ail test

Figure 15.2 shows the sampling distribwtion of sample means, as discussed in the previous
chapter, Tt shows that, from a population with a hypothesized mean, 5% Ao,ouv of all samples
will bave a mean either greater or smaller than those marked off by the lightly shaded areas.
Similarly, 1% (0.01) of all possible random samples will have a mean n:_.ﬁq greater or _o«cw.—.
thao the arezs marked off by the dark-shaded areas. (Noie the relative sizes of the areas in
Figure 15.2 are not to scale to allow for casicr presentation). Siace mﬂiﬁ;_.uouo..u samples will
have means (hat are very far from the population value, the rejection regions for a=0.01 are
much smallee than those for &= 0.05. With these rejection regions in mind, we can plot the p-
value obtained in Step 3 and indicate if this is statistically significant at various »_w__w __a<n_¢

The criticai aspect of this approach is to provide the p-value of the sample JAGE:«.‘ so that
the importance of the result can be determined at least in part by whoever wishes to use the
results, rather than having it prescribed by the persen reporting the results. For example,
assume we determine that a sample mean bas a significance level of p = 0.03 (Figure 15.3).

Reject Ay, a=0.05 ¢——— oct Hg. a=0.03-«

Regoct Hg, @=0.01 Reject Hg. a=0.01

p=003
Figure 15.3 Rejection regions for a = 0.95 and a = 0.61

It is clear that the alpha level will determine whether we reject or do not reject this
assumption of no difference. At an alpha level of a= 0.01 the &Qn_.oumn berween the wwEn_o
and the population value can be arributed (o sampling error: do aat ceject the null. But m.. an
alpha level of a = 0.05 the same difference between the sample and the wSuo&nmEo.a
parameter value will lead us to reject the null. Lo this instance we would state that the result 13
statistically significant at the 0.05 level, but if we also provide the p-value of 0.03, the reader
is also made aware that the result is not statistically significant 2t the 0.01 level. . .

Figure 15.4 simplifies the logic of Figure 15.3 by using z single scale of possible probability
values that ranges from 0 to 1.

=001 0.0l <p=<0.05 p>0C5
significant at 0.01 significant at 0.05 _ not m_mm.._mﬂw:‘
] 1 a >»
0.01 p=003 0.05

Figure 15.4 Determining statistical significance
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You may find it helpful when conducting significance tests in your own research to draw 2

scale like the one in Figure 15.4 and plot the p-value you have obtained. You can then quickly
read off the appropriate conclusion that you should reach.

A common confusion often arises right at this point of decision-making. Iz observing the so-
called ‘p-value’ of the sample score, students are often dismayed if it proves 1o be very close
to zero. We are used to thinking that small numbers indicate that ‘nothing is there’ and
therefore the difference we suspected or hoped to find has not eventuated. Here the opposite is
true. Usually we do want to find a low p-value (lower than the alpha level), since this
indicates that the null hypothesis of no difference should be rejected. A very high p-valce, on
the other hand, indicates that the null hypothesis should not be rejected.

Step 5: Report results

We have detailed the technical steps involved in detennining whether and at what level the
nu:l hypothesis should be rejected. In presenting the results of thess procedures, thougk, we
should try te be as non-technical as possible. We should try, for insiance, 10 state our
conc.usion in plain words and indicate what practical or theoretical meaning the results have
beyond whether they lead to us rejecting or not rejecting the null hypothesis. Similarly, the
inferential statistics should be presented but should not be the focus of the discussion, which
should concentrate on the general meaning of the results. In other words, while the steps
‘avolved in getting our results involve some formal and technical procedures, the readers of
our results should not be labored with them. We cannot avoid using a little bit of jargon, but
we should keep this to a minimum (see G. Francis, 2005, An Approach 1o Report Writing in
Siatistics Courses, www.stat.auckland ac.nz/~iase/publications/ 14/francis.pdf).

To illustrate the way in which we present results let us return to the example of testing for
the ciean age of our population:

* We begin by staling in general terms what we are investigating. Thus | might introduce my
findings by stating “We are ioterested in whether the mean age for the population is 35
years.”

*1 then state the relevant descriptive statistics that summarize the sample: “A random
sample of 150 people had a mean age of 32 years™.

* L discuss the statistical significance of this result and report the relevant test stafistics: “The
sample mean was statistically significant at the 0.01 level (z = 2.8, p = 0.005, two-tail).”

* [ then interpret this with refecence, in plain words, to the hypothesis that I have tested: “We
rejoct the bypothesis that the population from which the sample is drawn has a mean age of
35 years.”

*Finally, 1 should indicate whether any staristically significant difference is significant in
any other sense; a point I will discuss in more depth below.

As a further example, | would report the results above where the sample produced a mean of
36 years in the following way:

We are interested in whether the mean age for the population is 35 years. A random sample of 150
people had a mean age of 36 years. This is not statistically significan (z =09, p=0.368, two-tail). As
a result, despite the sample being slighily older on average than we hypothesized, we cannot reject the
possibility that the population from which the sample is drawn has a mean age of 35 years,

Notice that the conclusion is always stated in terms of the null hypothesis: reject or fail to
reject. We are deciding whether the null hypothesis is plausibly consistent with a sample
result. Samples do not always exactly mirror the populations from which they are drawn, so
making an inference from a sample to a population always involves a risk of error.
Specifically, whether we choose to reject or not reject a null hypothesis we need to be aware
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of the difference between a type I error (alpha crror) and a type Il error (beta error). A type
I error occurs when ike null hypothesis of po difference is rejecied, even though 1o fzct there
is no difference. In assessing whether the sample ia the example above with a mean age of 32
came from a population with a mean age of 35, we rejected the pull hypotbesis of no
differcnce. The chances of selecting, from a population where the average is 35 years, a
sample with an average age of 32 or less is only $-in-1000. However, we may have actually
selected one of 1hose rare 5-in-1000 samples. The sample may iadeed have come from a
populatics with 2n 2verage age of 35 years, but the sample just happened 1o randomly pick up
a few especially young people. There is always a risk of such aa eveat, which is why we
speak i1 terms of probabilities. The question is the chance we are prepared to take of making
this error.

A type II error occurs when we fail 1o reject the null bypottesis when in fact it is faise. For
example, where tbe sarple above had an average age of 36, we concluded that it did come
from a population with an average age of 35 years. The difference between the sample
statistic and thc hypothesized parameter value is so small that it can be attributed to random
sampling error. However, it may in reality be that (ke population Gom which the sample is
drawn does not have an average age of 35, but our szmple just happened to setect some
unrepresentative people. The relationship between these two possible error types is
summarized in Table 15.5.

Table 155 Error types
Decision based on hypothests tes:

Truth about population

Ho e H, truc
Rejuct Hy Type | ermor Correct decision
Da not rejoct Hy Correct docision Type 11 error

It is cleas that these two error types are the converse of each other so that reducing the
chance of sne error occurring increases the chance of the other error occurring. It is a
question of which mistake we most want to avoid, and this depends on the research question.
If we are testing a new drug that may bave harmful side effects we want to be surc that it
actually works. We do not want to make a type | error (conclude that the drug does mzke a
difference when it doesn’t) because the consequences could be devastating. The difference in
the rate of improvement observed between a test group taking the drug and a control group
that is not will have t0 be very large before we can say that such an improvement is not dut to
chance (say 1-in-1000). Tbus a sample result may be significant at the 0.01 level, yet we may
not be prepared to reject the null unless the more demanding alpha level of 0.001 is reached.

In other words, the ‘appropriate’ balance between these two altemative error types depends
on the use to which the resulls are to be put, and this requires us 1o provide suflicient
inforrnation when reporting results to allow a reader to make his or her own judgment about
tie null hypothesis, given their preparedness to make a type | or type II error. 1n particular,
the exact probability associated with the test statistic (and the test statistic itself) should be
reported so thal the reader can compare the p-value to the alpha level be or she thinks is
warranted in a given context, rather than simply being told that a result ‘is significant at the
0.05 level’, or words to that effect. If the preceding statement is al! that is reported, the sample
probability could have been 0.049 or 0.00001 — there is 0o way of knowing without doing the
calculations. This may be frustrating to a reader who f{eels that ap alpha level of 0.01 is
warranted in the circumstances rather than the stated alpha of 0.05.

We have seen that we reach one of either two decisions about the null hypothesis of no
difference: reject or fail to reject. In either case, we need to ask ourselves whether we have
‘proven’ anything. The answer is ‘no’! Given this general point about what we can conclude
from significance tests, we will explore in turn the specific meaning of each possible
conclusion that can be reached about the null hypothesis.
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What does it mean when we ‘fail to reject the null hypothesis’?

We begin with the presumption that the null hypothesis is true, and then proceed to test this
assumption, but researchers are usually interested in rejecting the null. Normally we believe a
difference exists; a decision (o reject the pull is usually the desired outcome (we want a low
‘p-value’). We are using the logic of proof by contradiction: we want to find support for the
alternative hypothesis by showing that there is no support for its opposite, the null hypothesis,

Does this mean that if we fail to reject the null, the difference we are searching for does not
exist? Not necessarily: failing to reject the null hypothesis of no difference simply means
there is nof sufficient evidence to think that the null hypothesis is wrong. This does not
necessarily mean, however, that it is right. There might actually be a difference ‘out there’,
but on the basis of the sample result such a difference has not been detected. This is like the
presumption of innocence in criminal law. A defendant is presumed not guilty unless the
evidence is strong enough to justify a verdict of guilty. However, when someone has been
found not guilty on the strength of the available evidence, it does not mean that the person is
in fact innocent: all it means is that, given that either verdict is possible, we do not chocse
‘guilty’ unless stronger evidence comes to light. Similarly, with a verdict of ‘no difference’,
failing to reject the null hypothesis does not mean the alternative is wrong. [¢ simply means
that on the basis of the information available, the null can explain the sample result without
stretching our notion of reasonable probability.

Therefore, failing to find a significant difference should not be seen as conclusive. If we
have good theoretical grounds for suspecting that a difference really does exist, even though a
test suggests that it does not, this can be the basis of future research. Maybe the varizble has
not been operationalized effectively, or the level of measurement does not provide sufficien
information, or the sample was not appropriately chosen or was not large enough. I[n the
coatext of research, inference tests do not prove anything; they are usually evideace in ar
ongoing discussion or debate that rarely reaches a decisive conclusion.

What daes it mean to ‘reject the null hypothesis’?

Wha if our decision is the converse: we reject the null hypothesis? In formal lepguzge we say
that we have found a siaristically significant difference. So what? What have we learned about
the world, and should we do anything about it? These questions are not ones that hypothesis
tesliag zs such can answer. A difference that is stafistically significant simply indicates that it
is unlikely to have come about by random error when sampling from a population defined by
the null kypothesis. Whether such a difference is of any practical or theoretical importance —
whether it is ‘significant’ in any olber sense of the word — is reaily something we as
researchers or policy-makers have to decide for ourselves.

To give this a concrete application assurae that I, as a statistics teacher, want to know
whether the university should spend more money on computer workshops and hire extra
instructors 10 help students with their statistics ciasses. The university argues that it will only
do this if there is a ‘significant’ difference between grades in statistics courses and grades in
other courses that these students undertake a¢ university. I collect a sample of students 2nd
find that their average stalistics mark is 59, and compare it with the average fcr all other
courses of 62, and find this 1o be statistically significant al an alpha level of 0.0). Have [ won
my argument with the university? Not necessarily. I might coasider the difference in average
marks to justify the extra expenditure because [ think that stalistics is very important 10 a
well-rounded education. But the university has every right (o say that given all the other
possible ways it can spend its money, a difference of 3 marks is something it can live with.
The university, in other words, may have no argument with me over the stafistical difference:
that is, it accepts that the difference really is there in the population and not just due to
sampling error. However, it may strongly disagree that this difference is of practical
significance in the sense that it should prompt the university to spend money to close the gap.
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This illustrates an all-too-ofien neglected point. It is not uncommon for researchers simply,
and blandly, to state that a result is significant at the 0.05 or 0.0l level without further
comment, as if this is all that needs to be said. In fact this should just be the entry point to the
ssore creative and interesting (but usually more difficult) research problem: what does this tell
vs about the world and what can we do about it? A finding may be statistically significant but
does it master? (see D.M. McCloskey and S.T. Ziliak, 1996, The standard error of regression.
Journal of Economic Liferature, March, pp. 97-114).

With ali these general considerations in mind we will now turn tc an examgle to familianze
us with (ae bypothesis testing crocedure.

A two-tail z-test for a single mean

Suppose tkat 2 university is icterested in the average academic ability of foreign students in a
particular program. Ia this program, the university knows that the mecan grade .3. all local
studepts is 62 with a standard deviation of 15, agd wan!s to assess whether foreign students
conslitute a distinct population iz terms of their grades.

Step 1: Staie the null and alternative hypotheses

Are foreign students on average different to the rest of the university popu’zation in terms of
their average grade? Giver this research question we form the following two bypotbeses:

Hy:The pepulation of foreigr. students has the same mean grade as the rest of the university
poFpLiation.

Ho: u=1062
H,: The mean grade of foreign students is different to the mear grade of al: other students.
H, p+#62

Step 2. Choose the test of significance

Tke important factor is thz2: we are interested it the mean grade. Hence the descriptive
statistic we calculate to summarize the datz is the mean. The university 2lso knows what the
standard deviation is for the population of domestic students, These two faciors allow us t6
conduct a z-test for a sicgle mean.

Step 3. Describe the sample and derive the p-value

From a random sample of 150 foreigr stucenis the mean grade is calculated as 60.5. Frem this
icformation we calculate the test statisuc:

ivhinhic Al L

NE& - 7 =
g, 15 22
X\M \«:8

We look down the coiump of z-scores in the table for the arcas under the standard normal
curve until we reach (.2, and then read across to find the probability under the column for the
‘Area under the curve beyor.d both points’. This gives a p-value of 0.23.

X-p  665-62 -5
[

Step 4: Decide at what alpha level, if any, the result is s1atisticolly significant

[t is clear that the sample result, aftbough ciZferent from that stated in the pull hypothesis, is
not ‘different enough’ to suggest that it came about by more thao just sampling error, at agy
¢f the conventional alpha levels. From a population with a mean grade of 62, nearly 1-in-4
random samg.es will have a mean grade 1.5 marks above or beiow thls grade.
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Step 5: Report results

The university is interested in whether foreign students do eitber better or worse than local
students 1o terms of their academic performance. Local students are known to receive a mean
grade of 62, with a standard deviation of 15. A random sample of 150 foreign students has 2
mean grade of 60.5. While this sample mean is lower than the mean grade for local students
we cannol reject the possibility that it is due 1o sampling error (z = ~1.2, p = 0.23, ..io‘S:v‘
z2nd (hat foreign students are no different to local students in terms of academic vﬁ.no::msom
as measured by mean grades. .

The debate over one-tail and two-tail tests of significance

Within the ficld of statistics there is a dispute as to whether a onc-(il test should ever be used,
_‘o_mwn&ﬁ..mm of the form of the alternative hypothesis. Yel it has become routine to make (his
&m:__:“:o: in statistics textbooks withoul the underlying rationale for it ever being seriously
noi&n«oﬁ It bhas become a case of “cveryone does it because everyone else does i(!” The
main argument agzinst the use of a one-tail test is that the decision 1o use a one-tail tesi is
a«_u_a.mQ. and can lead to a statement of the alternative bypothesis using directional difference
simply as a means of increasing the chance of rejecting the null hypothesis.

To mwﬁiu& consider Figure [5.5. On 2 one-tail test, with an alpha fevel of 0.05, the region
of rejectior begirs at cither z = —1.645 or z = +1.645 but not both, depending oo the direct’on
of ..“_“ano.._oo expressed o the alternative hypothesis. On a two-tail test this region has to be
spiit ia two because we are interested in a sample result either greater or smaller than the
nowc_»:.os vaiue. This pushes the critical z-score outward to £1.96. As a result, a sample
mean wili have to be further from the hypothesized value under a two-tail 1est before jt falls in
the region of rejection than under a one-tail test.

Reject Hy, My u<X &
oot Hy. Hy foct He, Hiu>x

Reyect Hye Hy puX Reject Hy, Hopw X

-19n -i6& 164 1.96
Figure 15.5 Critical regions for one-taii and two-tail tests, a = 0.05

That is, since the one-tail significance is always half the two-tail significance, a result that
may not lead tc the rejection of the null hypothesis using a rwo-tail test Emw\_dm:: in the
rejection of the null usiug a cue-tail test at a given alpha level. For example, if the two-tail
significance is p = 0.06 (do not reject Hy at a = 0.05), the one-tail significance will be p =
0.03 (reject Hy at o = 0.05).

This alone should warrant caulion in the use of one-fail tests, but the problem goes beyond
E_n need 10 guard against arbitrary specification of the alternative hypothesis. The use of one-
tail tests, in fact, could lead to some very bizarre conclusions about the null. For example,
assume we are still testing whether 2 population has a mean age of 35 years, but we really
suspect __:o population on average is younger than this. We thereby state the altemative
_uvﬁo_.rnw_u as u < 35 years. We analyze our sample and find that the mean age of the sample
is 50 years, which has a two-tail p-value of 0.000002. }t would be patently absurd not to reject
the null hypothesis in this instance, simply because the sample resuit falls above the value
specified in the null. The null hypothesis — the population from which the sample i3 drawn has
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a mean 2ge of 35 years — is clearly at odds with the data. Yet the use of a one-tail test will
cause us (o live with the argument that the mean age of the population is 35 years and that we
have drawn a 2-in-one-million random sample.

The untenability of this situation is made even more dramatic if we compare it to another
oulcome where the sample produces a mean age of 33 years, with a p-value of 0.04. Using a
one-1ail test we now reject the null hypothesis on the basis of a 2-year difference between the
sample result and the hypothesized value, whereas previously we did not reject the pull on the
basis of 2 [5-year difference (50 — 35 = 15 years).

The point that needs tc be borne in mind is that we are testing the null hypothesis as such,
not the null hypothesis in relation to the alternative hypothesis. The null hypothesis car. be
contradicted by results that fall far enough away from its specified value in either direction.
The direction specified in the alternative hypothesis, I argue, is not relevant to the strict logic
of the hypothesis testing procedure, but rather in determining what we do with the results. We
should always conduct (wo-tail tests, and if we find that the results are statistically significant
we then consider whether the sample result is io the direction that provides cvidence for our
suppositions. This is similar to considerinug whether the statistical diference we have
observed is large enough to be of any practical or theoretical importance; it should also be in
the ‘correct’ direction. Thus we might find that a sample result is statistically significant, but
because it is on the ‘wrong side’ of the sampling distribution it does not lend support to the
argument we would like to make.

Despite these misgivings, | will use one-tail tests in the rest of this book, since they are so
ingrained in the conventional methodology of hypothesis testing (one such example foilows
below). It is therefere important 1o understaod the nature of such tests. In any event, the
practical implications of this debate are not greal, since asy ope-tail significance can be easily
converted into a two-tail significance simply by coubling it. Thus for those who agrec that the
use of one-tail tests is never appropriate, they can sireply double a one-tail p-value whencver
jt is derived and compare it with this two-tail significance to alpha.

A onc-tail z-test for a single mean

A group of workers in a factory suspect that working coaditions arc unsafe and have caused
them to suffer a bigh rate of illness. They call in a public health researcher who randomly
selects 100 workers and asks each worker how many days work they lost i the previous year
as 2 result of illness. The mean anumber of days {ost was 10 days per worker. Official
guidelines suggest thal workers in this kind of setting should lose wo more than 7 days a year
due to illness, with permissible standard deviation of 7.5 days.

The union representing these workers argues that the sample result shows that they come
from a population where the rate of illoess has ¢xceeded the official guidelines. Management,
however, claims that the difference of 3 days (10 — 7 = 3) between the rate of illness jn the
sample and the official ‘benchmark’ is so small that il could easily be duc to sampling error.
Obviously there is some difference between the sample of factory workers and the benchmark
of 7 days, but {s this difference big enough to suggest that it is more than just random chznce?

Step 1: State the hyportheses

Hi:The rate of illness suffered by all workers in this factory equais 7 days (i.e. does not
exceed the benchmark):

Hy: =7 days
H,: The rate of illness suffered by all workers in this factory is greater than 7 days (i.=. does
exceed the benchmiark):
Hyp > 7 days
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Notice that the alternative hypothesis does not just specify a difference, but also a direction
of difference. The workers are only interested in rejecting the null if it shows that they have a
kigher incidence of illness 1o ground their claim for compenszation. This will be important in
determining whether 1o derive the one-tail or two-tail significance in Step 3.

Step 2: Choose the fest of significance

We are interested in the mean number of hours lost for a single sample where the population
standard deviation is known. We therefore conduct a z-tes! for a single mean.

Step 3: Describe the sample and derive the p-value

The mean number cf days lost for a sample of 100 workers is 10 days. We put the sample
result and hypothesized population value into the equation for z and derive the test statistic:

X-p _ 10-7 _,

o 75 -
i i
Rrom the table for the area under the normal curve, under the column for the ‘Area under the

curve beyond on¢ point’, we find that the significance level associated with this sample z-
score is p < 0.0005.

Lgample

Step 4: Decide at what alpha level, if any, the result is statisacally significari

The 3 days lost above the 7-day benchmark is statisticaliy sigaificant at (he 0.01 leve!.

Step 5: Report results
The union may report the esults of tbe statistical test in the following tenms:

Statistical analysis was conducted on a random sample of 100 workers to assess whether workers in the
factory do not have a higher rale of illness than the maximum permissible rate set by government
guidelines of 7 days lost due to illness. The sample had a8 mean number of days lost of 10, which
represented three days more than that prescribed by the guidelines. This was found to be statistically
significant (z = 4, p < 0.0001, one-tail). Morevover, the union argues that since three days lost
represents a large amount of income foregone and distress o the workers and their families, the results
are not just statistically significant, but also require management to take action and reduce the
incidence of illpess.

Summary

We have just worked through the steps involved in the most basic of hypothesis testing
procedures: the z-test of a single mean. However, in practice this test is very rarely employed
because it requires a great deal of information 2bout the population. We begin with it, though,
because it provides the clearest exposition of the process of hypothesis testing. Having learnt
this basic procedure we are now able to deal with mere complicated situations that are more
likely to arise in ‘real life’. The pext chapters detail the tests to be used in these situations.

Appendix: Hypothesis testing using critical values of the test statistic

[n eartier editiors of this book, and in rzany other textbooks, the hypothesis testing procedure
included the derivation of the critical scores associated with the critical regions defined by
pre-set alpha levels. These critical scores are obtained by referring tc the table for (he area
under the standard normal curve:

& Zephtenl
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Once we derive the critical value for z from the alpha level we can then compare this to the
sample z-score and make a decision, In other words, we have two points of comparison for
making a decision about the null hypothesis:

COMPALE Zyy e With 210
or

compare the p-value with the alpha level

Since any given z-score is uniquely related to a panticular probability, and vice versa, we will
get the same answer regardless of the comparison we choose to make.

Certain alpha levels are conventionally chosen in most research contexts, and the asscciazed
critical z-scores for these conventional levels of significance become familiar through regular
use. [f you work often enough with inferential statistics (he following information (Table
15.6) will eventually be memorized. This is especially so for an alpha level of 0.05, which is
by far the most common significance level used in reseasch.

Table 15.6 Common critical scores

q ZLeritical

Two-tail test Onc-tail test
0.01 +and - 2.58 +or-233
0.05 +and - 1.96 +or— 1645
0.10 + and — 1.645 -or-1.28

In this text we bave done away with the calculation of critical scores associated with
particular alpha levels for two reasons. First, as discussed above, we want to avoid
determining the alpha level in advance; instead we now prefer to state the minimum alpha
level at which the null can be rejected given the sample p-score. Second, deriving the critical
scores introduces an unnecessary layer of calculations thal makes an already complex
procedurs more complex. There is nothing of importance in z-scores as such (or the other Lest
stalistics we will come across in later chapters). They are just a mieans of deriving
probabilities, and since we can compare probabilities directly with various alpha lgvel,
deriving their associated critical scores is unnecessary.

Exercises

15.1  Under what conditions is the sampling distribution of sample mezns normally
distributed?

152 What is meant by type I and type Ul errors? How are they related? 5
5.3 How does the choice of significance level affect the critical region?
15.4  Complete the following table: .

Probability Test Z-Seare
0230 +1.2
0.100 Two-Lail
0018 2.

Two-131) +2.3
One-tail 3.4

155  Sketch the critical region for the following critical scores:
(a) z> 1.645 (b) 2 <-1.645 (c)z>1.960rz<-1.96
What is the probability of a type I error associated with each of these critical regions?
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15.6

15.7

15.8

15.9
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Fer each of ike foliowing sets of resuts, calculate z, .

[ G Y )
(a) 24 0.7 23 1o
(b) 18 1 16.7 100

A sample with a mean of 12 years is tested to see whether it comes from a population
with a mean of 15 years.

(a) The significance level on a two-tail tesl proves (0 b¢ 0.03. Explain in simple words
what this indicates,

(b) The significance level on a onc-tail test proves to be 0.015. Explain in simple
words what this indicates.

A sample of nurses finds that they work on average 4.3 hours of overtime per week.
This is tested to see whether the average amount of oventime worked by all nurses is 0
hours. The significance level proves 1o be p = 0.00002. Does this prove that the sample
did not come frem a population with a mean number hours ol overtime per week of 0?

A particular judge has acquired a reputation as a ‘hanging judge’ because he is
perceived as imposing barsher penalties for the same sen‘ence. A random sample of 40
cases is taken from trials before this judge that resulted in a guilty verdict for a certain
crime. The average jail sentence he imposed for this sample is 27 months. For all
crimes of this type the average prison sentence 1s 24 months, with a standard deviation
of I1 months (assume a normal distribution). [s this judge’s reputation justified? (Pay
close attention to the form of the alternative hypottesis.)
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The one sample r-test for a mean

The previous chapter introduced the logic of hypotbesis testing. The careful reader wifl bave
noticed that in conducting tbe one sample z-test for 2 mean we used the population standard
deviation 1o make an inference from the sample mean to the population mean. The carcful and
critical reades will have thought this a peculiar situation: the data used to calculate the
standard deviation for the population should also allow us to directly calculate the mean; if we
tmow the standard deviation for the population how can we nof know the population mean?
We should not need to make an inference from the sample to the population mean, but should
be able to directly calculale i

In other words, it is unlikely that we will ever find a situation where we do koow the
population standard deviation but do not know the population mean. Indeed, SPSS does not
¢ven provide an option for a z-test for a single mean. Before you suddenly decide that the
previous chapter was a waste of time and tear it out of the book, let me justify why we spent
s0 much time learning a test that we are unlikely ever lo use in practice. We begin with the
one sample z-test for a mean because it is the simplest illustration of inferential statistics.
Havisg lcarnt the basic logic in this, albeit unrealistic, situation, we can then go on and apply
it to more relevant, but slightly more complicated, situations. Thus the previous chapter
allowed us to sharpen our bypothesis testing ‘krife’ so that we can use it to ‘slice through’
more real-lifc problems.

The tests 1nat follow in the cnsuing <hapters are all variations of the basic hypothesis testing
precedure. We will learn the specific conditions under which each test is relevant. These are
lac fastors we look for in Step Z of the hypothesis testing procedure to determine the test of
significance to employ. The two key factors to consider (although there are others) are, first,
tire descriptive statistic that is used 1o summarize the sample data, and, second, the pumber of
samples from which infercoces are to be made. This chapter will detail the one sample r-test
for a mean, which is used ipstead of the one sample z-test for a mean in the more common
sitation where neither the value of the population mean nor the population standard deviation
are krowr.

The Student’s ¢-distribution

When we want to make an inference about a population mean but don’t know the standard
deviation of the population a slight change is required to the basic procedure outlined in the
previous chapter. We no longer use the z-distribution to derive the p-value of the sample
statistic. This is because the sampling distribution of sample means will no longer be normal.
lnstead, the sampling distribution we use is the Student’s r-distribution, and we conduct a #-
test. (It is called the Student’s s~distribution after W. Gossett who first defined its properties.
As an employee of the Guinness brewing company, be was not permitted to publish under his
own name. He therefore chose “the Student’ as his alias.)

A r-distribution looks like 2 z-distribution in that it is a smooth, unimodal, symmetrical
curve. The difference is that a r-distribution is ‘flatter’ than the z-distribution. Exactly how
much flatter depends or the sample size (Figure 16.1). The f-distibution where sample size is
30 bas much ‘fatter tails’; these tails become thinner for a sample size of 90; and eventually
the /-distribution is identical to the normal curve when sample size becomes very large
(greater than 120).
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(B) rdistzibution when n=90
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Figure 16.1 +-distribuions for sample sizes (a) n> 120, (b) n =99, ard (¢) n = 3¢

The one sample -test for a mean

We will deail the one sample /-iest for 2 meaa by working through an example using the five-
step hypothesis testing procedure, indicating as we do the ways ir. which this test varies from
the z-test for a mean.

Assume that the Health Department, in order to decide how mucl: money it should allocate
to the local hospital, is interested in whether the average age for ke pogulation in the region is
over 40 years. Unable to survey the whole area, the Department takes a random sample of 51
people from this population, which yields a sample mean of 43 yea-s and standard deviation
of 10 years. Clearly the sample is on average older than 40 years. Tbe Department is reluctant
to conclude from this, however, that the population from which the sample is drawn is on
average over 40 years of age. The Department argues that the sample could easily haye come
from a population with a mean age of ooly 40 and the effect of random variation explains the
slightly older sample result. We can test this claim using the one sample ¢-test for a mean.

Siep 1: State the null and Glternative hypotheses

H: The population in this region has a mean age of 40 years.
Hy u=40 years

H,: The population 1o this region has a mean age greater than 4C years.
0 u> 40 years

Nctice the inequality in the statement of the aliernalive hypotbesis. Given the Healik
Departmert’s policy on funding we are not interested in whether the population in this region
is 01 average ycunger than 40: its funding will only change if we figd that the average age of
the population is significantly o/der than 40 years.
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Step 2: Choose the test of significance

We arc interested in the mean age for one sample. Unlike the examples in the previous
chapter, we do not have ary infermalion regarding the population slandard deviation, so we
use the one sample -test for a mead.

Step 3: Describe the sample and calculale the p-value
When the population standard deviation is unknown we use the following equation for ¢ to
calculate the sample score (instead of the equation for z). This equation substitutes the sample
standard deviauon for the population standard deviation.

X-p

R

We can substitute the data we have in our example to calculate the test statistic:

t =

_ X-p _ 43-40 -2

J6 Ve
Yo /A5

To obtain the p-value for this f-score we refer to the critical values for /-distributions in
Table A2, and partially reproduced here as Table 16.1. {2 order to use this table we first necd
to determine the degrees of freedom. The concept of degrees of freedom can be illustrated
with a simple example. If there are five students and their final exam grades must have an
average of 10, 2 restriction has been placed on the range of possible scores taese students can
get. For example, if the first four marks are 12, 7, 15, and 11, the fifth mark riust be 3 for the
total 1o produce the average of 10, which is the reswiction I have imposed on the data. We
have lost one degree of freedom (df) because we have imposed a certain result on the data.
lnstead of n degrees of freedom, where n is the sample size, we bave » — 1. In this example,
we hzve feur degrees of freedom. .

A similar correction applies when working with -tests. The f-test is based oa the assymption
hat the population standard deviation (which is ucknown) is equaf to the sample standard
deviation (which is known), The imposition of this assumption on the data means we lose one
degroe of freedom.

! sample

df =n-1

The degrees of freedom affect the likelihood that any given sample mean will be
significantly different from the test value. For any given alpha level, a select number of which
are listed across the top of the table, the s-score that will mark off that area undes the curve
will be ‘further out’ with small samples (fewer degrees of freedom) than it will be for larger
samples (more degrees of freedom), This means that the larger the sample size (and therefore
degrees ef freedom) the more likely that any difference between the sample mean and the test
value will prove 1o be significant. For example, with a sample of 150 (df = 149), the criticai
regions for a 2= 0.05 (the lightly-shaded areas in Figure 16.2) begio closer 1o the test value
than for a sample of only 51 (df = 50), which has critical regions marked off by the darker
shaded areas in Figure 16.2.

Since the t-distribution is ‘flatter’ witk smaller samples, the critical regions lie further out
compared with the r-distribution for the larger sample. As a result Table 16.1 provides a set of
t-scores and levels of significance for various degrees of freedom (df).
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rdistibution =150

1-disteibution n=35]

o
Rigure 16.2 Critical regions for sample sizes # = 150 and n =51, @ =0.05

Table 16.1 Critical values for t-distributions

i i
Level of significance for two

df 0.20 0.10 7 0.01
63.657

9.925

5841

4.604

4.032

2724

27
2690
4 : 2678
2.004 2.396 2.668
2.000 2.390 2.660
1.994 2.381 2.648
1.990 2374 2639
1.987 2368 2.632
120 128¢ 1.658 1.980 2.358 2617
®© 1.282 1.645 1.960 2.326 2.576

To derive the p-value for a particular /-scor¢ from this table we need to:

1. move down the f{irst column of the table below df until we identify the row with the desired
number of degrees of freedom, in this instance we identify df = 50 (if the degrees of
freedom for our sample are omitted from the table, we should locate the row with the
closest degrees of freedom below the sample 4f);

2. then move across this row until we identify the 7-scores between which the sample r-score
falls, in this inslance our £y of 2.1 lies between the scores in the table of 2.009 and 2.403
(this is unlike the table for areas uader the nommal curve io the previcus chapter where we
could locate the exact z-score for the sample mean);

3. we then move up these columns and read off the associated p-values for these 1-scores,
choosing the values for either one-tail or two-tail significance according (o the
specification of the alternative hypothesis. Here the p-score lies between 0.02 and 0.01.

We can also obtain the p-value from various web pages that provide statistical calculation
options. Two such pages that will perform a t-test oo a sample mean are:

|, Statistical Applets, www . assumption.cdw/users/avadum/applets/applets.html and ciick on
the ¢ test: One Sample option on the lefi-menu;

2. GraphPad’s QuickCalcs, graphpad.com/quickcalcs/fOneSampleT | .cfm
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These pages not ooly provide the f-score, but also the exact p-value, ualike the table we used
in the hand calculations, which only provides a range of values between within which the p-
value falls. From these pages | delermined that the two-tail significance level is 0.037 and the
ope-1ail significance is 0.0185, which falls within the range of p-values we obtained from the
table.

Step 4: Decide at what alpha level, if any, the result is statistically significant

The p-value we obiaioed in Step 3, regardless of whether we use a one-tail or two-tail test, is
significant at the 0.05 level (i.e. the p-value is less than 0.05), but not significant at the 0.01
level (i.e. the p-value is ot less than 0.01). Although ir is possible to draw a sample with a
mean age of 43 or higher from 2 population with a mean age of only 40, this will only occar
less than five-is-every-hundred times.

Step 5: Report results

Given the results we have obtained, the Health Department may conclude the following:

Based on a sample of 51 people with 2 mean age of 43 years and a standard deviation of 10 years, we
found the results to be statistically significantly different from 40 years (¢ = 2.1, p = 0.0185, one-tail).
However, the fact that the sample was only 3 years abave the benchmark age for increased funding to
the local hospital, although stabstically significant, is not very large in real terms, and therefore may
not justify a large increase in funding to meet the extra health needs of only a slightly older population.

Notice that in this conclusion we have been careful 10 draw a dislinction between statistical
significance and practical significance. At what point a mean age greater than 40 years
becomes large enough to warrant a major increase in bospital funding (regardless of its
statistical significance) is a policy decision for the Health Department and not an issue that
slatistics can answer.

Notice also that a slightly different conclusion is also open to the Health Department. While
the results are significant at the 0.05 level, given that important funding decisions are at stake
whereby an increase in funding to one hospital may lead 1o reduced funding 10 otber hospitals,,
the Department may only be prepared to reject the nuil at the 0.01 level, since it wants to
minimize the risk of a Type 1 error (rejecting the nul) when it is in fact correct). By providing
the p-score for the sample result such a decision is available to anyone who regards a Type |
error in this context to be a serious problem.

Looking back at this example we can see that there are some slight changes to the hypothesis
testing procedwre we introduced in the previous chapter. These changes take account of the
fact that we do not know the standard deviation far the population aboul which we want to
make an inference. In particular, we use a slightly different fonmula in Step 3 to derive the test
statistic; and we refer to a slightly different sampling distribution to derive the p-score, one
that requires us to comsider the degrees of freedom we are working with. Apart from these
modifications the precedure is basically the same. In order to familiasize ourselves further
with the one sample f-test for 2 mean, we will now work through a number of examples.

Example

According (0 AC Nielsen, a market research company, children in Britain between tiie ages of
5 and 12 years watch on average 196 minutes of TV per day. For the sake of exposition we
will assume that this is the value for the populatior of all British children in this age brackel,
A survey i3 conducted by randomly selecting 20 Australiac: children within this age group to
see if Australian children are significantly different from their British counterparts in termss of
the average amount of TV watched per night.
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The null hypothesis is that Australian children watch oo average the same amcunt of TV
each night as their British counterparts:

Hg: =196 minutes

The alternative hypothesis is that Austra’ian children on 2verage watch a different amouni of
TV than their British counterarts:

H,: g # 96 minues

Note that in this research question we are simply interested in whetber there is a difference
belween Australian children and the hypothesized value of 196 minutes. We are not
specifically concerned whether Australian children watch significantly more or significantly
less, just whether they are different.

The sample of 20 Australian children has a mean of 166 minutes of TV viewing, with a
standard deviation of 29 minutes. Substituting this information ioto the equation for ¢, we get
a sample r-score of: —4.6:

.. X-m _ 166-19
sample -
3 29
\h Xmm

= -4.6

From the table for the critical values for r~disiributions, at 19 degrees of freedom, the sample
score has a significance level of less than 0.005. It is therefore statistically significant and
leads us to reject the statement that Australian and British children watch on average the same
amount of television per day. Whether the difference of 30 minutes we observed is of any
practical significance is something [ will leave for you to consider (that is, do children who
watch 30 more minutes of TV per day ‘suffer’ in any important sense?).

>

The one sample r-test uslog SPSS

We will now work through this example using SPSS. The data for the 20 Australian children
are entered into SPSS. The procedure for generating a one sample r-test on these data is
detailed in Table 16.3 and Figure 16.3. Figure 16.3 alsc shows the SPSS cutput from this
command.

The first part of the output is the One sample Statistics table, which provides sall the
descriptive statistics: the number of cases (20), the mean for the sample (165.85), and the
standard deviation for the sample (29.29). The last column for the first table, Std. Emor Mean,
is the standard deviation of the sampling distribution for ¢ for this pumber of degrees of
freedom. This is the value in the denominator of the equation for /.

The second part of the output is the One sample Test table, which contains the results of the
inference test, The f-value is ~4.603, as we have already calculated, which at 19 degrees of
freedom (df) has a two-tail significance of less than 0.0005 (SPSS has rounded this off to 3
decimal places). The difference between the test value of 196 and the sample mean is the
Mean Difference of —30.15. This is the numerator of the equztion for 1.

Given the very low probability of obtaining a sample with a mean of 165.85 or less from a
population that watches on average 196 minutes of TV a day, we reject the hypothesis that the
population mean is 196 minutes: Australian children do not waich the same amount of TV on
average than children in Britain.
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Table 16.3 The One sample T Test command using SPSS (file: Ch16.sav)

SPSS command/action Comments

1 From the menu select Analyze/Compare Means/  This brings up the One sample T Test dialog box
One sample T Test

2 Select TV watched per night from the source
vanables list

3 Clickon » This pastes TV watched per night into the target list
headed Test Vartable(s):

4 lo the text-box next to Test value: type 196
5  Chck on QK

i+ Dne-Sample T Yest

T-Test
Ona-Sample Natistics
sl Std £mor
N Mean Devistian Mean
TV waiched per nghtin 2
it 0| 16586 1929 855
One-Samgie Test
Test Value = 195
45% Confidence
Interval of the
Sig Mean Differance
t i -Lailo: Differenca Lower Upper
TVwatched per aghtin .
mites -4.603 19 000 3018 -43.36 1644 5

Figure 16.3 The SPSS Onc sample T Test dialog box and output

Another way of reaching the same inference about the population is to look at the confidence
interval constructed around the sample meas, a topic we shall detail ie the following chapter,
but which we will briefly discuss here to give a complete meaning to the SPSS output we
have generated. This information is provided in the last column of the One sample Test
table. At a 95 percent confidence level the interval for the differsnce between the sample and
the test value ranges from a lower limj: of —43.86 to aa upper limit of —16.44, Ia other words
the difference between the average amount of TV watched by the population of all children
and the bypothesized value we estimate to lie somewhere in this range, at a 95 percent
confidence level. Since this range does not include the value of zero, which would indicate no
differerce, we can reject the hypothesis of no difference.

Summary

In this chapter we have worked through the one sample /-lest for a mean. It is in most respects
equivalent to the one sample z-test for a mean, whick we introduced in the previous chapter,
but is used in the more usual situation where we do pot know the population standard
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deviation. In fact, the two tests are identical where the sample size is greater than 120. If we
look at (e last line of Table 16.1 for the t-distribution that has the infinity symbol, o, the
scores should be familiar. For example, on a two-tail test at an alpha of 0.05 the f-score is
1.96. This is exactly the same value for z at this level of significance. In other words, when
sample size is greater than 120, the r-distribution and the z-distribution arc identical, so that
the areas under the respective curves for any given scores are also identical.

An important, but often neglected, assumption behind the use of r-tests needs to be pointed
out before moving on. With small samples, the sampling distribution of sample means will
have 2 s-distribution ooly where the underlying population is normally distributed. This
assumption is robust in that the sampling disttibution will still approximate a r-distribution
even where the population is moderately non-normal. Even so, we should be cautious about
conducling a i-test without thinking about the validity of this assumption first. Chapter 22
provides a way of assessing this assumption based ¢n the sample data, and if there is reason lo
believe that this assumption does not hold, a whole racge of non-parametric tests are
available. These will be investigated in the later chapters.

Exercises

16.1 What assumption about the distribution of the population underlies the f-test?

16.2  From the table for critical scores for i-distributions, fill in the following table:

o f-score Probability Test df
20158 One-tail 5
. 0.02 Two-tail 10
1.708 0.05 QOne-tail
0.05 Two-tail 65
0.10 One-tail 228

16.3  Conduct a 1-test, with = 0.05, on cach of the foliowing sets of data:

Sample mean 5 H, H, n
(a) 824 141 u=58 PEXG 61
®) 624 14.1 PEES (<68 61
(<) 23 1.8 pu=31 u=zll 25
@ 23 1.8 u=31 PSR! 190
{c) 102 45 u=93 pzS8 210
(¥ 102 45 #=90 pz 210

16.4 To gauge the effect of enterprise bargaining agreements, union officials sampled a total
of 120 workers from randomly selected enterprises across an industry. The average
wage rise in the previous year for these 120 workers was $1018, with a standard
deviation of $614. The union is worried that its workers have not reached its
bargaining aim of securiog a wage rise of $1150. Conduct a two-tail 1-test 1o assess
whether this objective has been met.

16.5 The following data are ages at death, in years, for a sample of people who were all
born in the same year:
34, 60, 72, 55, 68, 12, 48, 69, 78, 42, 60, 81, 72, 58, 70, 34, 85, 68, 74, 59, 67, 76, 55,
87,70
(a) Calculate the mean age at death aond standard deviation for this sample,

(b) What is the probability of randoruly obtaining this sample from a population with
an average life expectancy of 70 years?
(¢) Eoler these data into SPSS and check your auswers.
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16.6 A health worker wants to gauge the effect of hip fractures on people’s ability to walk.
Op average, people walk at a rate of | meter per second. Walking speed for 43
icdividuals who had suffered a hip fracture 6 moaths previously averaged 0.44 m/s,
with a standard deviation of 0.28 m/s. What should the health worker conclude?

16.7 AC Nielsen bas provided the following figures for the average number of minutes of
TV watched by children in some selected countries:

Country Mean viewing time, minutes
Australia 159
Canada 140
Britain 196
Singaporc 212

In the text we corpared tbe hypothetical results of a survey of 20 Australian children,
which had an average viewing time of 166 miputes and standard deviation of 29
minutes, with the ‘population’ value for Britain. Compare this sample with the
population values for Canada and Singapore, as well as the population value for
Australia, and tes! whether there is a significant difference.

16.8 In Chapter 9 we used the following datz for the weekly income of 20 people in 2
sample:

$0, $0, $250, $300, $360, $375, $4C0, $400, $400, $420, $425, $450, $4€2, $470,
$475, $502, $520, 3560, £700, $1020

The mean for these data we calculated (0 be $424.45, with a sizndard deviation of
$z16.

(a) Conduct a (-test, with a = 0.05, to assess the probability thzt this sample is drawn
from a population with a mean weekly income of $480.
(b) Enter (hese data into SPSS, asc conduct the same f-test.

16.9 Open the Employce duta file.

(a) Generate the mean and stacdard deviation for the current salacy of workers in the
sample. .

(b) Assume that the average salary for ali other workers is $25,060. Conduct by han
(showing all working) a s-test to assess whether there is a significant differénce
between the employees in this firm and zil other emplcyees. State your conclusion
in simple terms.

(c) Conduci this tesi on SPSS acd check that your band calculations conform to the
SPSS output.

(d) Assume that the average salary for zll other workers is $33,000. Conduct by hand
(showing all working) a one sample /-test to assess whether there is a significaat
difference between the employees in this firm and all other employees.

(¢) Conduc: this test on SPSS and check that your band calculations cenform to the
SPSS output,

(f) Assume hat your research question :s whether the employees in this fiom are paid
significantly more than other emgloyces. Wiil your answer to part {d) be any
different? Explaia.
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Inference using estimation and confidence intervals

In the previous two chapters we introduced a method for making an inference about the value
of a population mean from the mean of a random sample. This method is the bypothesis
testing procedure, which begins with the statement of a null hypothesis that specifies the
population mean equals a particular value (¢.g. the mean age of the population is 35 years).

This hypothesis testing procedure for making an inference has come under heavy criticism,
We discussed some of those criticisms in Chapter 15, but there are others of 2 more
fundamental nature (see Gardoer, M.J. and Altman, D.G., 1986, Confidence intervals rather
than P values: Estimation rather than hypothesis testing, British Medical Journal, March, pp.
746-50). Of most concern has been the fact that the hypothesis testing procedure only fests
whether the sample result is significantly different from a particular ‘test’ value specified in
the null hypothesis. We discussed the criteria for choosing a test value in Chapler 15, but we
can sece that there is still an element of arbitrariness in the selection of this test value,
Moreover, it is logically possible to find that a sample result is significantly different to many
possible ‘test’ values; equally there is obviously a whole range of values from which the
sample result will not be significantly different (at a given alpha level).

For example, on the basis of our sample that had a mean age of 32 years, we could have
tested the hypothesis that the population mean is 33 years, 34.5 vears, 30.2 years, and s0 on.
Some of these tests will yield very low p-scores and some will not. A single test against a
single value of 35 years tells us only whether the sample is significantly different to this one
score. In this sense, the hypothesis testing procedure is extremely limited.

To overcome this limitation another procedure for making an inference from a sample to a
population has been developed. This is the process of estimation through the construction of
confidence infervals. Some see this as an alternative to the hypothesis testing procedure
discussed in the previous two chapters. This text, however, presents the estimation procedure
as a complimentary procedure for reaching the same conclusions that can be reached by
hypothesis testing; it provides additional information for making an inference from a sample
result to a population, but also has limitations of its own. Thus if we take the two procedures
together we can obtain a more complete picture than if one procedure is used exclusively.

Fortunately, SPSS usually provides the estimation values along with the results of
hypothesis tests, so that no additional commands need to be run. The important thing is the
meaning of these results and how they help us expand our ability to make an inference from a
sarople to a population. Before we detail this estimation procedure, we need to first remind
ourselves of the main conclusions we reached in Chapter 14 regarding the sampling
distribution of sample means (a quick read over that chapter at this point may be helpful in
understanding what follows).

The sampling distribution of sample means

The samplicg distribution of sample means has three very important properties;
_ 7y imp p

L. The mean of the sampiing distribution is equal (o the population mean. Although the mean
of 2ny irdividual sample may differ from that of the popuiaticn from which it is drawn,
repeated random sample means will clusier around the ‘true’ population value.

MK = K
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In other words, although individual results will vary from sample to sample, on average
the sample means will be equal to that of the population. This property of a sample mean
makes it an unbiased estimator of the population value.

2. The spread of sample results around the population value is affected by the sample size.
The standard deviation of the sampling distribution, called the standard ervor, is defined by
the following equation:

g

anﬂ
n

As sample size increases ¢ slandard error of the sampling distriution gets srsaller, so
thzt sample resulis are more rightly clustered around the population valse. In ather words,
Jarge samples provide efficient estimators of the poputation values.

3. The sampling distribution of sample means is norma!. The propertioz of sampie means Lhat
will fall within a certain range of values will be given ty the siandard normai distribution.

These three properties of the sampling distribution of sample means allow us to refer to the
table for the area under the standard normal curve (Appendix Al) in order to gauge the
probability that any given sample mean will be within a certain range of valucs around the
population mean. For example, we know that around 95 percent of repeated samples will have
a meap within 1.96 standard errors of the population mean (Figure 17.1).

" 2,
p-1.96(5) ! e+ 1.96(
95% of all possible X will fail in the mtervas
p%1.96(5F) .

Figure 17.1 The sampling distributon of sample means

Ttis allows us to specify a range or interval of scores within which 95 percent of all
pessible sample means will fall, defined by the formula:

:u_.ko

Estimation

In Figure 17.] we posed the problem in a cerlain way. We have a population parameter, and
estimate the range of values that 95 percent of all random samples drawn from that population
wil tzke, However, in research the problem usually poscs itself in a different way. We have a
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single sample result, and we need 10 estimate the populaticn value from the sample. Whereag
in the hypothesis testing procedure we asked “Does the population mean equal X77, in
estimation we ask the broader question “What is the population mean?”

For example, in Chapter 14 we analyzed a population of 1200 residents of a hypothetical
community. The mean age for this population is 35 years. We take random samples of size n
= 125 from this population, agd observe that the averages for cach of these samples is not
equal to the population parameter, but most of them cluster around the population value. But
what if we do not know that the mean age of the population is 35 years, and all we have to
work with is one of these samples of 125 residents? Let us assume that this one and only
sample is the one that has an average age of 34.5 years and our task is to estimate the
population parameter (which for the moment we are pretending we do not know) from thijs
oae sample result.

In estimating the population parameter we start with an assumption. We assume that the
sample actually falls within a certain region of the sampling distribution. We assume that the
sample mean is not one of those few, very unlikely and extreme results that are very different
from the population value. For example, we might feel comfortable with the assumption that
this one sample of 125 residents is onc of the 95 percent of all possible samples that will fall
within £1.96 standard errors from the population mean.

Remember that this is only an assumption: we may have actually drawn one of those
freakish samples with a mean very different from the population parameter. We can never
know if this is 1be case, but given the very low probability of this being the case (less than 5-
in-100), the assumption seems reasonable. In other words we can be confident that this
assumption is correct. In fact, we call this assumed probability tbe confidence level; in this
instance we choose a 95 percent confidence level.

Given this assumption — that the sample result is within the range that 95 percent of all
possible sample results will fall - we can make an estimate of the populalion value. We know
that the standard deviation of the sampling distribution, called the standard error, i3:

[a]
oy = -
Vn

Here, though, we do not know the stardard deviation for the population, o, so we use the
samgle standard deviation instead, whick for this sample equals 13 years,

As discussed in the previous chapter, the use of the sample standard deviation rather than the
{unknown) population standard deviation requires us to use /-scores rather than z-scores to
construct our estimate:

* We look up the table for critical values of the (-distribution (Appendix A2), for the number
of degrees of freedom we are working with. Here df = 125 — 1 = 124. Since this is greater
than 120, we refer to the last row of the table;

* We then read off the r-score by referring to the column of values under the equivalent alpha
level to our selecled confidence level (here 95% = 0.05). In our example the appropriate -
score is 1.96.

* We then use this f-score in the following equation to multiply the standard error.

X2t

v
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What does this mean? The furthest the populaiion parameter can be below the sample value
such Lhat the sample vaiue remains within the 95 percent region is —1.96 standard errors. This
is calied (be lower limit of the estimate. It sets the maximum distance that the population
value can be below the sample (Figure 17.2) for that sample 10 still be within the range of
va.ues within which 95 percent cf all samples will fall:

It xlﬂwv|_m

lower limit
Rigure 17.2 The lower limit of the estimate

- 5

lower bmit = X — 1 H
n

Using similar reasoning, the furthest the population parametcr can be above the sample
value so that the sample value is still within the 95 percent region is +1.96 standard e:rors.
This is called the upper limit and is illustrated in Figure 17.3.

x X \Auwﬂv :ﬂ?w_.«_.:.:“..

Figure 173 The upper limit of the estimate

siit e . 5
upper limit = X + ¢ [er\
n

Putting tbese two pieces of logic together aliows us to define a range of values, called a
confidence Interval (cr), within which, we estimate, lies the population mean.
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The steps involved in determining the fower limit and the upper limit of 2 confidence
interval can be combined in the following equation (note the value for r may differ from 1.96
according the sample size you are working wiln):

L 5
ci=Xztl——

Vn

This equation simply states (hat we add and subtract from the sample result a distance
defined by the maximum number of /-scores we assume the sampie result can be from the
population paramcter, at the given cocfidence level. lo the example of the age of our
residents, the lower and upper limits are:

- - 3 13
lowerlimit = X - d—| = 345 - 1.9 ——| = 32.2 years

vn _ Y125

e = 5 13
vpper limit = X 4 f|— | = 345 + 1.9¢-—===| = 36.8 years

Yn Vizs

We wrile such an estimate in the follow’ag way: 34.5 (32.2, 36.8].

We have constructed a coreficence interval because in estimating the average age of the
population from a single sample we need to allow for the effects of sampling variation.
Locking at the estimate we bave constructed from this sample, we cao see that it includes the
actual population average of 35 years, which we pretended we did not know. The confidence
interval is accurate in thzt the range of values between 32.2 and 36.8 years includes this actual
population mean. Normally we do not know whether the estimate is accurate, but the
confidence level indicates the probability of being accurate.

In fact | have constructed a confidence interval around all the 20 random samples drawn in
Chapter 14 from this population. The sample averages have been graphed and the confidence
intervals around them drawn in Figure 17.4.

; 4 TS e —_— : —y
31 32 33 34 35 36 37 38 39 40
Years

Fignre 17.4 Twenty confidence intervals (95% level)
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Looking at Figure 17.4 we can see the potential problem with making an estimate using
sample results. If the onc sample we drew happened to be the one that produced an average
age of 37.4 years, our estimate will be inaccurate. The assumption that this is one of the 95
percent of samples that fall within 1.96 standard errors from the population value is invalid: it
is one of those 5-in-100 samples that fall a relatively long distance from the population mean.
Therefore the interval constructed on the basis of a 95 percent confidence level does not
inc.ude the parameter of 35 years. We can never know whether this is the case — whether (he
ote sample we do undertake just happens to be ‘freakish’. However, we can see fom Figure
17.5 that such an event is bighly unlikely. In fact, 19 out of the 20 intervals do include the true
population value of 35 years, which is in accord with the confidence level of 95 percent.

Another way 1o think of this is that with a confidence level of 95 percent we are prepared (o
be wrong only five times in every 100 samples (i.c. 1-ia-20). This is the risk we take of nat
iacludiog the population parameler ic our interval estimate, given that we bave to make an
estimate based on a sample that is affected by random vaciation. This probzbility of error is
known as the alpha level (@), which is simply onc minus the confidence level (expressed as a
propoztion). Thus the 95 percent {0.95) confidence ievel is the same as ao alpha level of a=
0.05. A 90 percent confidence level is the same as an alpba level of a= 0.1, or 2 risk of
being wrorg 1 aime in every 10.

Changing the confidence level

In this discussion, we chose a confidence level of 95 percent. This is why we multiplied the
standard ervor by a f-score of }.96, since this defines the region under the sampling
distribution that includes 95 percent of repeated sample results, at this number of degrees of
freedom. This is the commonly uscd confidence level, but we can choose either larger or
smaller levels, depending on how sure we want to be that our interval has "taken in’ the
population mean. The larger the coanfidence level the more likely that the interval derived
from it will include the population mean. If we choose a 99 percent confidence interval, for
example, then we are assuming thai a given sample mean is one of the 99-in-100 that falls
2.58 standard errors either side of the true mean:

ci=X = 2582

3 k

Making the starting assumption safer, bowever, by choosing a larger confidence level comes
at a cost. [n order for us to argue that the sample is one of the 99 percent that fall within a
certain region sround the true value, that region has to be widened. Rather than multiplying
the standasd emror by 7 = 1.96, we multiply by r = 2.58. It is like firing an arrow at a target.
Making 2n assumption that an arrow is likely to fall within ! meter of the bullseye is safer
than making the assumption that it will fall within 10 centimeters of the bullseye, but it has
come at the cost of some accuracy. Making the target ‘bigger’ by widening the confidence
interval means we are more likely o ‘hit it’ (i.e. make sure that (be interval includes the
population value), but we are no longer as precise in our shooting.

To see the effect of choosing different confidence levels we will work through the following
example, A random sample of 200 nurses is taken and each ourse asked his or her annual
income in whole dollars. These 200 nurses have a mean income of $35,000, with a standard
deviation of $5000. What is our estimate for the average annual iocome of all nurses?

With a 95 pe-cent confidence interval the range (rounded to the nearest whole dollar) is:

_ 500
a=Xz A%ﬂ = 35,000 = 196|222 | = $35,000 « 695
n

\ V200
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The lower and upper limits will be $34,305 and $35,695 respectively:
lower limit: 35,000 — 6§95 = $34,305
upper limit: 35,000 + 695 = $35,695

We therefore estimate that the average income of all nurses, with a 95 percest level of
confidence, will lie within the following range:

$34.305 < u < §35,695

The width of this interval (the difference between the upper and Iewer limits) 1s $1390 (i.c.
35,695 — 34,305).

With 2 99 percent confidence interval, the 1-score we use in the calculation is 2.58. The
calculation will thereby be:

ci=X x| = 35000225822 - 35,000 ¢ 915

V200,

$35,000 [34, 085, 35,915)

To be more cornfident that the interval will actually contain the true populaticn value, it has
become much wider; it now ranges from $34,085 to $35,915. The interval width is $1830.

If, on the other hand, I want (0 be more precise in my estimate I will choose a 90 percent
confidence level, but this will be at the higher risk of being wrong. The t-score I get from the
table is that for alpha = 0.10, which is 7= 1.645. The confidence interval will be:

5000
ci = 35000 = 1.645 ——— | = $35,000 (34,415, 35,585]

200

The effect of these changes to the confidence level on our estimates is summarized in Table
17.1 and Figure 17.5. Using a smaller confidence level reduces the ioterval width in which we
estimate the population mean lies. However, because this interval width is smaller the chances
of being wrong (which is equal 10 the alpha level) have also incrcased. Haviag a namrower
range of values increases tke chance that it will not include the mean of the population.
Making the bullscye on a target smaller allows us to say that we are better archers if we hit it,
but 3: also increases the charces of not hitting it. On the other hand, choosing 2 confidence
level of 99 percen: widecs the interval estimate so that it is more likely to include the
population value, but it may as a result make the cstimate meaningless from a theoretical or
practical point of view. Knowing that the mean anpual income of nurses can be anywhere
between $34,085 and $35,915 may actually be saying nothing of practical importance.

Table 17.1 Effect of confidence levels on intervals

Confidence level (%) 1-score Confidence interval Interval width
90 1.645 $35,000 + 585 1170
95 1.96 $35,000 £ 695 £1390
9 1358 $35,000 + 915 $1830

Inference using estimalion and confidence intervals

X = 435006 | Width = $1830 Width =

|
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Width =351170
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Width = $1970
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Figure 17.6 Interval estimates for five sample sizes (a=0.05)

a=0.10
Blgure 17.5 Interval estimates with three different confidence levels (n = 200)

‘.P__“

n=1000

Width = 3877 wideh = $620

Width = 3196

B

1 =10000

249



250 Sratistics for Research

Changiug the sample size

Apart from the alpha level, the other factor that will determine the width of the confidence
interval is the sample size. If we stick with a confidence level of 95 percent, and only vary the
sample size, the width gets smaller {we increase our accuracy) as sample size increases (Table
17.2, Figure 17.6).

Table 17.2 The effect of sample size on interval width (o= 0.05)

Sample size Interval width
100 $1970
200 $1390
500 $877
1000 $620
10,000 $196

Oune thing to notice about the effect of sample size is that enlarging the sample has its
greatest effect on the interval width with small samples. Increasing the sample size from 100
to 200 reduces the interval width by $580, which is more than the $424 reduction in interval
width when sample size is expanded from 1000 to 10,000. This is why many social surveys
and public opinion polls, even when generalizing to a population of millions, will have
sample sizes of only 1200-1400. Samples of this size narrow the confidence interval to a
relatively small width, and to increase sample size any further would increase research costs
without obtaining much greater accuracy.

Estimation using SPSS

To sec how we can use SPSS 10 generate confidence intervals we will work through the
example we iotroduced in the previous chapter for a sample of 20 children for each of which
the amount of TV watched per night is recorded. This sample watches, or average, 165.85
minutes of TV pightly, with a standard deviation of 29.29 minutes. What can we estimate the
population mean to be?

If we choosc a ccnfidence level of 95 percent (i.e. a= 0.05), the appropriate (-score we use
in the equations is that for df = 19. From the table for critical values of the r-distribution this is
t=2.093. The lower and upper limits will be:

lower limit = X - |—| = 165.85 - N.SAE 179.6 minutes

V20

ipperiiolt = X + =] = 16585 5 209 22| « 555 1 iminties
Vn o

il
I

Thus the estimated average amount of TV walched nightly, with a 95 percent confidence
level, is 165.85 minutes [152.4, 179.6].

As is the case with many other statistics, SPSS provides a number of ways by which we can
calculate this confidence interval for a mean. Three commands are particularly relevant:

1. Analyze/Descriptive Statlstics/Explore. We introduced this command in Chapter 9 as a
way of producing descriptive statistics. If we open the Chl7.sav file and enter TV
watched per night into the Dependent List: we will generate a number of pieces of
output, mainly presenting the descriptive statistics we discussed in Chapters 9-10. The
relevant part of the output for our purposes here is the table headed Descriptives (Figure
17.7).
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+ Explure

[ Stafisic_] S Error
TV walched pet alghl in Man 165.85 8.5
mindles 95% Confidence Lower Baund 16214

Interval for Mean Upper Bound iz
5% Trimmed Maan 166.94
Median 165.00
Variante 857.92¢
8. Dreviaton 2929
Minimurs 102
Madimum 210
Range 108
Imergirartie Range 4250
Shkewnasze - 450 512
Kurtosis -.303 893

Figure 17.7 SPSS Explore dialog box and output

The first three rows of the table provide in turn the mean, the lower bound and upper
bound of the 95 percent confidence interval, which is the default confidence level. We cag
see that the estimate is 165.85 minutes [(52.14, 179.56], which conforms to our Land
calculations, 1{ we wanted a confidence interval based on a different confidence level, such
as 90 percent or 99 percent, we click on the Statistics button in the Explore dialeg box,
and cype over 95 with the desired Jevel. -

2. Analyze/Compare Means/One-Sample T-Test. As we shall see in later chapters,
confidence iotervals are also often generated by SPSS io the course of conducling
hypothesis tests. In the previous chapter we noted this when we cenducted the one-sample
I-test for a mean on the data we have for TV viewing. The output we obtained from that
command is presented in Figure 17.8.

T-Test
Qoe_samgle SIatistics
anf Std Error
N Mean Devistion Mgan
TV walched per ngd iri "
minutes 29 18585 919 6.55
One-Sarwpie Tast
Test value = 196
95% Confidence
Intarval of the
Mean Difference
| o Offerenta Lower Upper
TY walched pes nght In 208
minutes -4.603 19 -3019 -43.38 -(6.44

Figure 17.8 The SPSS One-Sample T Test vutput
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The estimation information is provided in the lasi column of the One-Sample Test &Zﬂ
At a 95 percent confidence level the interval for the difference belween the sample and the
test value ranges from a lower limit of —43.86 to an upper limit of —16.44. [n other words
the difference between the average amount of TV watched by the population of all children
and the hypothesized value we estimate to lic somewhere in this range, at a 95 percent
confidence level. Since this range does not include the value of zero, which would indicate
no difference, we can reject the hypothesis of no difference. In fact, if we subtract the
values io the Lower box (—43.86) and the Upper box (~16.44) from the test value of 196, we
obtain the confidence interval we calculated above by hand and also obtained from the
Analyze command. Since his confidence interval does nor include the test value of 196 we
reject the hypothesis that the population mean equals 196 at this level of confidence.

3. Interactive error bar graph. If we sciect Graphs/Interactive/Error Bar from the SPSS
menu the Create Error Bar Chart dialog box appears. The minimum information we
must provide for this command to be executed is to place a variable for which confidence
lntervals (called *error bars’ by SPSS) will be constructed into the blank box on the vertical
axis arrow. Here we drag TV watched per night into the box, since we want the
confidence interval for the mean of this variable. We can also adjust the confidence level
from the default 95% value by moving the slide-bar next to Level: or by simply typing the
desired level in the box next to it. An additional option that is worth selecting is under the
Error Bars 1ab; selecling Mean next to Bar Labels will give us the sample mean around
which the confidence interval is const-ucted (Figure 17.9).

150 —— Emor Bars showe 35 0% Qlof Mean

TV watched per night (n minutes

Figure 17.9 Ar SPSS Intcractive Error Bar chan

The confidence interval ranges between the same upper and lower bounds that we calculaied
above. We should note bere in anticipation of the discussion in the next chapier that if we
wished to compare the means of more than one group, we place the variable that defines these
groups into ‘he blank box on the horizontal arrow in the Create Error Bar Chart dialog box.

We can zlso tumn ¢ web-based statistical calculation pages to obtain the confidence interval
around a mez9. One such page that will calculate a confidence interval around a sample mean
is GraphPad’s QuickCales, graphpad.com/quickcalcs/OneSampleT.cfm. At this page we
enter the mean, standard deviation and sample size, and then select 0 under 3. Specify the
hypothetical mean value.

Confidence intervals and hypaothesis testing

We pointed out at the start of this chapter that the estimation techniques we have Just
discussed provide additional informztion (hat we do not obtain through the hypothesis testing
procedure. In particular, it provides a¢ a given alpha level the full range of values against
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which the sample result will not be significantly different (and by implication the full range
against which it will be significantly different). However, in so far as it Ba:._qow_ us to specify
in advance a particular alpha level, the estimation procedure is more limited than the
hypothesis testing procedure for making inferences. The hypothesis testing procedure gives us
{he exact p-score for-a sample result, so that we can assess the full range of alpha levels at
which a2 sample result will be significantly different from a given fest value for the population
mean. Thus we should use the information provided by both procedures to report our results.

The last point that is worth noting is that since estimation and hypothesis testing procedurcs
share the same underlying logic, they also share the same himitations. In particular, they can
each in their own way divert us from a discussion of whether a particular result is
substantively significant 10 a more narrow discussion aboul whether it is m_.m:u:on_q
significant (see A.R. Feinstein, 1998, P-values and confidence intervals: Two sides of the
same unsatisfactory coin, Journal of Clinical Epidemiology, vol. 51, no. 4, pp. 355-60). The
substantive significance of any resull is always the more important issue; statistical
significance is only a small element of that broader discussion.

Exerclses
[7.1 What is mcaat by interval estimanon?

J7.2  Explain what is mean( by a confidence level, How do cbanges in the confidence level
affect the wicth of the interval estimate?

173 How does sample size aflect the confidence interval?
[7.4 How does the populatiar: standard deviation affect the width of a confidence interval?

17.5 For each of the examples in the text regarding the age of pre-schoo! children aad the
amount of TV walched construct interval estimates for 90 percent and 99 percent
confidence levels.

17.6 A survey is conducted to measure the length of time, in months, iaken for university
graduates to gain their first job. Assuming that this is a normally distributed variable,
derive the interval estimates for the following sels of graduates, using a 95 percent
confidence level: &

Degree Sample size Mean Standand deviation
Economics 45 [ 25
Sociology 35 4 20
History 40 4.5 3.0
Statistics &0 3 1.3

17.7 To gauge the effect of wage bargaining agreements, unioa officials select a sample of
120 workers from randomly sclected enterprises across an ndustry. The average wage
rise in the previous year for these 120 workers was $1018, with a standard deviation of
$614. Estimate the increase for all workers within this industry (use both 95 percent
and 99 percent confidence levels).

17.8 A hospital checks the records of 340 randomly selected patients from the E.n«,.mocm
year. The average length of stay in the hospital for these patients was 4.3 days, with a
standard deviation of 3.1 days.

(2) What would be the estimated average length of stzy of all patients in the previous
year (at a 99 percent confidence level)?

(b) How would this compare with the average length of stay for all patients in another
haspital o{4 days?

() What could the hospital do to improve the accuracy of the estimate?
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17.9 A study of 120 diverced couples that had been married in the same year found ay
average length of marriage of 8.5 years, with a standard deviatioo of 1.2 years. What i5
the estimate for the average length of marriage for all divorcad couples, using a
conflidence level of 95 percent?

17.10 Open the Employee data file and calculate the (a) 90 percer, (b} 95 percent, and (c)
39 percent confidence intervals for employees’ cucrent saizry.

18

The two samples ¢-test for the equality of means

The tests covered thus far deal with the one sample case. That is, they all involve making an
inference about only onc population mean: we don’t have information about the population,
s0 we infer it from the sample mean. This chapter will introduce hypothesis testing in the two
samples case. In the two samples case we ideally want to compare two populations in terms of
some descriptive statistic such as a mean. However, we do not know the valuc of these
stztistics for either population so we take a sample from each population and make inferences
from cach of these samples,

For example, in Chapter 16 we worked through an example where we were interested in the
average amount of TV watched by Australian and British children between the ages of 5 and
12 years. We wanted to compare the population mcans, but unfortunately we ocly had the
mean for the population of British children. We did not know the mez2n for all Australian
children, so we 100k a sample of 20 and made an inference based on the data from this sample
{Figure 18.1(a)). Thus in the one sample case we covered in Chapter 16, country of residence
was not a vacable, since all cases for which 1 collected data are from the same couniry
(Australia).

What if we do not have information for the population of British kids either? The best we
can do is take 2 random sample of British children as well, and make anotber inference from
this second saraple. [a such a situation we conduct a two samples test of significance. lo this
instance we conduct a survey of children from each country. Although in practice we may
chink in terms of one sample, which is made up of both Australian and British children,
conceptually we say that we are working with Iwo samples: one from each of the popula‘ions
we want to compare. That is, a:though in the actual mechanics of data collection we have one
big collection of children who have been surveyed as part of the same research process, when
2palyzing the data we treat the two groups of children as separate samples (Figure 18.1(b)). "

(a) _vow_.._u:a: of
Australian children

inference

Sample of
Australian children

want to compare Population of

British children

O Population of wanl 1o com Population of
Austealian children British children
inference inference

Sample of
Australian children

l|..wm.m_mﬂ

British_children

Figure 18.1 Hypothesis tesung: (a) the one sample case. and (b) the two samples case
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In facy, we could extend this to a situation in whick we want (o compare more thac two
populations. For example, we might be interested in comparing children from more than two
countries in terms of their average amount of TV viewing and only have samples from each of
these populations. Working with more than two samples requires a different test of
significance that we will analyze in the following chapter. Generally, the choice of inference
test is affected by the number of samples from which an inference is made. [n particular, it is
common practice 1o distinguish between one sample tests, two samples tests, and tests for
morze than two samples. When making inferences from more than two samples we speak of
(ests for k-samples, where & is a number greater than two. Often the change involved in
moving from the one sample 10 the two samples situation, or to the k-sample situation, will
not be great, but as an organizing principle it is useful to keep in mind whether the number of
samples frora which an inference is being made is one, two, or more than two,

Let us look again at the example of comparing Ausiralian and British children i terms of
their average amount of TV viewing. Now that children can differ not only in terms of TV
viewing but also in terms of where they live, couatry of residence is a variable. We thus now
have dela on two variables: country of residence and amount of TV viewing. A child, in otger
words, car: vary from another child in one of two ways; in terms of the country he or she lives
in, and/or different in terms of the amount of TV he or she walches.

We use one of these variables 10 sort cases into distinct samples, based on the populations
we want to compare. SPSS calls this a grouping variable.

- MR

rof Samples froo Whicl inferences

The samples are then compared on the basis of anotber variable, which SPSS calls a test
variable. Thus, in cur example, children are first grouped according to the variable ‘Country
of residence’, since this defines the populations we are interested ig, and the two samples thus
formed (Australian 20d British children) are compared in terms of a test variable, ‘Amount of
TV watched each night’.

in other words, each case (i.e. each child) is assigned twe values, The first ‘tags’ each case
as beloaging to a group defined by country of residence. The second value is the amount of
TV each chilg watcles, which is the variable oo which the groups will be compared.

Dependent and independent variables

We can think of this two samples problem according to ths notions of independent and
dependent variables, which we intrcduced in Chapter 1. Usually the grouping variable is the
independent variable and the rest variable is the dependent variable.

\dent variableis explained oraffected by an ndependent variable S TR

In our example of children, we suspect that coustry of residence somehow aflects or causes
the amount of TV a child will watch (due possibly to factors such as the weather or the quality
of programming in different countries). 1t is clear that in this situation we have a case of one-
way causality that must run from place of residencs to TV watching; it is unimaginable that
children’s TV viewing habits detcrmine where they live! Ig other instances, however, the
choice of appropriate model may be more contentious, as we discussed in Chapter | (it may
help readers to return 10 that discussion before proceeding). These considerations involved in
organizing data in the two samples case are summarized in Table 18.1 and Figure 18.2.

Table 18.1

Type of variable SPSS name Function in inference test

Independent Grouping variable  Sorts cases into a number of samples to be compared
Dependent Test vanable Calculated to describe and compare the samples
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Sample of
Australian children

sort cases by groaping

; describe and compare samples
{independen:) varwoble

by 1e51 (dependent) variable

/

Sample of
British childsen

Figure 182 Two samples significance test

The sampling distribution of the differcnce hetween two means

As with al other hypothesis tests, we begin by assuming tha( the aull hypothesis of no
difference is cormect. On this assumption we build up a sampling distribution of the difference
ca?&o.n» two sample means. We then use this sampling distribution to determine the
probavility of geting an observed difference between two sample means fom populations
with no differsnce.

For cxample, let's begin by assuming that the average amount of TV watcbed by children is

the same in both Australia and Britain. This null hypotbesis of 9o difference is formally
WIitten as:

Ho py= 2
oz
Horpty—p;=0
If this ﬁmﬁEu:on._ is true, what will we ge! if we take repeated samples from each country
and calculate the difference in means for cacl: pair of sampics? Intuitively, we expect that the

most common result will be that the difference is small, if not zero. Siace we are assuming 0o .

&Qn_dugangoonEngovovz_mnoumEn oxuon:.n_ng_
. ‘ , voaguiocoﬁﬁ_gio:Eo
three-dot triangle is mathematical shorthand for ‘therefore’). A .

X=X, » X-X, -0
This is illustrated in Figure 18.3.

Sampie of Australian children “

=X . M_(NNHO
Sample of British children

Figure 183 Two samples with means equal
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But this will not always be the resull. Occasionally we might draw 2 sample from Australia
(hat has a lower than average amount of TV viewing ccupled with a sample from Britain that
has a higher than average amount of TV viewing {Figure 18.4).

w# < MN M_IWM <0

Sample of Austrahian children

X <X, .. X-X,<0
Samplc of British children

Figure 18.4 Twe samples with means unegual
Similzrly we might ges, through the operation of sampling etror, the opposite situation:
M_ > Nu M_lula.w >0

If we take a large number of these repeated random samples and calculate the difference
between each pair of sample means, we will end up with a sampling distribution of the
differeace between two sample means that has the following properties:

It will be 2 +disiribution:
X, -X
(= 2 |N
IxX-X
*The mean of the cifference defween sample means will be zerc:

ax.x =9

*The spread of scores around this mean of zero (the stancard error) will be defined by the
formula:

o A=_|_7_~ A:mn_?w {n +n,

o =
X=X n+ny-2 < mn,

This is called the pooled variance estimate. This estimate assumes that the populations
have equal variances. Sometimes this assumpfion cannot be sustained, in which case a
separate variance estimate is used. As we shall sec, SPSS will calculate ¢ using each
estimate, plus information that allows us to choose one or the other. But when doing hand
calculations this pooled variance estimate is generally used since it is much easier to work
with, and will usually lead to the same decision being reached as the separate variance
estimate.
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The two samples f-test for the equality of means
We can use these properties of the sampling distribution to conduct a r-test for the equality of
means. Assume our survey consists of 20 Australian children and 20 British children, and the
research wants 10 assess whether TV viewing time is affected by country of residence,
(Although it is the situation in this example, the two samples r-test does not require the same
pumber of cases in each sample)). We will work through this example using the five-step
hypotbesis testing procedure.
Step 1: State the null and alternative hypotheses
Ho: There is po difference in the mean amount of TV watched by children in Australia and
Briiain,

Hy: py=pg or Hg ty—p3=0
H,: There is a difference in the mean amount of TV walched by children in Australia and
Britain.

Hpp# py of Hy gy~ py 20

Step 2: Choose the test of significance

The following two factors are relevant in choosing the test of significance:

I. We are making an inference from two samples: a sample of Australian children and a
sample of British children. Therefore we need 1o use a two samples test.

2. The two samples are being compared in terms of the average amount of time spent
waichung TV. This variable is measured at the interval/ratio level. Therefore the relevaat
Cescriptive statistic is the mean for each sample.

These factors lead us to choose the two samples r-test for the equality of means as the
relevan{ test of significance. “

Step 3: Describe the sample and derive the p-value

We have the foliowing results (Table 18.2) that describe the data for each sample:

Table 18.2 Descriptive statistics for the samples

Descriptive statistic Australian sample British sample <
Mean 166 minutes 187 minutes

Stapdard deviation 29 minutes 30 minutes

Sample size 20 20

The equation for calculating the sample r-score is:

where:

Eluvum +?~|_v .qw —3 +n,

g +uy=2 < iy
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If we substitute the sample data into these equations (where Ausiralian children are sample
1, and British children are sample 2) we get a lest stalistics of 1 = -2.3:

__ ((20-1)29" +(20-1)3¢7 [20420 _ o3

Ix-x = 20+20-2 Y20x20

166- 187
Usampte = o3 = =23

To obtain the p-value for this (-score, we nieed 10 consult the table for critical values for the
f~distribution (Table 18.3). The number of degrees of freedom we refer to in this table is the
sample size minus two (since we have to assume that the sample vanances are equal 16 the
unknown population vaniances, we have imposed two restrictions on the data):

df=n-2=40-2=38

The table does not kave a row of probabilities for 38 degrees of freedom. In such 2 situation,
we refer to the row for the nearest reported nurnber of degrees of freedom below the desired
number, which ip this instance is 35. With 38 degrees of freedom on a two-tail test, £,y falls
between the two stated (-scores of —2.030 and -2.438. The p-value, which falls between the
significance levels for these f-scores, is therefore between 0.02 and 0.05.

Table 183 Critical values for r-distributions
Level of significance for one-tail test

af
25 2979
27 1314 1.703 2.771
2,763
2.756
2.750
ki B : : ¢ ; ; 2724
40 1.303 1.684 2.021 2423 2.704
45 1.301 1.679 2.014 2412 2.690
50 1.299 1.676 2.009 2403 2678
55 1.297 1673 2.004 2.396 2668
60 1.296 1671 2.000 2.390 2.660
®© 1282 1,645 1.960 2326 2.576

We can also obtain the p-value from various sites on the internet that provide statstical
calculation pages. Two such pages that will perform a f-test on a sample mear. are:

I. Sratistical Applets, www.assumplion.eduw/users/avadum/applets/applets.html and click ont
the € test: Independent Groups option on the lefl-menu;

2. GraphPad’s QuickCalcs, graphpad.com/quickcalcs/ttestl .cfm

These pages not only provide the f-score, but also the exact p-value, unlike Table (8.3,
wtich only provides a range between within which the p-value falls. From these pages |
determined that the two-tail significance level is 0.030, which falls within the range of p-
values we obtained from the table.
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Step 4: Decide al what alpha level, if any, the result is statistically significant

Op a two-il tes( the p-value of (.03 is statistically significant at the 0.05 level, but not at the
0.01 ievel.

Step 3: Report resuits

The mean number of minutes of TV watched by the sample of 20 British children is (87
minutes, which is 21 minutes higher than the sample of 20 Australian children, and this
difference is statistically significant at the 0.05 level (1 =-23, p = 0.03, two-tail). Based on
these resulls we can reject the hypothesis that Australian children watch on average the same
amount of TV each night as British children.

The two samples r-test using SPSS

SPSS calls this test the independent samples r-test. The word ‘independent’ is very
imporiant because it raises both conceptual issues for bypothesis testing and practical issucs
for SPSS coding. We will define independent samples in the following chapter, when we can
compare them with dependent samples, since their basic character is most evident when
compared with dependent samples.

In SPSS the data for the children have been coded for the two variables. Each of these
variables occupies a separate column, so that we have a column of numbers for the amount of
TV watched and a column of numbers indicating the country in which each child lives. All
independent-samples tests have data entered in the same way: one column for the test variable
and cne column for the grouping variable.

The data for this example also contain information for hypothetical sampies of children frem
Canada and Singapore that will be used in the next chapler where we consider the k-
independent samples situation. The value labels for each country are:

[ = Singapore

2 = Australia

3 = Britain

4 = Capada

Thus in this example we want to compare values 2 (Ausralia) aad 3 (Britaln) for Country
of residence (Table 18.4 and Figure 18.5, which aiso presents the output).

Table 18.4 Independent-samples f-tesi using SPSS (file: Chl8.sav)
SPSS command/action Comments

| From the meou select Anatyze/Compare Means/  This brings up the Independent-Samples T Test Cisiog box
Independen{-Samples T Test

2 Click on Minutes of TV watched in the source This highlights Minutes of TV watched
list

3 Click onthe » that points to the Test This pastes Minutes of TV watched nwo the Test
Variable(s): list Variable(s): list

4 Click on Country of residence in the source list ~ This highlights Country of residence

§ Click on the » that points to the Grouping This pastes Country of residence into the Grouping
Variable: list Yariable: list. Notice that in this list the variable appears as

country(? ?)

6§ Click on Define Groups This brings up the Define Groups box

7 In the area next 1o Group 1: fype 2, and in the area  This identifies the two groups (o be compared, which are
next o Group 2: type 3 Australia and Britain

8 Click on Continue

9 Click on OK
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T-Test
Groug Statistics
21 Esor
Country of resdencs N e Std Deviaticn Mgan
Miwtes of T EE T 0 TES.85 Pk 655
wittlghid per nighl — piltain 20 1E5.74 28 56 866
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Intery
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Figure I18.5 The Independent-Samples T Test dialog box, Define Groups dialog box, and ourput

The first table headed Group Statistics provides the descriptive statistics: the sumber of
cases, the mean, and the standard deviation for each group.

The following table headed Independent Samples Test provides the inferential statistics.
This table provides informatioa for two different t-tests: one where the variances of the
poptlation are assumed to be equal and one where the population variances are not assumed
1o be equal. In czleulaiing the f-score in the example above, we assumed that the variances of
the two populalions being compared were cqual. In practical terms this means using the
pooled varance estimate in the calculations. However, this may not always be a valid
assumptioo. The validity of this assumption is tested in the columas headed Levene's Test for
Equality of Varances. The value for F is the ratio of the two sample variances, and if this ratio
is not equal to |, il may reflect ap uoderlying difference in the population variances. If the
significance for this F-value (in the Sig. column) is less than 0.05 we¢ conclude that the
difference v variances observed in the samples reflects a difference in the variances of the
populations from which the samples came. In such a situation we refer to the ¢-score in the
first row ¢f the table. We therefore use the following rule: read across the first row labelled
Equal variances assumed, and

«if we find that the value under S$ig. is greater than 0.05 we continue along that line to assess
whether the means are significantly different; or

=:f we find (hat the value under Sig. is less than 0.05 we refer to the r-test in the next row
iabelied Equal varlances nct assumed.

Usually the two estimates will agree with each other in terms of whether to reject or not
reject the nuil (as is the case here), but in strict terms, we should use the relevant estimate,
either ‘hat for equal or unequal variances. Here the first row is the relevant cne. Moving

The two samples 1-test for the equality of means 2€3

across the colymns we see that the sample r-value is ~2.248, which, with 38 degrees of
freedom, has a two-tai! significar.ce of .031. These values all correspond 1o the vaiues we
generated by hand (with some slight differences due to rounding in the haad calculations). We
also have a column headed Mean Difference. This is the difference between the two sample

meaos, -20.9, which in the equation used to calculate f-scores is represented by m_ - VIS,

You will also notice that SPSS has generated the lower and upper limits of 95 perceat
confidence interval for the difference in sample means, which are printed 25 -39.74 and -2.06
respectively. This allows us to conduci the same inference test, but usiog the estimation
procedures developed in Chapter 17. Ttese lower aad upper limits indicate that at a 95
percent level of confidence, the difference between the population means lies somewhere
between —39.74 minutes and —2.06 minutes, Since this interval does not include the value of
0, we reject the hypothesis that the population means 2r¢ equal,

Example

A study is conducted to investigate whetker forcign-owned compznies on averzge have a
lower rate of conformity to local bealth and safety codes when compared with locally owacd
companies. A survey of 5C foreign-owaed and 50 domestic companies of similar size aad in
similar industries is conducted. Inspectors record the number of breaches of health and safety
regulations they observe when inspecting tbese establishments.

Step 1: State the mull and alternative hypotheses

Hqg: There is no difference in the mean numbes of Lreaches between localiy owmned and
foreign-owned firms.

\.\0“ B =Ma2 or tc“ m:ltw”@

H,: Foreign-owned firms bave a higher mean aumber of breaches tkan locally owned Crros:

Halimy>pmq or Hy gy~ >0

Step 2: Chocse the test of significance -

We are making an inference from two samples. The two samples are being compared in terms
of the average cumber of breackes of the kealth and safety code, measured at the interval/ratio
level. Therefore the relevant descriptive statistic is the mean of each sarrple. We therefore use
the two samples (-test for tbe equali’y of means as the relevant test of significance,

Step 3: Describe the sample score and caletlate the p-value

Oun average the 50 foreign firms are found to make 4.2 breaches per firm, with a standard
deviation of 1.3. The 50 domsestic firms are fouad 10 average 3.5 breacbes per firm, with a
standard dewviation of 1.2.

In order to desive the test statistics, we need first to calculate the staodard crror (assuruing
equz! variaaces), aud fror his the sample #-score:

?_ - _vn_u +?ul _vhw ‘a_ +1,

o5 ¥ = )
x-x .c n+riyg-2 YV nr,
it 2 2
{50-1)1.3° +{50-1)1.22
_ Jis0-113 +{50- 112 [so.50 0.5
\ 50450-2 Vsoxs0
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_ X=X, _ 42-35 g
il T or % 025 .

t
From the table for critical values of the (-distribution, we fnd that the f,, has a two-tail
sigpificance of less than 0.001 and a one-tail significance of iess thaa 0.0C5.

Step 4: Decide at what aipha level, if any, fhe result is siatistically significant

Regardiess cf whether we use a one-1ail or two-tail test, the differeace is significant ac tire
0.01 alpba level.

Step 5. Report results

The resulls from a samplc of 50 foreign-owrsd and S0 locally-owned fims suggest that the
foreign-owned firms are more likely 10 breach domestic Lealth and safety regulations. On
average the 50 foreign firms are found (0 meke 4.2 breaches per (irm, with a siandard
deviation of 1.3, while tbe 50 domestic fims are fouod to average 2.5 breaches per fum, with
a standard deviation of 1.2. The difference between the mcan for local and the mean for
foreign fims is statistically sigaificaot at the 0.G. Jevel (= 2.8, p <0.005).

Eaxercises
18.1 Wbzl assumptions nced to be made about the distribution of the pogulations tefore ac
independent-samples f-1est is conducied?

18.2 For (he following sels of results, test for a significant difference (assuming equal
pepulation variazce):

Mean Standard deviation Sample size _
(2) Sample | n 142 15
Sample 2 76.1 i1 50
{b)  Sample 1 2.4 09 100
Sampie 2 2.8 0.9 100
(¢) Sample 1 L3 14.2 35
Sample 2 76.1 11 50
(d) Sample 1 450 80 120
Sample 2 475 77 100

18.3 A researcher is interested in the effect that place of residency has on the age at which
people begin to smoke cigarettes. The researcher divides a randomly selected group of
people irto 91 rural and 107 urban residents and finds that rural dwellers started
smoking at an average age of 15.75 years, with a stapdard deviation of 2.3 years,
whereas the urban dwellers began to smoke at a mean age of 14.63 years, with a
standard deviation of 4.1 years. Is tbere 2 significant differeace (usiag the pooled
variance estimate)?

18.4 A water utility wishes to assess the effectiveness of ap advertising campaign to reduce
water consumplion. Before the campaign the utility randomly selects 100 households
throughout a region and records water usage for a morning shower as averaging 87
liters, with a standard deviation of 15 liters. It then randomly selects another 1€0
households after the campaign. These houscholds average 74 liters per shower, with a
standard deviation of 14 liters. Is there 2 sigpificant difference? What coaclusiops can
the utility make about the advertising campaign? What factors need to be considered
when selecting the appropriate 1est?

18.5 A new form of organic pest control is develo

18.6

18.7

The two samples r-test Jor the equaliry of means Z€6S

-

. D ped for crop growing. Fi lots i
are sprayed with traditional pesticide, whereas 50 are sprayed imw“w,u cM,M_B.uM%

coatrol. The output, in tonnes, of each set of plots, is recorded as follows:

Mean O_EUM. icide Organic pestic de
Standard deviation 03 MMM

Conduct a r-test ta assess the effectiveness of the new method.

A study is conducted to investigate the political awarencss of children iz public (state
funded) and private schools, Twenty-four students from a private school and No.
mEn_.w.ga from a nearby pubiic school are tandomly selected, and zsked 2 series of
n:nm:os_z relating to the political system, The mean score for nr{us school m.:ma:.z 1
46 m:n_ for public school students the mean score is 64. Both samples have a mgnb_.m
deviation of 18.5. Conduct an independent-samples (-test for the equality of means to
confinn your decisions as to whether the two school systems are significantly different

Wmo the Employee data :_o._o determine whether there is a significaot difference
ctween the mean current salaries for employees based on minority classification.
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The F-test for the equality of more than two means:
Analysis of variance

In Chapter 18 we considered the f-test for two independent samples, and tested the assumption
that the sampies came from populations with the same mean:

Ho: gy = py

We worked through an examplc where we had a sample of 20 children from >:mﬁm=» and
20 from Britain. Each child was asked how much TV, in minutes, they waiched per ::wE. We
compared the samples in order 10 test the null hypothesis that there was no &mﬂau.on in the
average amount of TV watched between children from the two countries, illustrated in Figure

16.1.

Population of
British children

Population of _wani to compare

Australian chifdren

inference |inference

=] | Sample of
|__ British children

Samplc of
Australian chiidren

Figure 19.1 Hypothesis testing: the two samples case

We call this a two samples prob{cm because we are using two 832& to .Ewra E.Anqnmn»u
about each population. However, sometimes the problem we are u@&d&ﬁm is slightly wider.
Instead of just comparing two couatries, we might be interested in comparing the average
amount of TV watched by children in s¢veral couniries. For example, we may have samples
of 20 children from Australia, Britain, Canada and Singapore, and want to see if the meacs for
all these four populations are equal:

Hepp=p ==

This is called the problem of & independent sarples, where & is any number greater Ep.:
two. Here & is four, and this example is illustrated as in Figure 19.2. One way 1o deal €=.: this
probiem is to test all the possible two samples combinations. With four samples the maximum
oumber of combinations is six, illustrated in Figure 19.2 by the heavy arrows running from
each population to the others:

Australia by Sir.gapore
Australia by Canada
Australia by Britain
Singapore by Canada
Singapore by Britain
Canadz by Britaia
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Thus we can undertake six separate r-tests and assess whether there are any significaat
differcnces. When we are working with more than two samples, however, we can test for the
equality of means all at once using the analysis of variance F-tes! (ANOVA). The reason why
a single ANOVA s preferable to multiple f-tests is that the risk of making a type | error for
the series of 1-tests will be greater than the stated alpha level for each r-test. Thus if the alpha
level fer each individual t-test is 0.0S, the chance of making a type [ error over all the t-tests
that can be conducted for a given number of samples will be greater than 0.05. The ANOVA
test. on the other band, has a stated alpha level equal to the risk of making 2 type I error.

Sample o~.|_

{Singaporean children

_ " Sampleof
| Canadian children

tnference inference

| |

Population of _uc?.,._m:ni of
Canadian childrea Singaporean children

] H

¢ ,/vo_u:_h_..ncz of
ﬁm:.:m__ children

Australian children

inference inference

Sample of Sample of
Australian children British children

Figure 19.2 Hypothesis testing for more than two samples

The ANOVA procedure tests the null hypothesis that the samples come from populations
whose means are equal. If the null hypothesis is true, samples drawn from such populations
will have means roughly equal in value. In the example of childrer acd TV time, the samples
will all have roughly similar means, if the null is correct. Of course, we do pot expect the
sample means to be equal, even if the population means are the same, sitce random variation
will affect the sampling process. The question is whether the size of the differences between
the samples are consistent with the assumption of equality between the populations.

Conside: the hypothetical sample results for our four groups of children in Table 19.1,

Table 19.1 Descriptive statistios for TV viewed per night, in minutes

TV watched per night Country

) Canada Australia Britain Singapore ~
Mecan 127 166 87 203
Standard deviation 27 29 30 26

We can see that there is a good deal of varialion befween the means of the four samp.cs. In
fact if we compare the highest with the lowest values, which are the means for Canada and
Singapore, we can see a very large difference in average arzounts of TV walched. Notice also
the row fer tive standard deviation for each sample. We can see that within the sample for each
country the results are clustered together, as indicated by the small standard deviations
relative to the means. In other words, there are distinc: differences from country to country,
but similarity within each country. On the face of these stafistics we might question the
hypothesis that the populations from which these samples came have the same mean.
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This logic is exaclly the same as that used by ANOVA. It compares the amount of variation
between the samples with the amount of variation within each sample — hence the name
“apalysis of variance’. Thus, although we are interested in the difference cngoms ...rn means,
ANOVA actually works with the variance, which is the square of the standard deviation.

Before working tarough an ANOVA for our hypothetical survey of children from four
countries, we will illustrate the logic behind the test. Consider the two hypothetical sets of

distributions in Figure 19.3.
3

(a)

(b}

variance

%, X on X X

-4

Figure 19.3 (a) Large variesice withue: samples, and (b) Small variance within samples

Four samples are randomly selected and lhe mean for each is calculated, together with the
overall mean when the cases for all four samples are pooled together ( Xj_,). In both (a) and
(b) we can see that the means are mol ecual: there is some variance between the sample
means. We can also see that while the sample mecans are the same in the two sets of
distributions, there is aiso an important and obvious difference. In (a) the spread of cases
within each sample around the sample mean is quite wide, whereas in (b) the variance ENEE
cach sample is relatively small. Each sample in (b) seems distinct from the others, irn_,ow.m i
(a) there is considerable overlap in the distributions, so that the samples seem to blend into
each other, We would be more inclined to consider the second set of samples (b) 10 come
from populations that are different from each other, whereas the first set (a) can cw rore
casily explained as coming from identical populations, with random variation causing the
samples to differ slightly from each other. :

We can capture this difference by calculating two numbers and expressing one as 2 ratio of
lhe other. The first number is the amount of variance befween the sample means and the wns.n_
total mean. Consider the two sets of sample means shown in Figure 19.4. We can see n
Figure 1$.4 (3at io (a) the variznce of the sample means around the overall mean Aiuw: the
samples are poo:ed together) is small relative to the second situation. Thus the samples in (a)
are less likely to form distinct clusters of cases that reflect underlying differences between the
populations.
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(a)

X
’3(,.__
i
A)q_ "~

- —
'S

(b)

q}q__
>l ——
-
s
P
=

N S - = - L — —
Figure 19.4 (a) Small variation between sample means and overall mean, and (b) Large variation
between sample means and overall mean

S SO——

We cannat jump, however, 1o this conclusion about the populations just on the basis of the
vanaace between sample means. As we saw in Figure 19.3, the variances within each sample
o {a) might be very small, so that cach sample forms a distinct ‘spike’ around each sample
mean. The variances within each sample in (b), on the other hand, might be very wide so that
the samples still blur into each other, despite the differences beiween the means. To capture
these aspects of the distributions, we need to calculate a second number, which measures this
variance within each sample around each sample mean. The extent 1o which samples will
form these distinct spikes around their respective means will be expressed by the ratio of the
variance between samples to the variance within samples,

The one-way analysis of variance F-test

"We can pow use these general concepts te determine whether there is a significant difference
between children in different countries in terms of the average amount of TV they waich. To
calculate the relevant test statistic we need to formalize some of these basic concepts. The
first is the total amount of variation for the scores of all 80 cases sampled. This is measured
by a concept called the total sum of squares (TSS). This is calculated using the formula:

7ss = x(x, - x)’

The value for the TSS can be divided into two components, The first is the amount of
veriation within each sample, called the sum of squares within (SSW). The second is ‘the
acount of variation between each sample, called the sum of squares between (SSB):

135S = SSB + S5W

Each of these components of the TSS can be caiculated in the following way, where X, is
the mean for a given sample and n; is the number of cases in a given sample: .

—\2
ssw = 2(x, - X,)

558

(X, - ¥V

These formulas should remind the reader of the fermula for the standard deviation, since
they embody the same principle that variance relates to the amount of difference between
individual scores and the mean. As with the formula for the standard deviation, these
definitional formulas can be difficult 10 work with. In particular, to calculate the TSS, it is
easier 1o work with the formula:

78S = 2x? - nx?
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Quce we have TSS, we oanly need 10 calculate either SSW or SSB, and then use the formula SSB = ThiX. - Mﬁ
TSS = SSB + SSW to calculate the other. In other words, if we calculate TSS and SSB, we nes
substitute these into the following equation 10 arrive at SSW: = 20(i27.3- _.B.m% + 20{165.85-:70.8)" + 20(186.75 - :o.m".w +20{203.15-170.8)”
= 3
SSW =755 - SSB 64.35
= — = — 3 - 1
To sec how this is done we will work through cur example with the four samples of 20 SSW=T55-S56 = 124.189 - 64,333 = 59836
ildren. Th lculati ¢ best doae b tructing a listed data table (Table 19.2). " . . L .
chil ese calciations ar .mm cuo_ Y CONsUUCtIOg @ i {Table )- The The actual test statistic we use to determine the statistical significance of the sample result is
scors for each case is listed, with the sampices placed in separate columns. S : - 7
the F-ratio. We have actually encountered this test statistic before when analyzing SPSS
Table 1922 Calculations for ANOVA o:nm..: for a two mE:.EaM Iaﬂ” Just as in that case, the F-ratjo tests for a difference between
P yywer - o= variances. Hrn F-ratio is a ratic of the two variances, the SSB and SSW, cach corrected for
X 5% 57 1 X X X the appropnate degrees of freedom, where k is the number of samples:
89 7921 102 10,404 124 15,376 24336
92 8464 129 14,400 135 18225 27,225 S8
95 9025 132 17,424 156 24336 30,276 T
105 11,025 134 17,956 165 27,225 32,041 Promte = =1
. X SswW
106 11,236 145 21,025 167 27,889 32,400
108 11,664 149 22,201 172 29,584 33,856 n -k
110 12,100 15€ 24,336 178 31,684 35721
113 12,769 162 26244 182 33,124 35,721 L : . ] .
116 13456 165 27225 184 33856 38,416 Substizuting the relevant nurnbers ‘nto this equation we get:
125 15,625 165 27.225 185 34,225 41,209
128 16,384 165 27225 186 34,596 41,616 ANY:] 64,353
135 18,225 174 30276 187 34,969 42,849 o1 o
138 19,044 179 32,041 189 35,721 44,100 Feomple = "o = oo = 2125
139 1921 180 32,400 198 39204 47,524 SSwo 39,336
140 19,600 187 34,969 209 43,681 48,841 n-k 80 - 4
146 21,316 189 35,721 212 44,944 51,984
”w.” Mwum Mwﬂ. MM.M% Mw wm.wwm WMMM“ As with the other test staistics we have come across, namely z-scores and f-scores, we nced
167 27,889 206 42436 223 50.625 58081 1o obtain the p-score for this test statistic ‘0 order to decide whether to reject or not reject the
194 37,636 210 44,100 240 57,600 62,500 ncll hypothesis. To de this we refer to the table for the distribution of F (Table A3), taking
TX=2546 TX,=3317 IX=3738 into account the following three factors:
X=337732 X} =566,425 TN =714,117 YX/=838 701
\. The degrees of freedom jor the estimate of the variance between samples. This is the
From this iafecrmation we cza calculate the mean for each sample, 2n¢ the mean for all the number of sampZes minus oue, and appears in the numerator of the F-ratio. The formula
samples combined: with the valucs for our example is: ’
~ 1546 _ db=k-1=4-1=3
X anota = —— = 127.3 minutes
Nw 2. The degrees of freedom for the estimate of the variance within the samples. This is the total
X W = 3337 _ -65.85 minutes number of cases minus the number of samples, and appears in the denominator of the F-
autrolia 20 ratio: -
- 3735 . i
Xpricam = 0 - 186.75 minutes dfw=n-k=80-4=75
e
X _ 4063 _ 203.15 minutes Notice that Table A2 does not bave a line for the ‘degrees of freedom within’ equa: (¢ 76.
gapore 20 In fact, whole ranges of vaiues arc skipped afler the first 30. This is because the critical
not d i i i T
54643317 +udu+$av scores do not decrease very much moq._bo:w:._nus_ increases E,En degrees of {reedom afier
¥ =1 =~ [70.8 minutes 30. Wxere we bave degrees of frescom that do not appear in the table, we refer (o the
80 closest value that appears in the table below tse desired number. Here the closest value
. . . delow 76 that appears in the table is 60.
Us:ng this informatior we can calculaie the TSS, SSB, and SSW:
3. The alpha level. ULike the tables for z and r-distributions, the table for F-scores (Teble
7SS = X7 - nx? = Wuq.du&a?ﬁrjop3+§mho; - 806(170.8)° A3) is produced for z given alpha level of 0.05. Thus this table does not aliow us o
- 124189 determine whether a sample result is significant at any other alpha level. That is, we would
’ need a differeot tadle if the alpha leve, were not equal 0 0.05.
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Since the table for F-scores is produced for a given alpha level of 0.05, we E.: instead turn
directly to SPSS 2s 2 means of obtaining the p-value for the sample results, since SPSS will
give us the exact significance level of the F-score.

ANOVA using SPSS

The data from the previous example have been entered inte mmm.mA The data file has two
columns, one for the variable indicating how much TV ecach child watches, and another
indicating their country of residence. To conduc: an ANOVA we .s,oqx through the procedures
in Table 19.3 and Figure 19.5, which: also presents the results of this set of commands.

Table 19.3 One-Way ANOVA oc SPSS (fiie: Ch19.sav)

SPSS ¢« d/action Comments _

{ From the menu sclect Analyze/Compare Means/ This brings up the One-Way ANOQOVYA dalog box
One-Way ANOVA

2 Click on Minutes of TV watched m the source

This highlights Minutes of TV watched

vanable list
3 Clickon » pointing 1o the box below Dependent  This pastes Minates of TV in:u?.,,._ in the dependent
List: variable target list, which is the variable used to compare

the samples
This highlights Country of residence

This pastes Country of residence in the Factor variable
target list, which will form the samples to be compared

4 Click on Country of residence in the source list
5 Chckon ) pointing 1o the box below Factor:

6 Click on OK

O_.._m<<m<
ANOVA

Minutes of TV watcked per night

Sum of Mean

Squares dr Square F Sig.
Between Groups 64353.438 3 | 21451146 27 246 g0
Within Groups 59035050 76 787.303
Total 124189.488 79

Figure 19.5 The SPSS ANOVA dialog box and ANOVA output

Lookitg 2 the SPSS output we can se¢ the results we calculated by hand. H_.n sum of
squares between, tae sum of squares within, and the total sum of squares are in the m‘an”
column of the ANOVA table, together with the relevant degrees of freedom in the thir
column. From thess, the F-ratio is 27.245, which is the same as that calculated uccﬂo
(allowing for rounding). The probabiiity is printed as .000. This does not mean ,__E.q t M
probability of obtaining an F-ratio of 27.245 is zero. SPSS _A.E:Qw off the probability to
decimal places, so that this result is read as ‘less than 5 in 10,000,
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We mus( stop at this point and be clear about what this F-tes: ANOVA has determined. The
pull bypothesis is that the samples come frora populations with the same meao:

Hepi=m=pm=_=n

We have found that the p-score is so low that we reject the null hypothesis of no difference;
by rejecting the nall hypothesis, we have decided that af jeast one of these pepulations has o
mean that is not equal 1o the others. Notice the particular wording of the conclusion: af feast
one population differs from the rest. The F-test itself does not tell us which of the populations,
aod how many, differ. Which of the possible pairwise differences between samples are
significant cannot be answered by the F-test.

To determine which samples are significantly different, afier having performed an F-test and
rejected the nuil, we tum to a set of techniques called posr hoc comparisons. Thus when
conducting an F-test we normally zsk for some follow-up information to be provided, so that
if we do discover a statistically significant difference, we can determine which of the
populations differ(s) from the others. These are called post hoc comparisons. In SPSS post
hoc comparisons are available as an option in the One-Way ANOVA dialog box by clicking
oo the Post Hoc burton. This will bring up the One-Way ANOVA Post Hoc Multiple
Comparisons dialog box (Figurc 19.6), which provides us with a range of options for
comparing the samples so that we can determine exactly which ones come from populations
different from the others.

E =
Figure 19.6 The Post Hoc Multiple Comparisons dialog box

Uafortunately, there are many poss hoc compatisons to choose from, each subiiy different
from the others. We will not explore these subtle differecces betweea the chioices; in most
situations they will all lead to the same conclusions. The grain considerations ipvolved in
choosing among the options are:

* whetber we can assume equal variznces among the populations 10 be compared;
* whether the samples have equal or roughly equel variances;
“ the extent (o which we want to minimize sype | errors.

The SPSS Help function provides a reasonably simple explanation of the post hoc
comparisons (right-click on each item to bring up the contextual help). When in doubt, the
most conservative test should be used; namely, the one that is the least likely to find a
significant difference and this usually is the Scheffe post hoc comparison, which is selected
by clicking on the box next to it. The other advantage of the Scheffe test is that it also
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cxamines sub-groups formed by various combinations of the samples, ratber than just
pairwise comparisons. [f we select the SchefTe test we will produce the output in Figure 19.7
along with the ANOVA output in Figure 19.5.

Mulliple Comparntsons
OependantVaranle: Minutes of TY Walthed per Night

Schedfe

Aoan 95% Coattdznee Interaal

Differance Eonaee Upper

(Iy Country o( Residence () Courdry of Residente {-J) Sty Etror Sig Bound Bound
singapore aushraia 37 20 8873 001 1183 6157
Britain 16.40 8873 336 -6.97 i
canada 75.85* 8873 ey 5048 101.22
austraiis singspare 3730|3873 oa1 6267 ETEE]
ortaln -20.00 8371 44 -45.21 447
tanada 36 45 8873 001 1318 6392
Britain smpapore 40 1873 339 FTEH €97
australiy 20.90 8373 A48 447 %2
canada i 59,45 8373 000 3408 84.02
canada singapore 7865 8.873 oog | -101.22 -50.48
38,557 B8T3 001 6392 RERL]
5945 B.B3 000 -84.82 -34.08

* The mean diference is significant af the 05 level.

Homogeneous Subsets

panutes o TV Watched ped Nt

Scheffe”

sursel for algha = 05
Couniry of Residence N ] 2 3
catiada 70 12730
australia 20 165.85
britaln 20 185.75 18675
singapore 20 0305
Sia 1.000 145 333

Means for groups In homopensous subsals are tisplayed
a Uses Harmonic Mean Sample Sime = 20000

Figure 19.7 SPSS Past Hoc Maltiple Comparisons outpul

This table provides a comparison of meaos for cach country of residence against each other
country of residence. The first rows compare Singapore with each of Australia, Britain, and
Canads. The second set of rows compare the mean amount of TV waiched by the Australian
sample with each of the other three countries, and so on. Notice that this results in the same
companson being repeated. For example, in the first set of rows we see that the difference
between the means when comparing Singapore with Australia is 37.3 minutes, and in the
second set of rows when comparing Australia with Singspore the mean difference is -37.3
minutes, since this is effectively the same comparison looked at the other way.

The importznt aspect to this table is Sig. column that provides the exact significance for the
difference berween any two means. Where this is less thao 0.05 SPSS places aa * next 1o the
value in the Mean Difference column, indicating a significant difference be(ween the means of
the two samples being compared, at the SPSS default significance level of 0.05. Collecting
these * together we can see that a significant difference exists between the means for each of
the following painvise comparisons:

Singapore by Australia
Singapore by Canada
Australia by Capnada
Britain by Canada
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In other words, for each of these painwise combinatioas, we can reject the hypothesis that the
mean amounts of TV watched per night by children are the same (at the set alpha level).

A similar conclusion can be reached using the Lower Bound and Upper Bound values,
presented under the 95% Confidence Interval column in the SPSS output. We can see that
where the inlerval defined by these values does ot take in the value of 0 (indicating no
differcuce), an asterisk is next to the mean difference.

Example

Three children are compared in terms of their reading abilities. Each child is asked ‘o
complete 12 reading tasks, and the number of mistakes made during cach reading task is
recorded (Table 19.4). Can we say that these children differ in their readings abilities?

Table 19.4 Number of mistakes per child

Task number Alexandra Katherine Evelyn
i ¥ 15 12
2 6 S 6
3 14 26 8
4 9 i5 9
5 14 [ 10
6 8 9 14
7 12 17 16
8 19 {2 5
9 6 6 18
15 1 13 21
[H 8 13 15
12 13 S 4]

Step 1: State the null and alternative hypotheses

Hq: The mean number of mistakes made by cach child are equal.
Ho: py = pro =5

H,: The mean numbser of mistakes made by each child are not all equal.
Hipy#ua# 1,

Step 2: Choose the tesi of sigrificance

The research guestion is interested in the mean oumber of mistakes to see if they are equal.
We also have three samples, so we are comparing means across more thao two samples. The
appropriate test is therefore the ANOVA F-test for the equality of mears.

Step 3: Describe the sample and calculate the p-score

In conducting an ANOVA it is helpful 1o set up a listed data table witk the relevant
calculations (Table 19.5). From this information we calculate the mean for each szmple, and
the mean for al{ the samples combined.

= 130
X pterandra = e (03
= 140
X harkering = q 1.7
= 145
\K\E.._v.: = ﬁ_tmn = 12.
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Table 19.5 Calculations for ANOVA

Katherine
Alexandra ; k_ 1ETil k\u = : k.u
Cams B 225 12 144
9 81 6 36
20 400 8 64
15 225 9 81
I 36 10 100
9 3i id 196
17 289 16 256
12 144 5 25
€ 36 18 324
13 169 21 44)
13 169 15 225
s 25 11 . _ 12
X -1588 X, =140 X/ =1880 X, =145 X =2003

(130+140 +145)

X = = 11.5
L 16

These are the descriptive statistics for the sample data. Clearly there is a difference behween
the samples in terms of tbe average pumber of mistakes made. Could this be due to random

variation when sampling from populations with 0o difference?
To determine this we first calculate the TSS and S5S8:

735 = TX? - nX? = (1588+1880+2013) - 36(11.5)% = 720

2 2 _
538 = zn(X, - X)' = 12(108 - 118 + 12(117-115) + 12(12.0-11.5]" = 107
SSW = TSS — S3B = 720 — 107 = 709.3

From this we can [inally calculate the sample F-statistic that we use in the (est of
significance:

E—lo 3=

n-k 35 -2

This F-score has a p-value greater than 0.05; it is m._.am.__oq..rn: the critical value for M.om
3.32, printed in the table for critical values for the F-distribution for an alpha _n<o_no~, oro .%.
these degrees of freedom. We have noted that the table moaAnn_:.ﬁ._ <u_1aw. or 1 MEo
distribution only allows us to determine whether a sample Em_”_:._m or is :opim_mz_?.,ubﬂ ua
0.05 level. To obtain the exact p-score for the sample ﬁ‘ﬁucm:.o we can either ﬁ_ﬂ: Em. WW
into SPSS or into a web-based statistical calculation page (a full list of :,.amn. pages is Em__w ¢
at Bmﬂcaa.mo_.noa\,__ow:vq_mmﬁas_,:_B_w\ﬁoavmlmosmv For example, if 1 enter the data
from Table 19.5 into the web-page at:

o www.physics.csbsju.cdwstats/anova_NGROUP_NMAX_form.htm]

1 obtain the following result (some of the specific calculations returned by this page will
differ slightly from my hand calculations due to rounding errors):

“The probability of this result, assuming the null hypothesis, is 0.793”
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Step 4: Decide at what glpha levei, if any, the result is significant

A sample p-score of 0.793 is clearly not significant at any alpha level, indicating that the aull
hypothesis should not be rejected. Despite the differences in the sample means we canpot say
that these reflect diflerences between any of the underlying populations. The differences, in
other words, we atzibute Lo sampling error.

Step 5: Repert results

The reading abilities of three children were assessed by comparing the number of mistakes
each made on a stacdard test. The mean number of mistakes made by each child is
respectively 10.8, 11.7, and 12.1. However, these differences are not statistically significant
(F=0.25p=0.793).

Summary

We bave taken the inference for a mean from the onme sample case, to analyzing iwo
indepeadent samples, through to the analysis of more than two samples. In the following
chapter we will complete the discussion of making inferences for means by detailing the two-
dependent samples case. However, these chapters do not exhaust all the possible forms of
analysis for means. A whole class of procedures czlled General Linear Models exis: to handle
more complex situations, available under the SPSS Analyze/General Linear Model
command. Three general classes of GLM are available:

—_—

. Univariate. This allows us to analyze the effect that several independent variables have
had on a single dependent variable. For exampie, I might compare two groups in terms of
teir rested heart rates, and waat to see the role that sex, age, and past exercise levels have
bad on heart rate. I could conduct separate f-test or ANOVAS to assess whether there is a
significant difference between men and women, a significant difference between age
greups, and between categeries of exercise level. The GLM Univariate command allows
these comparisons to be made at once, and to analyze interactions between these variables.

2. Multivariate. This allows us to analyze differences between groups (defined by one or
more variables) acrose a number of dependent variables. For example, [ might want-to
measure the impact of sex, age, and past exercise levels on heart rate, walking speed, and
blood pressure. Here I have three dependent variables, whose distributions are analyzed
jointly when assessing the impact of the independent variables.

3. Repeated Measures. This is particularly useful in medical/health science research where
two groups (control and experimental) are each compared before and after some
iniervention. Thus the samples are dependeut and we want to assess both the before<and-
after change (within subjects) and the difference across the groups (between groups).

Exercises

19.5 A comparison is made between five weifare agencies in terms of the average number
of cases handled by staff during a month. The research is aimed at finding whether the
workload is significantly different between agencies.

(a) Explain why an ANOVA should be used to explore this issue.

(b) State the null hypothesis for this research in words and usicg matherratical
notation.

{c) From the following hypothetical results czlculate the F-ratio and make a decision
about the aul (@ = 0.05).
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19.2

193

19.4
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Degrees of Freedom

n Sum of Squares ]

50

Between Agencies #10 o
Within Agencies L
Total 7260

s different teaching methods on three separate o_ﬁ.uaP The
he relative offectiveness of these methods by Rm:um_mo_‘ 2
ses. The data on {inal grades are presenied "o the

A university instructor use
instructor wants to assess
significant difference between the clas
following table:

Method A Mathod B zzw.wx_ C
21 T E
19 28 o
21 2 20
24 2 n
. % 2
e 34 2
19 kY] 5
23 29 2
35 2 2
2% 30

.ation for cach sample. Can you articipate
jate the mean and standard deviation . :
© Mwﬁchnmo descriptive statistics the cesult of an ANOVA conducted on these data?

(b) Conduct the ANOVA 10 assess your expectations.

The prices ($) of ap item are collected from the stores of three separate retail chains:

1 Chain B Chain C

nwnw_“ux, 3.20 WNN
330 335 %
345 315 Y
435 310 2.
320 2.99 w»Nm
325 330 u.mu
3.30 3.15

i ice this good differently?
say that these chains do not price g ) >
P m”w@%wwomw data in SPSS and confirm your results. 720. :_m you will unﬁ__ ?cw
. columns: one column to indicate the sample cach case fails into, and one colum
A endent variable.
indicatt h case’s measurement for the depen .
©) ﬂawo%“_:_m:wns significant difference, use the Scheffe post hoc comparison 10
determine which group(s) are different.

a hypothetical study of the effects .3 blood
Subjects were randomly assigned into four
a different blood alcohol level. Each group
s spent on target when steering a car 10 3

The following data were obtained from
alcobol levels on driving _umn\o:dm_u%,
groups, with each group .caEw. assigned
was then measured by ume in second
simulated environmeni. o "
() Using an ANOVA F-test, determine whether driving ability is significantly re
a H »
ith hi blood alcohol levels. ) . \
M_”____u—. __.m._wwm data in SPSS and confirm your results, Note Em: you will Unnh_EﬂME
® QM_E:E% one colump to indicate the sample cach case wmv_u_w into, and one ¢
indicating ? 3 the dependent vanable. )
dicating each case's measurement for e
(©) __M_. WH.o.._ Mﬁ_ a signmificant difference, use the Scheffe post hoc companso

determine which group(s) are differeat.

e —————

I——————
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27%
Level | Level 2 Level 3 Level 4
216 178 18¢ 166
187 144 132 145
166 176 172 148
242 132 137 136
229 188 154 126
276 168 154 i76
233 204 176 133
166 187 178 184
208 165 169 155
224 193 188 177
213 201 175 189
254 197 186 165
227 183 179 172
203 176 168 172
206 196 188 179
221 182 176 L6
219 202 185 180
220 190 195 176
196 202 177 163
230 188 136 193

19.5 The following data are from a hypothetical sample of 20 childrea from the USA,

19.6

19.7

representing the number of minutes of TV watched per night:

195 184 165 162 168 196 217 190 212 232
204 205 217 210 230 197 180 192 190 198

{a) How will the addition of this sample to the ANOVA of Australian, Briish
Canadian, and Singaporean children affect the number of degrees of frecdom?

(o) Enter these data into the file with the data for the Australian, British, Canzdian, and
Singaporean children and recalculate the ANOVA and post hoc apalysis on SPSS.

(¢) What do you conclude about the amount of TV waiched betweer. childrea from
different countries?

’

Banter into SPSS the data from the example in the text above regarding the reading
ahility of three children and corduct a comparison of the means to see if there is.a
significant difference. -

Using the Employee data {ile determine whether there is a significant difference
across employment categories in (erms of current salary.
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The two dependent samples f-test for the mean
difference

Dependcent and independent samples

In the previous 2 chapters we looked at inference tests for the mean of two or more
independent samples.

Edependont saiples a7e THGSE WHEre e critCria foF selceting the cases thit make
sample do not affect the criteria for selecting cases that make uip:the other sample(s). . =

one

For example, to compare Australian and British children in terms of average amounts of TV
watched, we selected any random sample of Australian children and any random sample of
British children. However, there are research questions that require us to choose samples thay
are not independent. We sometimes want to link our samples so that if a certain case is
included in one sample this necessitates a specific case being included in the other. Samples
that are linked in this way are called dependent samples.

There are generally two situations in which such dependence is required:

1. When the same subject is observed under rwo different conditions. This is often used in a
before-and-after experiment (sometimes called a pre-test—post-test design). For example, a
new drug may be tested to see its impact on blood pressure. The blood pressure of a group
of subjects is taken and then these same participants take the drug and their blood pressure
is again measured. Obviously, to isolate the effect of the drug, a person who is included in
the ‘before treatment’ sample is also included in the ‘after treatment’ sample. The
measurement for cach person in the “before’ sample is then matched with their respective
measurement afler receiving the new drug to see if it has improved their condition.

2. When subjects in different samples are linked for some special reason. An example may be
where we want to compare the amount of TV watched by a parent with the amount of TV
watched by his or her particular child. 1f we choose a certain set of parents, we cannot
choose any set of children with which to compare them: the sample needs to be comprised
of the children of the people making up the parent sample. This is sometimes called 2
matched-pairs technique.

It is clear that in either situation the make-up of one sample determines the make-up of the
other sample. The advantage of a dependent sampies method is that it controls in a loose
fashion for other variables that might affect the dependent variable. For example, consider
further the issue of whether parents and children differ in the amount of TV they watch. If we
take a random sample of parents and a random sample of any children and compare the means
for each sample, we might find that there is a statistically significant difference. But ;,._m
might not be due to family status. There might be another variable, such as socioeconomic
status, that affects TV watching. and because our sample of parents has more cases from one
socioeconomic group than does the sample of children, a difference has emerged.
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It might be safe te assume, however, that any given parent-and-child pair falls into the same
sociocconomic group. By taking parent-zad-child pairs, therefore, and looking at rthe
difference for each pair, the effect of other varzbles such as socioeconomic status is
mitigated. In effect we are saying that all otker variables tha! might determine TV watching
are the same for each member of a given pair, 2nd therefore only family relationship differs
between them, allowing us to isolate its impact on the deperdent variable.

The two dependent samples f-test for the mean difference

To illustrate the use of a depcender! (07 paired) samples f-test we wiil work th-ough the
following example. A survey of 10 famiiies is cooducted ard a parent from eack housebold
and a child from each household are each asked to keep a diary of the amount of TV they
watch during a set time period For cach parent-ckild pair the amouct of TV watched in
minutes is recorded (Table 20.1).

Since the variable of irterest, amount of TV watching, is measured at the interval/ratio level,
the mean for each sample has been caiculated. [ we were companieg independent samples of
adults and children, we would conduct a r-lest on (he differeace between these two sample
means. This procedure for the independent samples t-tesi cac be summarized as foliows:

1. Calculate the mean for each sample, then
2. Calculate the difference between (he two sampie ricans.

However, here we have selected thesc two sampies 5o hat we can malch each meraber of
one group with a member of the other. To conduct a depeadert samples f-lest, we reverse the
order of the twe steps:

|. Calculate the d:fierence for each pair of cases (D), ther.
2. Calculaiz the mean of the differences AROVA

To put it even more succinctly, ao independent samples f-test looks at the difference between
the means, wkile a dependent samples f-test looks at the mean of the differences.

Teble 20.1 goes through the first step involved in performing a dependent samples r-test by
calculaling the difference in the amount of TV watched for each pair.

Table 20.1 Amount of TV watched by each household pair

Houschold  Minutes of TV watched by citild  Minutes of TV watched 3y pareni Difference (D)
1 45 23 4523 =22

2 56 25 s6-25=31

3 73 43 n-n-30

4 53 26 53-26= 27

S 27 21 27-21= 6

6 34 29 u29= 5 .
7 76 32 76-32 = 44

8 21 23 21-21=-2

9 54 25 st15=29
10 43 21 - Ba=22
Mean X=X a2 7-2 268 Mb-%bz

n ri n

You may notice that the mean difference is equal to the difference between means; this will
always be the case. So why go threugh this alternative procedure for calculating the difference
between two means? Although the mean difference will always equal the difference between
the means, the veriances will not be the same; the variance around the mean difference is
much smaller than the variance around the difterence beiween means. Because of this we may
fail to reject a difference if it is treated as a difference between means, when we would have
rejected it if it were treated as a mezn difference
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We can see in Table 20.1 that there is on average a difference for each of the pairs that make
up the samples. Let us assume that in the population as a whole there is no difference in the
amount of TV watched between parents aad their respective children. The null hypothesis is
written in the following way:

mo_\kcho

When sampling from such a population, occasionally we might find a parent who watches
more TV than his or her child, and occasionally we might find that a child watches a little
more than his or her parent, but if the null hypothesis of no difference is true, on average the
positive differences will cancel out the negative differences. It is not unreasonable 10 expect
that random variation might occasionally result in a few extra households in which the parent
watches less TV than the corresponding child, or vice versa, so that the mean difference
between the samples is not zero. The bigger the difference between the sample result and the
expected result of zero mean difference, though, the less likely that this will be due to random
variation and the more likely that it reflects an underlying difference between parents and
their children.

In this example the average of the differences is 21.4 ninutes. Should this ditference
between the samples cause us to reject the hypotkesis that there is no difference between the
populations?

The formulas involved in corducting 2 r~test for the meaa difference arc:

Xp_

t =

where:

Note tha: » refers 1o the number of pairs, and not the total number of cases. Here n = .0,
even lhough we have a toial of 20 cases made up of 10 parents and 10 chidren. Ths sample
score will be 14.2:

-4 _4s

Xp _2la
somple MU| _A&
A AT

We can refer 10 the table for critical valaes of the s-distribution to abtain the p-score for this
test statistics, at 9 degrees of freedom (tke 10 pairs minus one). We can see that (. is larger
than the largest value reported in the table, which is the f-score for a = 0.01 {Table 20.2).

If we enter our data into the statistical calculation page located at the web address,
www.physics.csbsju.cdu/stats/Paired_t-test. NROW_form.himl we find that (he exact p-score
for these data is 0.001. We thercfore reject the bypathesis that there is no differcoce in the
mear amount of TV watched by parents and their respective children at the 0.01 level.

!
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Table 20.2 Critical values for s-distributions
Level of significance for one-tail test

eI - il
! %

=)

The twa dependent samples ¢-test using SPSS

In order for SPSS to do this same calculation, we first need 1o note the special way in which
data are entered in order 1o conduct a dependent samples r-test. When coding data for paired
samples, each pair has (o be treated as one case so that the information for each parent-and-
child pair has to appear along the same row of data (Figure 20.1(a)). The unit of analysis is
the pair, not the individual people. Thus, in our example, there are only 10 rows of data.

@) 057 ; ®) PSS Data Edit

=) ox| ]33] 8l & e s e
ol eyl sy gl

&R N F| L) N 8] 3| & 5| R 8] 8] 8] 2] 86 N5
g

Figure 20.1 SPSS data entered for (a) (wo dependent samples and for (b) two independent samples

By placing each pair on the same row of data, we can match responses according to
housebold. This produces a column for the amount of TV the parent watches, which is given
the variable name parenttv, and a second columg for the amount of TV the child watches,
which bas been given the variable name chlldtv. Thus each row has an entry for the amount
of TV the child watches and the amount of TV the parent watches. If, on the other hand, we



284 Statistics for Research

were \reating the nwo samples as independent, we enter al, 20 scores in the same column, so
that there are 20 rows of data, We would then bave a second column for the variable
indicating the status of each case within a family — either parent or child (Figure 20.1(%)).

For data entered in the appropriate way for a two dependent samples /-test, which SPSS calis
a paired-samples r-test, we follow the instructions in Table 20.3 (Figure 20.2).

Table 20.3 Pawred-sampies -test using SPSS (Ch20.sav)

SPSS ¢ d/action Co 5

1 Select from the menu Anslyze/Compare Mcans/  This brings up the Paired-Samplex T Test dialog box. In the

Paired-Samples T Test ’ top left of the box will be an area with a list of the vanables
entered in the data page

Click on Minutes of TV waiched — parent, and  This highlights the two vanables that will be mutched

then click on Minutes of TV watched — child in

the source variable list

3 Click on» This pastes the highlighted variables into the Paired

Variables: target list

~

4 Click on QK

T-Test
Pakod Samples Slatistics
Std. Std Error
Mean N Deviafict Mean

Pals  Minules of TV walched - 26.80 = 6.65 210
1 pargnt

Minuias of TV walched - @m in 18.05 T

chily

Pairad Samples Correlalions
N Corrglahon S

Palt Minules of TV watched - ~
1 parent & Minutes of TV 10 BaG 04

watched - Shild

Pa¥ o Samples fest

Paired Oifferentes

5% Cordence |
Intarva! of he
Sta St Error Difference 8ig
Wean | Deviation Wear Larwer Upper t of -talied)
Palr  Winulas of TV watched -
1 parent - Minutes of TV 240 1422 450 S3157 | 1123 | -4758 ] an
witlched - ¢hild i i

Figure 20.2 The SPSS Paired-Samples T Test dialog box and output

The outpu begias with a table called Palred Samples Statistics. This provides the
descrintive statistics for the paired samples: the mean of 48.20 minutes for the 10 nEER.a and
26.8C minctes for (he 10 parents. The cext table with the correlation information is not
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relevant to our discussion bere. The important table is the last one labeled Paired Samples
Test. This contains the information on the dependent samples r-test, and confirms the
calculations above. The mean difference is calculated as —21.4 mioutes. The r-test for this
value is —4.758. From the last column we see that, with @ degrees of freedom, a mean
difference this large or greater will occur, if the null hypothesis of no difference is true, less
than one time in every thousand samples (.001). This is well below any normal alpha level,
such as 0.03 or 0.01, so we reject the null hypothesis of no difference.

The output also provides the 95 percent confidence interval for the estimate of the
difference. The upper limit of the estimate is —11.23 while the lower limit is ~31.57. We can
use this information to conduct the hypothesis test. Since the interval does not include the
value of 0, we can conclude that the differencz in the population as to the amount of TV
watched by parents and their children is not zero.

Example

A teacher is interested in the effect of a new study technique on the ability of students to
complete basic arithmetic. The teacher selects five students and asks them to complete a basic
arithmetic test. The teacher theu iatroduces the new study technique and after a month selects
the same five studenls and asks them to complete a similar test. The results are presented in
Table 20.4.

Table 20.4 Results of arithmetic test

Student  Timetocompletetest —pre ~ Timetocompletetesi—post
Stacey 73 638

Chloe 85 19

Billie 64 6.0

Alana 9.0 84

Tumothy &9 6.5 .

Mean X =762 X =712

Initially tke teacker treats these as independent samples. The average (ime for the pre-test is
7.62 minutes while for the post-test it is 7.12 mioutes. Using the independent samples s-test
for the difference between sample meaos, the tcacher obtains a sample r-score of 0.75, which
is not significant at the 0.05 level. Feeling disheartened that, although the sampie results
looked promising, the inference test did ot reject the possibility that the improvement came
about by sampling error, the teacher decides o abandon the new study method.

Fortunately a colleague knows a litile more about statistics and realizes that, since the same
students make up each sample, a dependent szmples test is required for this research desigr.
They work through the data with the following results,

Step 1. State the nul! and alternative hypoiheses
Hy po=90
H: i, #0

Step 2: Choose the test of significance

Here we are compariag two depeadent samples iz terms of mean differences. Therefore we
use the two dependent samples f-test for the mean difference.,

Step 3: Describe the sample and caleulate the p-score

To help in calculatieg the mean dufferer:ce between tae samples and ‘he associated f-scare we
construct Table 20.5.

JIIII
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Table 20.5 Calculations for dependent samples t-lest

Student  Time to complete test—  Time (o complele test — Dilference D
pre post o
Stacey 73 6.8 0.5 025
3 8.5 7.9 0.6 0.36
64 6.0 0.4 0.16
Alana 9.0 84 0.6 0.36
Timothy 6.9 6.5 0.4 , 0.16
Sum D=25 nby. = 1:29
Mean Xp =05

Substituting this information into the equation for the standard error and then for fmy. we
pel 2 test siatistic of 111.8:

= £ = =0l

-1 -1

: - %o _ 03
$ sample P O\.I
dn Vs

Step 4: Decide at what alpha level, if any, the result is statistically significant

= 111.8

The t-score, whep calculated on the basis of dependent samples rather than independent
samples, is now clearly significant at even the extremely low p-score of 0.01 level.

Step 5: Report resuits

Five children were randomly selected and asked to complete an arithmetic test, upon which
they took 7.62 minutes to complete on average. Their teacher then introduced a new study
technique and after a montb the same studenls were asked to complete a similar test. The
mean on the second test wes 7.12 minutes. The reduction in mean completion time is
statistically significant, using a dependent samples r-test (r = 111.8, p < 0.01, two-tail). The
teacher can reject the hypothesis <hat the improvement came about only by random chance.

Exercises

20.1 (a) What is the mean differerce for the following 10 pairs of observations?

Observatior. | Observation 2
1Z 15
10 13
3 13
14 14
12 18
5 13
14 18
9 9
8 11

0 13 14

~
o
il

— 2 00 N DL D N e

(b) What is the standard error?
{c) Conduct a dependeat samples r-test 02 the following data.

S

20.2

204

205

20.6
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Test the following bypotheses using the data previded:

Ho H, Mean difference Sp n a
(a) g =0 U0 23 14 20 0.10
) fip =0 o <0 -3.2 20 4i 0.05

One hundred and forty patients are given a sew treatment for lowering blood pressure.
The mear difference between systolic blood pressure for these patients before and after
the treatment is —9, with a standard deviation of 8. Given that the drug may have side
effects and therefore the need to minimize a Type 1 error, the treatment will only be
adopted if it is significant at a 0.01 level. Should it be adopted?

A company wants 10 investigate whethber changes in work organization can
significantly improve productivity levels. It randomly selects 10 workplaces and
measures productivity Jevels in terms of uails per bour produced. It then introduces a
program in these workplaces giving workers greater discretion over conditions ard job
structure, and measures productivity levels 6 moaths later. The results are presented in
the following table:

Workplace Producuvity before change Productivity afier change
1 12¢ 165
2 121 154
3 145 120
4 112 155
S 145 164
6 130 132
7 134 154
B 126 162
9 137 13¢
10 128 142

Has the program significantly improved productivity levels (note the form of the
2lternative hypothesis)?

The following data list the asking and selling prices (in dollars) for a random sample of
10 three-bedroom homes sold during a certain period: -

Home Asking price ($) Selling price ($)
1 140,000 144,300
2 172500 169,300
3 159,90C 155,000
4 148,00C 150,000
5 129,900 129,900
& 325,000 315,000
7 149,700 146,000
8 147.900 149,200
9 255,000 255,900
10 223,900 219,000

Why is a dependent samples test appropriate in this siteation? Us
samples f-test, do people receive the price they want when selling

ing 2 depeadent
their bome? Enter

these data in SPSS and conduct this test. Compare the results with your kzod

calculations.

A auiritionist is interested in the effect that a particular combiration of exercise ard
diet kas on weight loss. The putritionist selected a group of people and measured their
weight in kilograms before and afier 2 program of diet and cxercise. A paired-sampics
r-test was conducted on SPSS with the foliowing results:
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20.7

20.8

20.9

Statistics for Research

Paited Samptes Statistics

st B Emat
Mesn N Disviatian Wean
Pair  Weight in kg Pre-Test 1min 21 1118 744
1 Welgrt In Kp Fost Test 8643 pil 964 2.10
Paed Samples Corvelidions
N Corelation Sly
Pelr Weignt in Kg Pre-Test &
4 Weignt in Kg Post Test z $74 000
Pakred Samples Test

Paireg Difierences

) 95% Comfsence
Intervil of the
ar S Emor Difference Sig
Miean | Deviabon Maan Lrwer Lppet t df (2-tailed
Fair Weight in kg Pre-Test- = ;
f Waightin ig Past Test 357 281 &1 232 495 | s.oes 20 400

From this output determine the:

(2) variable names assigned 1o the before-and-afier measurements;

(b) number of pairs in the test;

(¢) mean weight for the pre-test sample;

{d) mean weight for the post-test sample;

(¢) mean differcnce between the two samples;

(D valug of (pmyr and the number of degrees of freedom;

(g) probability of obtaining this mean difference if the null hypothesis of no difference
is true;

(a) upper limil of the confidence interval for the estimaie of the difference;

(1) tower limit of Uie coufidence interval for the estimate of the difference.

(1) What should the nutritionist conclude about the effect of the program?

From the previous question if this nutritionist considered an average weight loss of §
kg or more to be the measure of success of this program, can we say that the program
was successful? What does this say about the difference between practical aod
statistical significance?

Using the data for the example in the text regacding the study technique 1o improve
mathematical skills, cnter the data into SPSS, first to conduct an independent samples
test and second to conduct a dependen! samgles test. What explains the difference?

Using the Employee data file determine whether tkere has been a significant increase
in salaries since employees began working at the company. If the research question
was, altervatively, whether any increase was significan‘ly greater than $15,000, what
would you conclude?

|
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PART S

Inferential statistics: Tests for frequency distributions
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One sample tests for a binomial distribution

The previous chapters looked at inference tests for a mean. These procedures apply to
research questions that direct our investigation to the central tendency of a distribution, and
the variable in which we are interested is measured at the interval/ratio level. We call such
tests parametric tests because they test hypotheses about population parameters (in this
instance the mean). However, there are many instances where we are interested in aspects of a
variable’s distribution otker than its mean, such as its frequency distribution.

Take for example the problem we dealt with in Chapter 16, where the Health Department
had a policy of allocating funds to a region depending on whether the average age of the
population is over 40 years. Clcarly, this policy rule directs our analysis to the average value
for the variable of interest — age. Assume that the Health Department suddenly changes its
policy rule and decides now 1o provide extra funding to a region’s health secvices only if 20
percent or more of the popilation in that region is over 40 years of age. Suddealy the meaa
age of the population becomes irrelevant. We can still calculate the mean, but this wiil not
assist us in making the policy decision about fuoding. The approprate way (o describe the
data (0 deal with this sew policy rule is to divide the sample into those people who are 40
years of age or less and those over 40, and czlculate the perceatage of people in each
category. In effect, we¢ bave organized the da:a into the simplest tyce of {requency
distribution, called a blnamial disaribution.

Data considerations

Some varables are ntinsically measured on a dichotomous scale. A classic example is a coin
toss, which has only two possible outcomes: eithet heads or tails. Similarly, questicns i
opinion polls that allow only *Yes/No® responses are dichotomous. Sex is another comnion
example of a variable that intrinsically has a binomial distribution: someone is either male or
female.

However, even where a variable dees oot initially have only two categories, it can be
transformed into ove that does. In fact, practically any variable measured at any level can be
turned into a bipomial by collapsing categories.

Nominal scales

A pominal variable that does net intrinsically have only two categories can be collapsed into a
binomial by simply specifying the number of cases that fali inlo an existing category (or
combination of categories) or not. For example, a nominal distribution of cases according to
religious denomination might begin with five classifications for religion: Catholic, Protestant,
Jewisb, Orthodox, and Muslim. These can be collapsed into a binomial distribution in one of
twoQ ways:

*by referricg to the percentage of cases that fall into one of the existing categories or not,
such as Catholic and Non-Catholic, or

*by creating two entircly new categories by combiniag the cxisting ones, suck as Christian
and Non-Caristian.
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Each of these methads of collapsing categorics is represented in Tables 21.1-21.4,

Table 24.2 Religious affiliztion:

Table 21.1 Religious affiliation: —
original distribution binomial distribution
Religion Frequency Religion Frequency
Cathalic 20 Catholic 20 (30%%)
Protestant 15 Non-Catt 46 (70%)
QOrthodox 12
Muslim 12
Jewish 7
Table 21.3 Religious afTiliation: - Table 21.4 Religious affiliation:
ariginal distribution binomial distribution
Religion Frequency Religi Frequency
Catholic 20 Chr 49 (74%)
Protestant 15 Non-Chr 17 (26%)
Orthodox 14

i0
Jewish 7

Ordinal and interval/ratio scales

Ordinal or interval/ratio scales can be collapsed into a binomial distribution by simply
specifying the number of cases that (all above or below a particular valuc on the scale. For
example, a list of exam scores can be collapsed into a binomial by selecting 50 percent as the
dividing line and organizing the scares into ‘pass’ and ‘fail’. After arranging the data into a
binomial distribution and calculated the relevant percentage of cases in cach of the two
categorics, we can then proceed to conduct an inference test o these perceatages. To do this
we hzve 1o know the properties of the sampling distribution of sample percentages.

The sampling distribution of sample percentages

In the previous chapters we bad a sample mean and we were interested in making an inference
from this sample mean to the mean for the population. To make this inference we constructed
the sampling distribution of the sample means. This sampling distribution allows us 10 assess
the probability of obtaining our actual sample mean from a population with a specific
hypothesized value (the oull hypothesis). When working with a binomial distribution,
however, the descriptive statistic calculated from the sample is no longer the mean. lastead it
is the percentage of cases that fall within one of the two possible categories of the variable.
Having calculated the sample percentage we then need to make an inference about the
percentage for the population as a whole. Thus we need to explore the properties of the
sampling distribution of sample percentages: the distribwion of sample percentages that will
arise from repeated random samples of equal size.

For example, we might know that 50 percent of all students at a (hypothetical) upiversity are
male and 50 percent are female. Despite this, if we take a random sample of 100 university
students we will not necessarily get 50 males and 50 females. Random variation will cause
sorne samples to include slightly more females, while other samples will include slightly more
males. But most of these repeated samples will have a percentage of each sex ¢ither equal or
close to 50 percent. In other words, while there is some variation in the distribution of
repeated sample percentages, these sample percentages will cluster around the ‘true’
population value of 50 percent.

If we take an infinite number of random samples of equal size from a population, and
calculate the percentage of cases in each that have a certain value for a binomial distribution,
the sampling distribution of these sample perceatages will have the following properties:

R R———
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* The sampling distribution is approximately normal with a median percentage equal to the
population value It is only approximately normal because a binomial scale is discrete
whereas the normal curve is continuous. However, the !arger the sample size the Eo—.m
closely the distribution appreximates the normal.

*The standard error of the sampling distribution will be defined oy the following equation
where P, is the pcpulation percentage.

7, = Qﬂi_ - m.L

n

.;8.n two pieces of information are very useful, as we discovered in previous chapters.
Knowing the distribution of all possibie sample percentages that could come from a particular
uonc_mao: allows us to calculate the prebability of getting any given sample result from a
population with an hypothesized value. For example, if a sample has 60 percent females, we
can calculate the probability that this was the result of sampling error when drawing Po.i a
population that only has 5Q percent females. This is exactly the type of question the one
sample z-test for a percentage is designed to agswer,

The z-test for a binemial percentage

Although we are describing the data by organizing it into a binomiz! distribution rather than
by o&a,:_m::m a mean, the procedures for making an inference from a sample to the
population are similar. In practical terms the steps involved in an hypothesis test for a
percentage are exactly the same as when conducting an hypothesis test for a ean. We
conduct a3 inference (est, much like those in Chzpters 15 and 16, on the percentage of the
.S\wﬁ\m Jalling in one of the two categories of the binomial, rather than on the sample mean.

Since the sampling distribution is nermal we conduct a z-test on the difference between the
mub.ia percentage and the test value. The specific formulas used to calculate z,,m,, are (where
P, is the sample percentage and P, is the population percentage): I

(P.~05) -,

<T=:8|J~V

Liample where P, > P,

or

. _ (pe3) -2,
sapiple mﬁ—‘o.ﬂ

 E—

\_,_5; ma&.._on or subtraction of 0.5 to or from the sample percentage in each of these
equations is made because, strictly speaking, a binomial distribution is not exactly normal and
the mm.&:on or sublractios of 0.5 (called a continuity correction) gives us a better
mquox_au:c:. With samples larger than 30 this approximation will be fairly accurate, but
with less than 30 the approximation is not accurate and an exact binomial _u_.o_qu:Q, test
m:oA:_n_ be used. Many statistics books print tables for the exact binomial distribution for
various sample sizes, and these should be referred to in the small sample case rather than the
standard normal table. A number of web pages also provide such tables and these are listed at
members.aol.com/johnp7i/javastat. html#Tables. SPSS automatically calculates an exact
binomial probability in the small sample case.

where P, < P,
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Example

A researcher is concerned that the local area is barder hit by recession than the rest of 1be
country. The researcher knows that the national unemployment rate is 11 percent. The
researcher randomly asks 120 local people who are in the labor market if they are
unemployed. The raw data are described by constructing the binomial distribution in Table
21.5. Does this indicate that this local area is harder hit by recession?

Table 21.5 Distribution of respondents by employment status

Employment status Frequency Percentage
Employed 102 85
Lnemployed 18 15
Toual 120 190

Step 1: State the mdl and aliernative hypotheses

Hy: The local area has the same percentage of people unemployed as the rest of the nation.
Ho. P, =11%

H,: The local area has a higher percentage of peaple unemployed tgan the rest of the nation.
Hy:P,>11%

Step 2: Choose the test of significance

The research question is interested i the percentage of people in 8 category of a binomial
distribution (i.e. people unemployed). Thercfore we use a single-sampls z-test for a
percentage.

Step 3: Describe the sample and calculate the p-score
The relcvant sample data from the bicomial distribution in Table 21.5 are:

r =120

= 13 = 0,
Yu = mmx_oo = 15%

We substitute these data into the equation to obtain the test statistic of 2= 1.2:

(P,-05)-2,  (15-05)-11

Zsample ~ = =12
p,(100-p,) t1(100-11)
o o120

From: the table for the area under the standard pormal curve, the p-value associaed with this
z-scare is 0.23 (two-tail) or 0.115 (ane-tzil}.

Step 4: Decide at what alpha level, if any, the result is siatistically significant

The result we oblain is not statisticzliy significant at any of the conventioral alpha levels.
There is a high probability that the sample percentage is bigher thap the kypothesized
percentage of L1 percent simply as 2 result of sampling errer.

e —————————
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Step 5- Report resuits

A rescarcher is concerned that her local area is barder hit by recession than the rest of the
country. She randomly asks 120 local peaple who are in the labor market if the are
Emﬁn_owoa and finds 18 people sampled are unemployed (15%), which is higher Emﬂ th
national :naSE.cwEa:. rate of 11 percent. Although the sample has 2 higher E.oSEov.EB.M
rate than the nm:o.:u_ figure, the difference is pot big enough to suggest that the populatior ia
this area systematically suffers from a higher unemployment rate (z = 1.2, p=0.23, 3?5:.

The z-test for a binomia) percentage using SPSS

In o..n_nm to work ithrough this test on SPSS, the data for the previous example have been
entered into a data file. SPSS calls the test for a percentage a binomial test, and the commands

eeded to carry out this test are as shown in T i .
from this analysis. “n in Table 21.6 and Figure 21.1 along with the output

Table 24.6 The Binomial Test on SPSS (file: Ch21-1.sav)
SPSS command/action

I From the menu select Analyze/Nonparametric
Tests/ Blnomial

Commients
This brings up thc Binomfal Test dialog box

[

From the source variable list click on Employment
status

Click on » i
A This pastes Employment status in the Test Variable List:
R the square pext 1o Test Proportion type 0.11 over The default sefting is .50, which means that SPSS will

s

0.50
compare the sample proportion against 0.5 unless weo
specify an alternative, as in this case where we specify
0.11 as the test proportion
S Click on OK

NPar Tests
Binamial Temdt
Asymp,
s i oﬂnzua Sig
0} -
Employment stalus — Group 1 | unemgioy 3 e

b 18 15 1 105"
Group 2 ernplmed 192 85
Total 120 1.00

- Based on 2 Approdmation

Figure 21.1 SPSS Blaemial Test dialog box and output

«. .

7.2_8 that mmmm Qwun_coa &m test In terms of proportions rather than percentages. This is
no m:o.r a &.M.Em:o ﬁ_.n.a:.wnon stace we know that any proportion can be easily converted into
an equivalen: percentage simply by moving the decimal point two places to the right.

———————— R T T e e
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This result confirms the calcuilations above. [n the Binomlal Test table we have a column
headed N with the number of cases in each of the categories of the binomial distribution, and
then a column headed Observed Prop. indicating the relative frequencies as proportions. The
last column headed Asymp. Sig. (1-tailed) is the imporant one for the purposes of the
inference test. Although we are not given the value of z ..., we are given the one-tail
probability associated with it. Here the one-tail probability of .105 indicates that if the null
were true (the population from which the sample is drawn has an unemployment rate of 11
percent) at least 1-in-10 samples will have an unemployment rate of 15 percent or more. This
is not too unlikely: the assumption that the null is rue cannol be rejected.

There are four points to notice abeut the SPSS Binomlal Test command:

1. SPSS always produces a one-iaif test wken a test perceatage is specified rather than the
default value of 0.5. If the alternative hypothesis requires a two-tail test, then we simply
double the oue-1ail probabilivy. If one 1ail of the sampiing distribution, at this z-score,
contains Q.105 of the azea under the curve, (wo aiis wiil contain 0.21 of the area under the
rormai curve.

2. SPSS provides two methods by which we define the two groups that make up a binomial
distnbution. Under Define Dichatomy in the Binomial Test dialog box the default option
is Get from data. This is used wien the variablc we zre analyzing already has a binomial
distchbution, such 2s employmen: status in this example. However, sometimes we might be
working with a vanable that has three or more values or categorics. We could use the
Recode command and create a gew variable by collapsing the values into two. This is
unnecessary because if we choose the Cut point option, we can indicate the point on a
scale that will divide a set of cases into a binomial. The value we type into the Cut point:
box defines the upper limit of the first group, and the percentage of cases in that group will
be compared lo the fest value. Thus if 1 had a range of exam scores and | wanled 10 analyze
the percentage that passed or failed, [ would type 49 as the cut point, and SPSS would then
calculate the percentage of cases (hat were less than or equal to this cul point and compare
that to a specified test value for failure rate.

3. SPSS often rounds the observed proportion 1o one decimal place when a test proportion is
entered with ooly one decimal place. This may cause the observed proportion to appear to
‘equal’ the test proportion, when in fact they are different. You will need to edit the table
by clicking on it and selccting Edit/SPSS Pivot Table Object/Edit, and then, afler
selecting the cells in the table you wish to change, change the number of decimal places
using the Format/Cell Properties command from the menu.

4. SPSS does not give tke confidence interval information for the sample proportion, unlike
the tests for a mean we discussed in the previous chapters. We will discuss how confidence
intervals for a percentage can be calculated below.

Example

A political scientist is interested in whether there has been a change in people’s attitudes
toward the major political parties that normally contest elections in a particular political
system. The researcher groups political parties into two distinct categories: major and non-
major partics. At the previous election the percentage of people who voted for one of the
major parties was 85 percent. A survey of 300 cligible voters conducted 2 years since that
clection indicates that 216 (72 percent) plan to vote for one cf the major parties at the next
election (Table 21.7).

Table 21.7 Support for major political parties

Who do you support? Last election Nex1 election
Major parties 85% %
Other parties 15% 28%
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mman we say that ;p_:w _mA<n_ cm.mcnno: for the major parties has changed since the last election?
ce we are .%w__nm with a situation where P, < P, we use the following formula to calcul :
the test statistic: o ceutee

. _ (Pr03)-p, (72+0.5)- 85
sample ~ihiae = =6.1

P.(100-p,) 85100- 85)

n 300

o.w test mB:_m:.n cf—6.1 has an 2:&3.@_% lew probability (< 0.0001) of occurring by chance
i z populatior where 85 percent of its members plan to vote for one of the major parties at

the next electior.. We can reject the null hypothesis that the percentage of people planning ¢

vote for ooe of the major parties is the same as that in the previous election. il e

Estimating a population percentage

0@»18_‘ _N detailed the procedure for estimating from a sample mean a confidence interval
within é:_n_.u the population meaa falls. A similar procedure can be followed to ooav.ndﬁ..u
confidence interval from a sample percentage, within which the (unknown) lati
percentage falls. i
Estimating population percentages is common in public opinion surveys. We ofien read in
:aemm_uwwn_.m_.._uﬁ 2 certain percentage of eligible vaters favor one person over another as
w__.mommﬂ_“ <H.M‘—Mavﬁ_\_._ﬂu_m.. chu”nm&nn_, This percentage figure (s not obtained by surveying all
IS, er u, igible 5. We i
e P ot vt e muw__“__“__nm_.phrm_m of eligible voters. We therefore need 10 estimate
Cnmo_.:.u»_w_? there is no single equation upon which everyone agrees far coustructing th
confidence Inierval around a sample percenlage (see R.G. Newcombe, 1998 u,ioém&am
oonmawnnn intervals for the u_um_...u proportion: Comparison of seven methods, WS:w:Q in
Medicine, vol. 17, pp. 857-72). This may explain why SPSS does not provide such an interval
H part oﬁEo Binomlal \Hemﬁ command. To overcome this, Table 21.8 and Table 21.9 provide
cw ummuv__n.,m errors for various sample sizes and sample ‘splits’ inta the two categories of the
inomial distribution, at the 95% and 99% confidence levels respectively, using the adjusted
.iu_a Eo:.wn an A »Eama and B.A. Coull, 1998, Approximate is _unmnﬂ than .mxmm_. _w.q
nterval estimatior: of binomial proponiions, The American Statistician, vol. 52, pp. :mlu.mv
Note .Em.: these figures may vary from those that might be presented iu other v.oo_a intern ”
calcuiation pages listed at Sascn;bc_.ncE\._o__:muS.m<ﬁ§.c5=_¢non=na=8 or wS:m:.M
programs, as they may use slightly different equations, These differences, howey
usually so small as to be ugimportant for practical purposes. q o e
To use these tables:

*we Wuw_ the row with the closest sample size to the one we are using;
*we find the column with the ‘split’ across th i :
¢ two categories cl i
. gories closest to the one we have in
*we find the intersection of this row and this columa;
*we then add/subtract ﬂrj percentage 1o/from the sample percentage to determine the
upper/lower bounds of the interval, at that confidence level.

q%o illusirate the use of these tables, we will use the data for the previous example where
% of a umn@m of 300 people surveyed stated they will vote for one of the major parties at
the next election. At the 95% confidence level, we read down the rows of Table 21.8 untj} gwn
reach the row for a sample size of 300, and then read across this row until we Ruom the value
for the qo\mo column, which gives us a sampling error of 5.2%. Thus the lower limil of th
confidence interval is 66.8 percent (72 ~5.2) and the upper limit is 77.2 percent (72 + 5.2) :
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Table 21.8 Sampling errors for a binomial distribution (95% confidence level) _ wmn.,c.,n_po E_d_:_m 10 ar.otaer exampie o illustrate this method, there are a few points to observe
Sample size Binomial percentage distribution 1 a00ut these tadles.

50/50 60/40 70/30 80120 90/10 95/5 i As o . - ] ) ) g :

: 2 111 9.0 74 - As with cocfidence ictervals for z meaz, the confidence intervals for a percentage shrink
50 13.3 13.1 12.4 o8 ot 4.8 | dramatically with increases in the size of small samples, but shrink only fractionally with
100 9.6 9.4 RS9 g 4.9 18 | increases in the size of large samples. Thus an increase in the sample size from 50 to 100
150 79 17 7.3 u_u 43 37 I ‘buys’ a substantial increase in accuracy (around 4-5%), whereas an increase in sample
200 69 6.7 MW u.a u”m 29 size from 1400 to 2000 barely increases accuracy by half a percent. Thus with small
250 62 6.0 .uN A.m 14 26 ; samples it can be worth spending extra research money to increase sample size even
300 5.6 5.5 a_u u.w 10 2.5 slightly, but beyoad a certain point, around {200-1400, the cost of increasing the sample
499 i “M u.o u._u 2.7 20 : size does not generate much accuracy, in terms of smalier confidence intervals.
500 4.4 u_w u.q 32 2.4 1.8 2. As with other inferential statistics, the more dispersed the data the wider the confidence
o i 36 u..“ 3.0 22 Lo . interval. This accords with common sensc. [f the population is diverse, then random
700 3.7 %0 u.N 23 21 1.5 samples drawn from that population will have a greater range of outcomes. Thus a 50/50
MMM ww 32 u..o 26 2.0 14 split, which represents the greatest dispersion of daia in 2 binomial distribution, is much
1000 3.1 30 2.3 .5 [.9 1.4

wider at any given sample size and confidence level than the corresponding 95/5 split,
13

1100 2.9 2.9 2.7 24 1.8 which indicates a group that is very :oﬂomn:no:m_ =ERl :

1200 28 28 26 2.3 1.7 1.2 3. The confidence interval for a given split and sample size 1s wider for the 99% level than it

1300 27 27 2.5 22 16 12 is for the corresponding 95% level. Again this accords with common sense; to be more

1400 2.6 2.6 2.4 2.1 1.6 1.2 confident that our interval takes in the true population value it has fe be much wider.

2000 22 2.1 20 1.8 13 Lo 4. These tables can also be used to determine the sample size¢ required to achjeve a desired

10,000 1.0 1.0 0.9 C.B 95 04 level of accuracy in estimating a population perceatage, based on an assumption about the
expected split. Thus they can be used io advance of collecting data to determine how many

Table 21.9 Sampling ercors for a biromial distribution (9% confidence level) | czses should be included in the stucy.

Sample size prores 040 mEoEwﬁ\MMSESmo amwwwa_s: 90/10 95/5 The runs test for randomness

50 17.6 17.3 16.3 14.6 1.8 2.0 The proportion of the saraple that falls into one category or the other of a binomial

100 12.6 12.4 11.7 103 8.1 6.3 distribution is not the only descriptive statistic we might be intcrested in. We roight have no

150 104 10.2 9.6 34 6.5 5.0 interest in the question of what proportion of the total sample falis in one category_ or the

200 9.0 8.9 8.3 73 5.8 a.w other. Instead we might be interested in the series or sequence of scores: how each score

250 8.1 7.9 74 6.6 5.1 w.a follows on from the previous ane. Usually we look at the sequence of cases with a particilar

300 7.4 73 6.8 MM W_w w.m question in mind: is a series of cvents random?

6.4 6.3 5.9 : . ;

MMM 57 5.6 53 4.4 35 2.6

600 52 5.1 438 42 32 24

700 49 48 45 39 29 MM

B i = e 4 WM 1.9 For example, if I 1035 2 coin and the coin comes down ‘heads’, then if it is an unbiased coin

900 43 42 &2 w“ 25 I8 we shouid not expect the next toss to be more likely 10 come down *beads’ {or ‘tails), :

1000 4. b 2 31 23 1.7 To decide whether the value of a variable in one case is random with respect to the value it

1100 39 H.M WM %5 Nuu 1.6 takes in other cases, we conduct a z-test on the number of sample runs — the runs test for

1200 37 w.m 13 29 22 1.6 randomness. _ y e . .

1300 3.8 ' 2 2.8 21 1.5 The idea behind a runs test of randomness is simple. If the outcome of 2 coin toss is raandom,

1490 A4 g w.o 23 17 13 | and a0 unbiased coin is tossed and comes up heads, the probability of the next toss being

200 29 ol % 10 03 06 citber heads or wils should be 50/50. There should be a fairly even spread of heads and ils

10, . : : _

| after each toss. If any of the following three results occurs from tossing a coin 20 times we
M might get a little suspicious:

We can use confidence inlervels obtained from these n&_nm. to conduct the _uvao&aom_m test é.“
detailed in the previous example. Since the no:mn_nuo.o interval of ao;mlj.wk mo.ﬁ ._“M_ |
include the test value of 85%, we can reject the hypothesis that suppert for E.HA major politic |
parties has not changed, a¢ the 95% confidence level Am_wvc = 0.05). _n fact, if we m_.nnn_.sm%o .. Set 2 HHHHHHHHHHHEHHHHHHHY
i the confidence interval for the 99% level, we derive an interval ranging from 65.2-78.8%, | ST e e et
m which still excludes the iest value; we reject the null at the 0.01 alpha level. ! Set 3.

Set LTTTTTTTTTTTTTTTTTTTT
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In each set, it seems that eack casc is not random. In the firs! two sets of tosses each _:€
leads to the same result in the next — tails seem to determine tails, and heads seem (o
determine heads. In the third set of tosses, tails determine heads and vice versa. Bither way,
the outcome of a coin toss does not appeas to be random. But znother interpretation could be
that each of these outcomes occurred simply on the basis of chacce. Coin tosses might be
random, but we just happeoed by chance to get these outcomgs.

To decide between these explanations, we describe the results of each set of losses by
calculating the number of runs.

In short, we look for sequences of like results in the series. In the {ust two sets of coin tosses
2bove we have | run each:

Seri: TTTTTTTTTTITTTTTTTTT
1 run

Ser2: HHHHHHHHHHEHHHHHEHHY
{ run

In the third set of tosses we have Z0 runs:

[l==
1=
=
I~
[=
=
=
1=
Iz
=

Ser3: H T T H T H I H T H

11 is cooceivable that [ could toss 2n unbiased coin and get such results — they could happen
just by chance. This is the null hypothesis of randomness. However, such results are very
unlikely. The probability of getting either 1 run or 20 runs from 20 cois tosses, if the toss of a
coin is truly random, is extremely low. On average, we expect to get between 1 and 26 runs.
In fact, the value we expect to get if the resuits are random, and which we use in the null

hypothesis, is given by the formula:

2mn
Eo”twuk+_

n

where n, is the number of cases with a given value, n; is the number of cases with the ather
value, and n is the total number of cases.

However, even though coin tosses are random, individual samples will not always have this
many runs. The spread of possible sample results around the expected value is given by:

n?-1n
O.>.H ¢|l|

-

Given this information we can perform a z-test to determine whether the sample value of R
is likely to be the result of chance or something systematic. The test statistic is calculated
using the following equations, where R is the number of runs in the sample, pp is the number
of runs expected from repeated sampling. and o is the standard error of the sampling
distribution (where the sample is less than 20, the sampling distributicn of sample runs will
not be approximately normal, and an exact probability test needs to be conducted; in our test
we will work with samples larger than 20 where the normal approximation is applicable):
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(R +0.5)- g
Lsample = p where R < 14
R
or
Ax ~ oAuvt Ug
Zsumple = pn wheze R> pg
R

We simply follow the hypothesis testing procedure we have leamt and compare the sample
z-score and probability with a pre-chosen critical value and decide cither to reject or u.o._u..o
reject the :::fvﬁa.:am? It is important when conducting this test that the data m_.n ordered in
the sequence in which they were generaled. For example, when looking at (ime series, as we
do below, the data are ordered according to year. .

Example

._.E.. data upon which a runs test is conducted must be ordered into a sequence in some wa

.H_Em. condition makes this test one that is commonly used to analyze time senics data .E:Wo.
seres _.o?..a to a sequenice of cases occwrring over successive time periods. For oan,u le, a
doctor might be interested in whether the pain associated with a particular condition ooccﬂm w:
random auxM or whether it occurs over periods extending beyond one day. To assess this the
doctor monitors a patient with this condition over a 33-day period, recording whether the pain
mc:‘nﬁa is bigh or low. Do days of relatively high pain teod 10 follow each other and do Mm

of relatively low pain tend to follow cach other? Table 2110 provides the raw data . ¥

Table 21.10 Pain Jevels for patient
Day

1-Mar-2004
2-Mar-2004
3-Mar-2004
4-Mar-2004
$-Mar-2004
6-Mar-2004
7-Mac-2004
8-Mar-2004
9-Mar-2004
10-Mar-2004 Low
I1-Mar-2004 Low
12-Mar-2004 Low
13-Apr-2004 Low
14-Mar-2004 Low
15-Mar-2004 Low
16-Mar-2004
17-Mar-2004
18-Mar-2004
19-Mar-2004
20-Mar-2004
21-Mar-2004
22-Mar-2004
23-Mar-2004
24-Mar-2004
25-Mar-2004
26-Mar-2004
27-Mar-2004
28-Mar-2004
29-Mar-2004
30-Mar-2004
31-Mar-2004
1-Apr-2004
2-Apr-2004

Run 4
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To see whether days of low or bigh pain occur in ‘patches’ or are distributed randomly
across days, we have also shaded sequences of High pain days and numbered the rups. Thus
we are able to describe our sample result by saying that there are 9 runs. How likely is this to
occur if the pain level on any given day is random with respect wo the level on the previous
day? To specify the null hypothesis we need to calculate:

2mny | _ 260D
n 33

#r =

Thus the puli and altemative hypotheses will be:
Hy: p=17.5
H, pe 2 17.5

The probability of getting the actual sample result of 9 runs, cn the assumption that the null
hypothesis is true, can be calculaed:

_ (R+08-pg  95-175 28

Z_2n T%L@:

M? -1) < 4(33-1)

From the table for the area under *he stzndacd normal curve, this z-score has a probability cf
occurring (on a two-tail test) by chance less than 5 times in 1000. Therefore we reject the null
hypothesis of randomness, and argue ihal the pain does occur in ‘blocks’ of days.

N,SS.E«

The runs test uslng SPSS

The data from this example have been entered into SPSS and to conduct a ruas test we follow
the procedure in Table 21.11 and Figure 21.2, which also presents the output from this test.
You will notice that SPSS provides a number of Cut Polnt mecthods for determining the two
outcomes that can form a nun:

* With calegorical data (as is the case here) we use the Custom option. Based on the codiog
scheme for the test variable sequences of values below the cut point will form one run, and
sequences equal (0 or above will form another. With a binomial scale, therefore, we chocse
the highest of the two values in the coding scheme. Here, with pain coded with ‘1 = Low
pain level’ and ‘2 = High pzin level” we enter 2.

*We can also use the Mode option if there are more than two categories and we want to
assess runs based on whether scores are beiow the modal category, or equal (o or grezier
than the modal categary, according to the values assigned in the coding scheme.

*If we have interval/ratio scales, in addition (o using the Custom method, we can define the
two groups according to whether the scores fall below the median/mean, or equal to or
above the median/mean.

This indicates that the Test Value is 2.00, which is the cul poic? we selected. In effect this is
the point that forms the dividing line of 2 binomial distribulion. Provided ‘te dala are entered
in chronological order, so that the first day on which observations were taken is on the first
row of data aad so on, SPSS calculates that there are 9 rurs. The z-score of -2.827 has a two-
fail probability of 0.005, if the null hypothesis of randomnaess is teue. (If we want (o convert
the two-tail probability into a one-ail probability, we haive iis value.) This is so improbable
that we reject the null hypothesis.

]
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Table 21.11 The Runs Test on SPSS (file: Ch21-2.s5av)
SPSS command/action Comments
I Select Analyze/Nonparametric Tests/Runs  This brings up the Runs Test dizlog box

2 Click on Pain level in the source variable list
uQSro:v
A

In the area callod Cut Palnt click on the
square next to Custom

This pastes Pain level into tie Test Varfable List:

This places ¢ in the check-box to show that the cut point will
be specitied by the user

S In the box next to Custom we cater 2 This defines the scores that will be identified as forming a run.
Cases with values less than the cut point are assigned into one
group, and cases with the cut point value or above are assigned
into the other group

5 _Click on OK

NPar Tests
Rurrs Yest

Pain teve)

Tast Valugd 200

Total Cases kY
Numbar of Rune a "

k4 -2827

Asyme Sig. 2-tailed) s

A. User-specified.
Kigure 21.2 SPSS Runs Test diaiog 50x a3d outpid

Exercises

21.1 In order to estimate the percentage of a popu:alion giving a certein response to a
survey we need to take a larger sample for larger populations. Is this statement true or
false? Why?

21.2  For the following se’s of statistics, conduc: a z-fest of percentages:

(@) P,=52,P,=6l,n="10
() P, =42, P,= 19, n=1i0

21.3 A random sample of 900 jail prisoners is surveyed to gauge the success of an in-prison
resacialization program. Of the total, 350 stated that the program has been effective in
reducing the likelihood of repeat offense., The program’s tzarget was a 40 percent
success rate ia reducing the likeliboed of repeat offense.
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21.5

21.6

218

21.9

21.10

Staiistics for Research

(a) Using a z-test of percentages, can we say that the program was successful?
() Construct 2 95 percent confidence interval to estimate the population value. How
does this confirm the result of the z-test?

A survey polls 120 eligible voters the day before an election and 63 state that they will
vote far the opposition candidate. This candidate declares that the election is a waste of
1ime s:nce she will clearly win. Is this argument justified? Explain.

A physiotherapist is interested n whether ankle taping has reduced the incidence of
ankle sprains in basketbalf players. The incidence of ankle sprains in basketball players
has been reported to be 8 percent. The physiotherapist randomly sclects 360 basketball
players who tape their ankles and finds that 11 bave sprained their aokles. Does this
suggest that taping reduces the incidence of ankle sprain?

A study of 500 people finds thal 56 percent support the decriminalization of marijuana
usc. What is the 95 percent confidence interval for the percentage of all people in favor
of decriminalization? Can we say (hat a majority of people are in favor of
decriminalization?

A random survey of 60 firms in an industry finds that 12 are nol meeting pollution
emission control standards. What are the:

(a) 99 percent and \ .
(b) 95 percent confidence intervals for the estimate of all firms in the industry not
meseting the standards?

A hockey team captain has recorded the outcome of 20 coin tosses for the last 20
games. These tosses had the following sequence of results:

heads tails heads
tails heads  heads

heads
tails

beads
tails

heads
tails

tails
tails

tails
heads

Lails
tails

heads
lails

(a) Why is a runs test applicable to such dzta?

(b) Conducl z runs lest to see if the outcome of these wsses is random.

{c) Enter these daza into SPSS and confrm your results.

A bospital has kept a taliy of (he years ia which a majony of boys were born and those

in which a majority of girls were born. The sequence of resuits is as foliows:

boys boys  boys girls boys  boys  girls boys mEm
boys boys boys boys  boys girls boys boys  girls
boys  boys boys  boys girls

(a) How many runs describe this sequence?

(b) How many runs will we expect to get if the sex of each child bom is puzely random
with respect to the previous year’s outcome?

{c) Can we say that the outcome is a non-random cvent? .

(d) Enter these data on SPSS and conduct a runs test to confirm your own calculations.

Use the Employee data file to determine whether the percentage of employees in the
company receiving a current salary of $25,000 or less is nol greater than 35 percent
(hint; in the Binomial Test dialog box use the Cut point: option ta organize the
distribution into a binomial onc).

One sample tests for a multinomial distribution

The previous chapler discussed the simplest situation for analyzing a frequency distribution,
which is the one sample case where the distribution is split into two categories (i.c. 2 binomial
distribution). We hypothesize that the percentage of the population falling into one or the
other of the two categories is a specific value aod then determine the likelihood of drawing
from such 2 population a sample with the percentage we actually obtain in the course of
research. We do this by calculating a z-score and looking up the corresponding probability in
the table for areas under the standard normal curve. If the difference between the sample
statistic and the hypothesized population percentage is large, the corresponding probability
that the sample is drawn from such a pcpulation will be low. ln short, the question boils down
to whether an obscrved difference tetween a sample stalistic and a hypotbesized population
value is *big ecough’.

The chi-square goodness-ol-fit test

This chapier will extend the 2nalysis of the previous chapter. The previous chapter was
interesied it a very particular kind of frequency distribution: a scale with only two categories.
We often comstruct a binomial by collapsing categories down into two. But what if responses
do no, for example, fzll into sitplic yes/oo dichotories and instead fall into a range of values
such as ‘stroogly agree’, ‘agrec’. ‘disagree’, ‘strongly disagree’ and we are not prepared (o
collapse thesc categories down to two? Such a distribution is called a multinomial
distribution because it has more thap two points on the scale.

Where the research question we are addressing does not direct us to collapse the data down
1210 two categorics, bul rather direcls our zitention to the frequency distribution cf cases
across a wide range of categories or values of a variable, we use the chi-square goodness-of.
fit test (3 — prooounced ‘kigh-square’). *

The nature of the question addressed by the goodaess-of-fit test, as opposed to other ests we
have encountered, is illusmated in Figurs 22.1.

pu=?

Test {or a mean

B=?

S, 4

Test for a binomial peroentage

f=2 \_”ﬂ\w \_.H..u

= | ' —,

f=7

T T T
Test foc a multinomial distribution
Figure 22.1 Corparison of in‘erence tests
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The chi-square goodness-of-Tit test analyzes a frequency distribution, which can be
constructed for all levels of measurement. We will intreduce the goodness-of-fit test ag
applied 1o nominal and ordinal data, where data are arranged into discrele categories. We wil}
thea show how this test can also be useful in analyzing the frequency distribution of
interval/ratic data.

The test is called the ‘chi-square’ test because the sampling distribution we use to assess lhe
probability of the null being true is a chi-square distribution. (A more detailed explanation of
the chi-square distmbution is presented in Chapter 23 for the two or more samples case, which
is the most cormmon use of the chi-square distribution. It may be helpful to retumn to the
present chapter after reading Chapter 23. The one sample case is presented bere to maintain
the overall logic of this book, which is to present the one sample test first, before moviag (o
tests for two or more samples.)

The chi-square distribution has the general shape shown in Figure 22.2.

5

X

0
Figure 22.2 Distribution of clii-squace {x°)

The chi-square distaibuticn is constructed on the same basis as the other sampling
distributions we have already encountered: it is the probability distribution of a test statistic
we will get from an infinite number of samples of the same size drawn from a population with
ceqtain specified features.

To illustrate the goodaess-of-£t test we will ry to answer the following question: is the
crime rate affected by the seasons? Clearly, we are not interested in the average crime rate,
but rather the distribution of crime rates acrssy the range of seasons. We begin by making an
hypothesis about the population distribution: we assume that there is no relatonship between
crime rzies 2nd seasons. On this hypothesis we will expect the number of crimes commirted in
any year 10 be evenly distnbuted 2cross the four seesons, where f, is the expected frequency in

each category.

total number of crimes
e - a3
4

THowever, in any given year the cnizne rate might be affected by random events thal cause the
distribution to be a little bit different from this expected result. In other words, not every
sample will conform with this expectation of an exactly equal number of ctimes in each
season. We can express e difference between the expected value and the cbserved value by
calculating a sample chi-square statistic, where /. is the expected fequency i each category
anc /, is the observed frequency in eack category.:

/ 2
\e 1,\«
Leampte = M,lbv:

~taimin s e A e -

St
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We can see that if the sample result conforms exactly to the expected result, the value of the
sample chi-square (x’sumn.) Will be zero: if observed frequencies are the same as expected
{requencies then subteacting one from the other will be zero.

What about situations in which the observed distribution is not exactly the same as the
expected distribution? Loaking at the formula for chi-square we can see that any difference
will produce a positive value for the sample chi-square. This is because any difference is
squared, thereby eliminating negative values. We can also see that the larger the difference
between the observed and expected frequencies, called the residuals, the higher the (positive)
value of the sample chi-square. The question then becomes at what _g.o:: does the value of the
sample chi-square becorie so large thar it Sugpests the sample was not sclected from a
population with a unifcrm spread of crime rates across seasons?

We z:._os\ the same procedure used with other tests. We describe the sample, in this instance
by forming a frequency table. We then calculate the test statistic (here it is v\ﬂ%ﬁ ) and refer
to the m_uv_.o?._.&c table (Table A4) 10 determine the p-score for this test w_m:m:m_ )

For example, if we actually observe the (hypothetical) distribution of crime shown in Table
22.1 can we conclude that crime is indeed affecied by the seasons?

Table 22.1 Distribution of crime by scason

Summer Spring Winter A i
ufurmr T
nwcmn::& 300 210 236 250 i oow“
rx_u.oﬁoﬂ_ 255 255 255 255 10z0
Residual 45 15 =35 -5 ’

The expected values are simply the total divided by the number of seasons:

1020
Jo= == =255

The row _mvo:& ‘Residual’ is the difference between the observed and expected values. To
get a better picture of the logic behind this test, we have graphed the data in Figure 22.3.

300

Expected

Number of enmes

Summer Winter Aulumn

Seasons

Spring
Figure 22.3 Distribution of crime. by season

The strzigbt line represents the height that the bars will be if the observed values are equal to
En expected values. However, we can see that this is not the case: Summer and m_u:.:w have
higher thao expected values, whereas Winter and Autumn fall short, The gap between the line
and each bar is the residual. We then substitute these results into the formula for chi-square:
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. MQQ-\;N  (oc-2ss)’ (220-255)  (200-255) (2502587
KXoample = 7. s Y s YT s T s
- 278

To find the p-score for a given chi-square value we need to take into account the number of
degrees of freedom. For any given distribution the number of degrees of freedom will be:

df=k-1

where k is the number of categories. Thus if a variable has four categories, as i this case, the
degrees of freedom will be:

df=4-1=3

When we refer 10 the table for the critical values for chi-square distributions (Appeadix
Tablie A4), with 3 degrees of freedom, we sce that the highest reported chi-square value is
16.268, which has a significance level of 0.001. Our sample test statistics of 20.78 is larger
than this highest reported value, and therefore has a significance level of less than 0.001
(Table 22.2).

Table 22.2 Criucal values for chi-square distributions

Level of significance (a)
ar | o .90 070 050 0.30 0.20 0.10 0.05 001

T [ 000016 00IS8 0148 0455 1074 1642 2706 3841 6635
2 | 00201 0211 0713 1386 2408 3219 5991 9210

4 0297 1064 2195 3357 4878 5989 7779 0488 13277 18465
s | 0554 1619 3000 4351 6064 7289 9236 11070 15086 20517
6 | 0872 2204 3828  S348 7231 8555 10645 12592 16812 2245
’ 1239 2833 4670 6346 5383 9803 12017 (4067 18475 24322
8 1646 3490 5527 72344 9524 11030 13362 15507 20090 26125
9 | 2088 4l6s €393 8343 10656 12242 14684 (6919 21666 27877
10 | 2558 4865 7267 9342 (1781 {3442 15987 18307 23209 29583

The value of the sample chi-square leads us to reject the nuil bypothesis of an even
distribution of crime across seasons.

Chi-square goodness-of-fi¢ test using SPSS

The data from this test bave been entered into SPSS. This data file comprises a column cf
1020 numbers representing the season in which each crime was committed. To conduct a one
sample chi-square test on these dawz we work through the procedure shown in Table 22.2 and
Figure 22.4, which also presents the output from this set of instructions.

We can compare these results with the hand calculations above. The table in the output titled
Crime by season contains (he descriptive statistics that summarize the sample. In this case,
the distribution of cases zcross the four seasons is provided in the column headed Observed
N. A column of expected {requencies is also generated, based on the assumption that an equal
number of cases is expected in cach season. The values in the Expected N column are
subtracted from the Observed N column to give the Residual values, This is simply a
replication of the frequency able we used above, but turned ‘on its side’ so that the seasons
are down the lefl of the table rather than acress the top.

.

e e

samgp.e chi-squars is 20,784 (as we calc

has a probability cf cccwring if crime i

¢ g 1l ¢rime 1s evenly spread across seas. fi
10,000 890__9 (SPSS Las rounded this to .000). Such bility
null hypothesis: crime rztes do seem to be related to the seasons.

button m_mx. o All Categories equal is selecied. T
aulomatically calculate the oumber of expected cases in
the number of categories, which is what we desired
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Table 22.3 Chi-square £oodacss-of-fit est using SPSS (file: Ch22 sav)
SPSS command/action Ce .

_Foap:ns.u:cw&oﬂ>=_ . is bri
gl alyze/Nouparameiric Tests/ This brings up the Chi Square d

2 Click on Crime by scason in the source list
3 Click on »

—
ialog box
This highlights Crime by seavon

This pastes Crime by season into the Test Variable

. List:
4 Click on OK

Chl-Square Test
Frequencies
Crime by sesson
Observed N | Expecied N Reslgual
Summer 3Co 2550 459
Sgring 270 5.0 150
Aytumn 200 150 -850
Winter 250 %50 -850
Tatal 1070
Test Satsnce )
Se950Nn
Chi-Squang ! 20.184
ar k)
p Sip 000
3.9 cells (0%) have sxpecied froguencies less than
5 The minimum expected celi frequency Is 255,0. ’

Figure 22.4 The Chi-Square Test dialog bax and output

Bel i
clow Crlme by season the frequency table is the chi-square Test Statistics 1able. The

ulated above), which, with 3 degrees of freedom (df),
ess than 5 in every
a low prokability leads us to reject the

Natice in the Chi-Square Test dialog box, in the arca called Expected Values that the radio

his is the default setting: SPSS wil]
each category by dividing the toa] by
i this example. The categories of the

_ ——————sscessenenti——
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2ve exactly equal numbers af expected cases, ..:5 chi-
where, for some a priori reason, we hypothesize some
n. To enter user-specified expected values we
ch category of the test varable, and click on
ears 2t lhe bowtom of the value list. The
cending order of the category values
w the category with the lowest value

variables, however, do not need to h
square test can be used for m:...S:c:m :
unequal distribution of cases (n the populatio
select Values:, enter a value greater than O for €a
Add. Each time an expected value is added. it app
order of the values is important: it noﬂam,mo:% to the ﬁ_ﬁ
st variable. The first value in the list corresponds .
Mﬂ, ”_:_M H\MJNZP and the last expected frequency added corresponds o the __,m:n%aﬁnfo -
For example, assume that a rcgion m&mo.a:. to the one we are :..<~nwsow ing has the
distribution of crime across s¢asons presented in the first cotumn of Table 22.4.

4 Distribution of crime by season

M,sc_m a5 Expected % Expected number

£ason s s
Sumimer w““\\.o o
Spring 7 =
Autumn 25% 4
Winter 0% A
Total 100% 2

We know, ir. other words, what the distribution of at! Q.:dnm across the mo.umowm%a.mﬁ ””7
nearby region. Can we say that our region has the same n__wq._g:.on wmpﬂﬂmn. S.o_nM”_ MM
research question we calculate the expected vawes on .Jn ca.m_m_w [ :an.oES_._mﬁm
producing the expected number of crimes in cach season given 1n t Mw.moo .n_o_o E:n_ L
conduct the chi-square test 00 SPSS =mm=m..:nmn n»u.oﬁm& values we _nuwﬂao i o
values given to each seasen ir. the coding scneme, which 1s 1 ,moa Summer, ,.:_ P EWE: "
Autumn, and 4 for Winter. We begin with the category with the lowest value,

Summer (Figure 22.5).

+We click on Values: and typs 352, which is the axmon:& w::._co_. of crimes for Summer.

+We then click on the Add button so that it appears in the xmﬂ of 9.62.& o.ngam:o_mﬂ.r g

+We then type 306, which is the expected frequency for Spring, and click on the
button, and sa on for cach of the seasons.

= F

Figure 22.5 Entering expected values

Example

Ia 1996, 40 percent of sales by a car dealer were four-cylinder cars, 30 monomﬁ were m“_x.u
Q::an_.‘ and 30 percent were eight-cylinder. A random sample of sales in recent mon

produced the distribution shown in Table 22.5.

i

e e
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Table 22.5 Observed sales distribution

Engine type QObserved numbe: of sales
Four-cylinder 42
Six-cylinder 26
Eight-cylinder 12
Total 80

Can we say that this reflects a trend toward smaller cacs? First we calculate the expected
number of sales, based on the 1996 percentages (Table 22.6).

Table 22.6 Exnected sales distribution
Engine type i

Expected number of sates
40

Four-cylinder —x39-32
100

Six-cylinder =) x 80~ 24
100
; g 30

Eight-cylinder w24
109

Tolal 80

Notice here that we are not expecting an even spread of cases across the categeries, as we
did in the example abcve regarding crime rates across seasons. This does not alter the test: our
decision as to the frequeccies to Ye expected in each category is determined primarily by our
research question and the theory that informs it. Given these expected values we then conduct
the chi-square test.

Substituting observed and expected frequencies inta the formeta for chi-square we get $.29:

2
f12-24)
1. 2 " YT T

Xmpte $.29

- MF-S» 4 TN'EH (26-24)

At two Cegress of freedom, we find from the table for critical values of the chi-squate
distribution that the p-score is between 0.01 and 0.001 (Table 22.7) -

Table 22.7 Critica: vaiues for chi-squace distributions

Level of significance (a)

df 0.99 0.90 0.70 .50 .30 020 0.10 0.05

) 0.455 074 1.642 2.706 3.841

3 0.115 0.584 1.424 2366 3,665 4,642 £.231 7315 11.341 16.268 -
4 0.297 1.064 2.195 3357 4878 5.989 1.7179 9488 132711 18.465
5 0.554 1.610 3.000 4.351 6.064 7.289 9236 11070  15.086 20.517
6 0872 2204 3828 5348 7.231 8.558 10.645 12592 16812 22,457
7 1.239 2,833 4571 6346 8.383 9.803 12,017 14.067 18.475 24322
8 1.646 3.490 5527 7.344 9.524 11.030 13.362 15.507 20.090 26.125
9 2.088  4,(58 6393 8.343  10.656 12.242 14.684 16919  21.666 27.877
10 2.558 4865 7.267 9.342  11.781 13.442 15.987 18.307  23.209 29.588

Looking at the relative frequencies we can see that there is a trend toward smaller cars, and
the frequency distribution of car sales by engine size is significantly different (in a statistical
sense) to the distribution of engine size in 1996 at the 0.01 level. The change in the
distribution of sales suggests a change in the way the car dealer goes about doing busigess,
given the extremely low probability of making a type | error: the pattern of car sales does
seem o bave changed.
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The chi-square goodness-of-fit test for normaljty

We have worked through examples of the chi-square googness-of-fit test on noB_.:u_ and
ordinzl data that fall into discrete cztegories. Any test (hat can be applied to .:o::n_w_ Emn_
ordinal data, though, can also be applied to the nigher tevels oﬂ EmmmE..nans.. of ipterval/ratio.
In the case of interval/ratio data we lock at the frequency distribution of cases mvn:um the
range of values or class intervals, in exactly the same way as when we looked at the
istributi discrete categories. :
a%ﬁw:%%wﬂm“ﬂnm the moomsn%éwmq test particularly F_m..w_,c_ in assessing whether
interval/ratio data come from 2 normal population. In this way, this :w:-vu_é,:oﬁn test nmdu be
a useful preliminary and complement to parametric tests, which require the assumption that a
s from a normal population.

ﬁmﬁcw__wuc“m:w“»«. .u,wn have a mEMEM and we want o assess i_._a_:.aq :. was ﬁ_qmiﬁ fi _.ms % ufo,_,.:_w_
population. Remember from Chapter 11 thata :olsu_..&uﬁvc:o: is defined ,é ..n equency
distribution shown in Table 22.8 and illustrated in Figure 22.6. We can use the percentage
values in Table 22.8 to calculate the expected values we use in the “,o:w:;m for chi-square.
Notice that unlike the previous example of ¢rime rates, we are not assuming cases are evenly
distributed across the categories; instead the expected frequencies are based an the
characteristics of the normal curve.

Table 22.8 Distribution of the normal curve

Range of values
Further than 2 standari deviatons below the mean

Dercentage of cases
2%

Between | and 2 standard deviations below the mean EH\».
Within 1 standard deviation betow the mean uw o\é
Within 1 standard deviation above the mean 3 :\m.
Between | and 2 standard deviations above the mean 14 M\o
Further than 2 standard deviations above the mean 2%

1
-ls 0
Figure 22.6 Areas under the normai cucve

For example, assume that we have a sample of 110 people whose mean age H—m 45 years, 5,5“
a standard deviation of 10 years. If this sample is normally distributed we will expect to find
the numbers of people within the ranges shown in Table 22.9. The table includes the

caleulations for the first range 10 show the method involved.

Table 22.9 Expected distribution of the sample (n=110)

: of val Percentage of cascs  Number of cases

Range of values .

25 years or less (further than 2 standard deviations below the mean) 2% 10222
26-35 years (between | and 2 standard deviations below the mean) IN\V MWM
1645 years (within ! standard deviation below the mean) u,»m. 3@.
46--55 wnm; (within 1 standard deviation above the miean) fo\a o
5665 years (between | and 2 standard deviations above the mean) _o..} i

66 years or over (further than 2 standard deviations above the mean) 2%

1
i
|
i
i
|
|
|

Sl Fua

S

One sample tesis for a mudtinonial distribution

However, we might 2ctually get a sample distribution as shown in Table 22.10.

Table 22.10 Observed distribution of the sample

313

Range of values

Number of cases

25 years of less 5
26-35 years 17
3645 years 33
46-55 years 33
S$6-65 years 17
66 years or over S

There is obviously some diflerence between the observed and expected values: should this
cause us to reject the hypothesis that the population is normally distributed? To answer this

we need to calculate chi-sguare:

2
So- 1.
NMS&?HM{
S (s-22) (17-1s4)f (33-374)  (33-374)  (17-154)  (s-22)
S22 YT a4 Y TTwa T 3a Y TTa YT
=85

The significance level of this chi-square value, with df = 6 — 1 = 5, lies between 0.20 aod

0.10 (Table 22.11).

Table 22.11 Critical values for chi-square distributions

Level of significance (o)

dr | 099 0.50 470 0.50 030 0.05 0.01 0.001

i | 000016 00158 0148 0455 1074 3341 6635 10827
2 2408 5991 9210 13815

3 7.815 11.34] 16.268
4 9.48% 13.277 18.465

3 25 11.070 15.086 20.517

6 8.558 12592 16812 22457

7 i : 3 9.803 14067 18475 24322

8 1646 349 5527 7344 9524 11030 13362 15507 20090  26.125

9 2088 4168 6393 8343 10656 12242 14684 16919 21666  27.877
10 | 2558 4865 7267 9342 Q1781 13442 15987 18307 23209  29.588

The high probability of ob:aiviug these differences between the observed and expected
frequencies through sampling errer means we do not reject the bypothesis that the sample
comes from a nermally distributed population.

Summary

We have introduced a new test in this chapter: the chi-square test. Although the chi-square
test involves slightly different calculations, it is very similar to the binomial test we looked at
in the previous chapter. Whereas the z-test for a binomial percentage only applies to
frequency distributions organized into a binomial distribution, the chi-square test is more
general in that it applies to frequency distributions with any number of categories (thus the z-
test for a bioomial percentage can be considered a special case of the chi-square test). This
gives the test a wide applicability, especially since (as we will see in Chapter 23), it can be
extended in a direct way to the two sample and more than rwo sample situations.
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Exercises
92.1  What will be the number of degrees of freedom, and the vaiue of ) crincar 28 ¢ = 0.10
and a= 0.05, for a goodness-of-fit tst on a variable wilh:
(a) three categories
(b) five categories
{¢) eight categories
22.2 Conduct a goodness-ol-fit test on the following data to test the hypothesis that the
sample comes from a population with an equal proportion of cases across all
categones.
(2) Value Number of cases N
1 45
2 40
5 55
4 54
5 38
t) Value Number of cases
2
3
s
€
7
223 Accordiog to 2 1991 Census of Population and Housing, >=w:.=:umm between the ages
of 25 and 34 years had the following distribution according to marital status:
Mantal status Number of persons
‘Never married 896,206
Married 1,591,010
Separated not divorced 104,296
Divarced 11 .quu
Widowed 14216
Total 2,123 401
A survey of 350 residents aged between 25 and 34 is taken in a local area, which bad
the following distribution accerding to marital status:
Marital status % of Sample (n = 359)
Never married 40
Married 50
Separated not divorced 6
Divorced 2
Widowed 2
Total 130
Using the census information to calculate the cxpec'ed values, caa we say _.:_e" (kis area
is significantly cifferent from the rest of the popu.ation? [o which direction are the
differences?
22,4 Ninety people are surveyed and the amount of time they each spend reading each day

is measured. Tke researcher wants 10 test the assumption that this sample comes _.33 a
normal popuiation. The mean for the sample 13 45 minutes, with a m.unawa deviaton
of 15 minutes. The observed distribution of the sample across the following ranges of
values is:

e

22.5

22.6
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Range of values Numbes of cases
ss than 16 minutes 3 o

16-30 minutes 15
3145 minutes 34
31
S
gver 75 minutes 2

Using ac alpha level of 0.05, test the assumption of normality for the population. Enter
these data into SPSS and conduct the goodness-of-fit test.

Five schools are compared in terms of the proportion of students that preceed Lo
uciversity. A sample of 50 students whe graduated from each scbool is 1aken and the
number of those who colered npiversity from cach school are:

School Number cntening university

School 1 2

School 2 25

School 3 26

School 4 28

School 5 33

(a) Calculate the expected values and then conduct a chi-square goodness of fit test.

{b) What do you conclude about the prospects of entering university from each of the
schools?

(<) Enter these data into SPSS and compare the results with your hand ca.culatiozs.

Use the Employee data file to assess whether the sample data for the company
indicates that its employment structure is ‘top heavy’. This can be tested by assessing
whether there are proportionately more employees in the Manzger category than for
similar companies. Assume that oflicial data indicate that for similar firms the
proportion of cases in each of the employment categories is Clerical 82 percens,
Custodial 8 percert, and Managenrial 10 perceot.

(a) Calculate the expected number of employees in the sample for each emgpioyment
calegory, on the assumption that this firm is no different to ail others. -
{(b) Use these expecied frequencies to test this assumption on SPSS. :

I
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The chi-square test for independence

This chapter will look at the technique for conducting an hypothesis test for categorical data
arranged in a crosstabulation. This is the chi-square test for independence, which is similar
to the one-sample test we have already encountered in the previous chapier. It exiends the
logic of the goodness of fit test to situations where we are assessing whetber there is a
relationship berween two variables arranged in a crosstabulation, and thus is the inferential
statistics counterpart to the descriptive statistics we presented in Chapter 5. To understand the
place of the chi-square test as onc choice in the ‘menu’ of inference tests available to us it is
helpful 10 review the general criteria for choosing an inference test.

The chi-square test and other tests of significance

The earlier chapters emphasized that the choice of infercnce test is determined by two main
considerations:

1. The descriptive stafistic used to describe the raw data. This factor is itself usually
determined by the research question we want to answer. The rescarch guestion almost
invariably directs our imterest to a specific characteristic of the distribution for a given
variable. A public health research worker might be concerned with the question of whether
a population is on average ‘young’ or ‘old’, a research problem that direcis one to look at
the central tendency of the variable. A political scieatist may also be concemed with the
age distribution of this population, but the specific interest may be the relative number of
people that are above voting age. For this research problem the political scientist will
organize the data inlo a binomial distribution and calculate the proportion of the sample
above and below the voling age. Both rescarchers are interested in the same population,
and both bave exactly the same raw data in front of them, but their respective rescarch
questions decide whether they are interested in the central tendency of the distribution, or
the proportion of cases above or below a certain point on the scale

2. The number of samples tc be compared. We have seen thal when we collect dala from only
one sample we have a certain range of inference tests to choose from. The range of choices
is different when we have two samples and therefore need to make an inference about each
of the two populations from which the samples are drawn. Similarty, with more than two
samples we are then confronted with another range of tes:s ic choose from. For example,
when comparing means, a f-test for sample means s used with one or two samples,
whereas ANOVA is used for more than two samples.

With this discussion in mind, we can now look al the copditions under which the chi-square
lest is appropriate.

L. The descriptive statistic upon which the chi-square test for independence is conducied is
the frequency disfribution contained in o bivariate table. We investigated the construction
and use of bivariate tables that crosstabulate data on two variables in Chapter 5. We saw
that crosstabs are a convenient way of summarizing aad displaying categorical data when
we are interested in the overall frequency distribution of cases across the whole range of
categories, rather than just the central tendency. Nominal and ordinal data come ‘pre-
packaged’ in categories, and hence crosslabs are a very common way of describing such
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data (although even in these instances we sometimes need to recode the categories into a
smaller number). It should also be remembered, however, that interval/ratio data can be
.no__u_uw@a down into discrete categones, as we do when we organize people's dollar
Incomes into clusters such as ‘low’, ‘middle’, and ‘high income’ groups. Hence, a crosstab
can also potentially be a means of describing data collecied on an intervalratio scale, as
well as on nominal and ordinal scales. _

2. The chi~square fest is basically the same, regardless of whether we have one, two, or more
than two samples. We have already encountered the chi-square test as 2 one-sample test for
a frequency distribution. Unlike other tests, the chi-square test can be extended to the two
mnj_u_nm and more than two samples cases without much modification: we follow the same
basic procedure, and use the same formula, regardless of the number of samples being
compared (although in the one-sample case it is called a goodness-of-fit-test, whereas with
two or more samples it is called a test for independence).

Statistical Independence

.<<n construct crosstabulations o get a visual sense of whether the two variables urder
lnvestigation are independent of each other.

Take the example we used in Chapler 5 to construct a crosstal between the sex of students
2nd how they rate their own health (Table 23.1).

Table 23.1 Health rating by sex of students

Eealth rat ny Sex
Female Ml Total .l
Unhealthy 34 T6 50 -
43% 1€% 28%
Healthy 2 n 36
36% 23% 32%
Very hezithy 17 54 7i =
2U% 6% $0% .
Total 30 97 177 i
100% 100% 100%

We make z visual, or ‘eye ball’, inspecticn of the relative frequencies in each cell of {he
table and assess whether in the sample the twa variables are independent or whe'ber in fact
some kind of a rclativnship exists. We observe in the wble that there is some relationship
between these two variables: males tend (o rete their own hezlth mors highly thar females.

However, our conclusion is based on samg'e data, and we must therefore be wery that it may
be due ta sampling error whes draw’ng from populations in whick there is no relationship
vo?&o: a student’s sex acd the way they rate their own health, The chi-square test for
independer.ce assesses this possiblity.

The chi-square test for independence

The m.B.:Em point for conducting 2 chi-square test for independence, as with all inference
tests, is the statement of the null and alternative hypotheses. In the example we are using, the
hypotheses take the form of:

Hy: Sex of students and health rating are independent of each other
Ha: Sex of students and health rating are not independent of each other
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The statemecnt of independence forms the null hypothesis for the test, and if the oull is
rejected, we conclude that the two variables are not independent. Conversely if we do ot
reject the null hypothesis we argue that the variables are independent, even though
dependence is observed in the samples.

Looking at our actual example, we have determined that the variables are not independent in
the sample — there does appear to be some relationship — but can we draw this inference abous
the populations from which the samples came?

To see how the chi-square test helps us assess whether these (wo variables are truly
independent of eack other, evee where there is dependence in the samples, we begin by
fooking at the frequencies for the row (otals in Table 23.1 (Table 23.2).

Table 23.2 Health rating: all students sampled

Health rating, Total Percentage
Unhealthy 50 28%
Healthy 56 2%
Very healthy U 40%
Total 177 10C%

These row totals and percentages are the basic reference points from which the chi-square
test is conducted. The argument is that if 28 percent of all respoodents rate themselves as
unhealthy, then we should expect 28 percent of each group (males and femeales) to also rale
themselves as uahealthy, if the two variables are independent.

In other words, we expect to find in each cell of the table, if the two vaniables are
independent, the relative frequencies in Table 23.3.

Table 23.3 Expected relative cell frequencies

Sex of student

Health mating
Female Male “ou! _
Unhealthy 28% 28% 28%
Healthy 32% 32% 1229%
Very healthy 40% 40% 40%
Total 100% 100% 100%

However, even if the null hypothesis of independence is true, we should not always expect
random samples of females and males to reflect this. For example, we might occasionally
draw samples of female and male students and get one of the three separate results shown in
Table 23.4.

Table 23.4(a) represents a situation in which the observed percentages very closely reflect
the expected percentages, assuming that the two variables are independent. Occasionally we
might find the situation shown in Table 23.4(b), where there is a greater variation between the
groups, but it is not too great. Table 23.4(c) shows an extreme situation in which we happened
to pick up cases from either end of the scale, causing the rclative frequencies in the first twe
columns to diverge a great dcal from those in the Total column. Although this is a possibility
when random!ly sampling from populations where there is no relationship, it is also Lighly
unlikely.

In fact, we can take an infinite number of random samples from populations where the twe
variables are independent and observe the spread of results, Obviously most wou.d be like
Table 23.4(a), some like Table 23.4(b), and very few like Table 23.4(c).

S ]
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Table 23.4(a)
Health rating Sex of student

Female Male
Unhealthy 29% m@” ?”i ]
Healthy 33% 32% wmm\a
Very healthy 8% 2% %,
Total 100% 100% Eo,._\n
Table 23.4(b)
Health rating Sex of student

Female Male
Unhealthy 21% 3% T .mmw_
Healthy 35% 30% u%\“
Very healthy 44% 35% _ﬁr%\
Total 100% 100%, 500\“

Table 23.4(c)

Health rating Sex of student

Female Male Total
Unhealthy 15% 45% MomsM
Healthy 25% 25% 32%
Very healty §0% 0% Ama\g
Total 120% 100% 100%

The chi-square statistic is a means by which we can capture this difference between
observed and expected frequencies.

The exact formula for calculating chi-square, where f, is observed cell frequencies and f, is
expected cell frequencies, is: ¥

2 = M Cen\gvu

/.

Occasionally we draw samples that are ‘true’ to the population 50 that there i 00 mpamﬁ.ndoo
Goga,ou the actual and expected frequencies. In other words, we get cell frequencies like
those in Tab.e 23.3. Ir. this case the valte of chi-square will be zero:

fo=Ffe — A.\al\\vNHD - NMHO

This will not be the case for every sample, We will occasionally take samples that, through
E:ao& chance, ﬁo not fully reflect the populations from which they are drawn, The result is
that chi-square will take on a positive value:

forfe = (fo=t)">0 = >0

R e e
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The greater the difference between the observed frequencies and the expected w._dn_:n:omow“_
the larger the value of chi-square. In the formula for chi-square, notice (hat differences
between observed and expected frequencies are squared. This ensures that the range of all
possible chi-square values must start at zero and increase in a positive direction. Regardless of
whether the expected frequency is larger than the obscrved frequency or vice versa, squaring
any difference will produce a positive aumber. (Since chi-square is calculated on the basis of
the differcnce between expected and actual scores squared, and not on the direction of
difference, there is no serse in which we have to choose between a one-tail or two-tail
inference test. All differences between observed and expected scores, regardless of whether
they are due ta the observed scores being above or below the expected scores, will take on a
positive value.)

e

0
Figure 23.1 The chi-square distribution

The chi-square distribution has a long il (Figure 23.1), reflecting the fact that it is possible
to select random samples that yield a very high value for chi-square, even though the
variables are independent, but this is highly improbable. It will be a fluke just to bappen to
sclect a sample from one group in which all cases come {rom one end of the distribution and
another sample from the other group that comes from the other end of the distribution, if the
null hypothesis of independence is true. Therefore the area under the curve for very large chi-
square values is small, reflecting the low probability of this happening by chaace.

For example, we might find that the samples in Table 23.4(c) above will be drawn only one
time in a thousand (p = 0.001) if the two variables are independent of cach other. This will be
cons:dered so unlikely as to warrant us to argue that our assumption about independence

»

should be dropped — there really is a relationship between students’ sex and health rating.

We will now use the aciual data for the example of students’ sex and health rating to provide
a concrete illustration of this procedure. The (hypothetical) survey, you will recall, consists of
177 students made up of 80 females and 97 males, with the distribution in terms of health
according to that in Table 23.1 above.

The first number in each cell is the actual ccunt of females and males who give themselves a
particular health rating. The percentage figure is the number of students in that cell as 2
percentage of the column total. That is, 42 percent of all females surveyed rate themselves as
unhealthy, which is 34 females. On the other hand, only 16 percent of all males rate their own
health this poorly.

Another way to visualize the results in Table 23.1 is with 3 stacked bar graph, which I have
generated on SPSS (Figure 23.2).
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[EHeaithy
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Figure 23.2 A stacked bar chart of health rating by sex of students

We can see that there is obviously a difference between femalcs and males in termg
they rate their owa bealth, but could this be due to sampling error? To answer this im 2

:55

o»_mz_s.n the expected frequencics: the numbers we ¢xpect to find in each cel| Qmwaaa
variables are independent. These expected values are cbtained by taking the vnnonsso fE
the Total column for each row and applying them to cach sex, as illustrated in Table 23 5 8oy po
5. n
Table 23.5 Sex of students by health rating. Expected frequencies
Health rating Sex of student
Female __Male Toza)
Unhealthy R w-224 212 7
00 100 °
Health 2, 6225, 2 o D R
Y 0 o oo = 3%
0 «
—x80-3 — 9,
o 80-32 _,8x3-umm AC%
Total 86 97 100v,

The number of respondents we expect to find in each cell, if the variables are indep
calculated for each cell. For example, if 28 percent of a2/l respopdents rate n_._aBM:aoE ;
tnheaithy, then we expect to find 28 percent of females rating their health this way. \_m_com. s
80 female students in total, and 28 percent of 8C gives us 22.4 females mxﬁaia&rﬂn s
themselves as unhealthy. Effectively we are calculating the numbers we would teeq W nﬂqo

K12

exactly the same percentage of females and males give each health raticg. Sa
Thus we bave two numbers for each cell in the table, one for the expecied frequenc; :_m:

on :he null hypothesis, and the other is the actual observed frequencies we obtajp _%u b
samples. We show both of these sets of numbers in Table 23.6, with the expected f, noﬂ.ﬁoa
in brackets. The Totals row and column have been omitted so that we can focus op mn_:n:no.ﬁ,
in the cells of the table alonc. We can sze that in each cell of Table 23.6 there i5 4 awn Va leg
between the observed and expected frequencies, end we can use the formula for cp; _Qmicﬁ
express this difference in a single number. ' éﬁ:pnwoo
to

= —
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Table 23.6 Sex of students by health rating: Observed and expected frequencies

Health rating Sex
Female Male
16
Unhealthy 34
(22.4) Q72)
Healthy 29 27
(25.6) (31)
Very healthy 17 54
(32) (38.8)

Table 23.7 illustrates how we go through the mechanics of calculating tbe chi-square
statistic from these differences.

Table 23.7 Calculations for chi-square

Healthrating Sex
Female Male o
2 2
M y 16-27.2
Unhealthy \w . A N.M\ov =6 P A V _ 46
’ 224 272
Az-&&u 5 AHTEN
Healthy km L 1 .05 x° = =05
25.6 31
A_.Tzvm 2 ?L:VN
Very nealthy NN o _7 2 - L5
32 388

Having calculated these values for each cell we can add them together to get an oﬁ.E.: x
for the crosstab as a whole. In other words, the chi-sguare statistic gathers up these individual
values so thal we get a single number for the whale table that expresses the fact that the actual
sample result does not conform perfectly to the null hypothesis of independence: {

ng__w: = ME = 6+46+054+485=+7+6

l\‘\

The distribution of chi-square

So we have obtained a value for chi-square of 24.6. What does this tell us? In and of itself it
docs not tell us a great deal, apart from the fact that it is not equal to zero and therefore
indicates that there is some dependence between these variables in the sample data. go&ﬁ |
1his should cause us to reject the null hypothesis of independence depends on the n_.ocwa__:w
of obtaining this sample chi-square value of 24.6 from populaticns where Eo. wo variables
arc independent. To determine this probability we refer to the table for the critical values of
chi-square printed as Table A4, and reproduced in part in Table 23.8. . .

In using this table to work out the probability of obtaining a sample chi-square of 24.6 just
by random chance, we peed to take into account the degrees of freedom. Far any table the
number of degrees of freedom wils be:

df=@-c-1)

where ris the number of rows and ¢ is the number of columns. In a 3-by-2 table such as this,
therefore, there are 2 degree of freedom.
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We caa now refer 1¢ the tabic “or the critical values of chi-square and determine the relevant
probability. To t:lustrate how this is dene a podiion of the table is reproduced in Table 23.8.

Table 23.8 Critical vaiues of chi-squae

Level of significance

a 0.99 0.90 0.70 0.30 0.30 0,20 Q.10 Q.05 0.01
1 0.00016  0.0158 2,706 3.841 6.633
3 . 6.251 7.815 11.341 16.268
4 0.297 1.064 2195 3.357 4878 5.989 7979 9.488% 13.277 18.465
5 0.554 1.610 3.000 4351 6.064 7289 9236 11 070 15.086 20517
30 | 14953 20.599 25.508 29.336 33 530 36.250 40.256 43 773 56.392 3y 703

This table is very similar to that for the disiribution of ¢, with the critical values for chi-
square in the body of the table, the number of degrees cf freedom down the side, and = select
set of significance levels across the top. In our example, with 2 degrees of freedom, the
sample value of 24.6 lies further out than the largest value presented in the table, which is for
a significance level of 0.C01. This means the sample p-score is less than 0.001, so we reject
the null hypothesis of independence: sex of student and health rating are not independent.

It is of the utmost importance to note, however, that the test itself does not tell us what is the
nature of the relationship. All we conclude 1s that there is some association between these
variables. In this instance it is obvious that there must be a onc-way relationship from sex of
student to health rating. In other instances, the appropriatc model of the relationship may be
open to debate, The chi-square test will net decide this issue for us. [t merely tells us whether
the variables are independent. How we choose to characterize 2ny relationship observed is a
matter for theoretical debate that statistica! analysis cao inform, but never decide.

The chi-square test using SPSS

In Chapter 5 we introduced the commands for generating a crosstab on these data in SPSS.
The chi-square lest appears as 2n option within the procedure for generating a crosstab, much
like the way in which we added lambda to the crosstab in Chapter 6. Table 23.9 and Figure
23.3 repeat the steps for generating a crosstab in SPSS, but with the addition of the relevant -
chi-square statistic, and also column percentages. .

Table 23.9 Generating crosstabs with chi-square on SPSS (file: Ch23.sav)

SPSS command/action

From the menu select Analyze) Descripdve Statistics/

Crosstabs

2 Click on the variable in the source list that will form the
rows of the table, in this case Health radng

Comments
This brings up the Crosstabs dialog box

This highlighis Health radog

3 Click on » that points to the target list headed Row(s):  This pastes Health rating into the Row(s): 1arget list
4 Click on the variable in the source list that will form the  This highlights Sex of students

columns of the table, in this case Sex of students
5 Click ont » that points to the target lisi headec This pastes Sex of students into the Colusnn(s): target

Columni(s): list

6 Click on the Statistics button This brings up the Crosstabs: Statistics box. In the top-

left comer notice Chi-square with a tick-box next 1o it
This places « in the tick-box to show that it is selected
This brings up the Crosstabs: Cell Display box

This places ¢ in the tick-box to show that it is selected

7 Select Chi-square by clicking on the box next ta it
8 Click on the Cells button

9 Select Column by clicking on the box next to it
19Click on Continue

11 Click on OK
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We get a tablc headed Health rating * Sex of student Crosstabulation whick is an SPSS
| version of Table 23.1. We then get a table headed Chl-Square Tests. The relevaot part of this
! table is the first row labelled Pearson Chi-Square. Under Value we see 24.426, which is the
sample x* value we calculated above (tbere is some slight difference due to rounding error in
" calculating the expected frequencies in each cell). With 2 degrees of freedom (df), we see that
the significance level printed under Asymp. Sig. (2-sided) is reported to be .000, although this
really meaos ‘less than 5-in-10,600° chances of obtaining samples with this distribution from
i populaticns where the variables are independent. This very low p-value leads us to reject the
: null hypothesis of independence.
e 2 ; ! j |
e — .

Example

Figure 23.3 The Crosstabs: Statistics and Cell Display dialog box | We will work through one more example using the five-step hypothesis testing procedure to
see it in the familiar context. We have the data presented in Table 23.10 showing the joimt
This set of commands will produce the nccessary information for oo:ac.o:n_m a chi-square distribution of 800 children in terms of theis sex and whether they watch the pews on TV.
test. Notice, 1 instructed SPSS 1o also include the relative colump frequencies in the crosstab.

This is done by clicking oo ihe Cell button in the Crosstabs dialog box, which provides a Table 23.10 Children’s TV acwswatching by sex

range of oplions for information to be printed in each cell of the table. By clicking on the Watch news on TV? . Sex

check-box next 1o Column we instruct SPSS 2iso (0 include the column voRa:Smaw in the 5 om.u_ mww AM_%Q -
i i i i i i 11 is reaily up to .

output. While the choice of information to be calculated .u:a w:bzm in each npow y _uv__ Yes 377 363 740 (92.5%)

the person conducting the research, and what they think is needed to make a reasonable Total 402 398 £00

cyeball assessment, the column percentages allow us to look at the data and make a

preliminary judgment as to whether we think the two variables are wsnnﬂnnag_ or not. Step 1 State the mull and altermafive hypotheses
The output generated from these commands will be as shown in Figure 23.4.

Hy: Sex and TV newswatching are indepeadent of each other.
H,: Sex and TV pewswaiching are oot independent of ecach other.

e

Case Processing Summary

C 4 .
_ ....H..E ey Step 2: Choose the test of significance
Vahd 2 £nt N Percent . . ¥ . . . P
N Percent N erc ] We have sample data arranged in a bivariate table to see if there is a relationship between two
ik ey 177 Ba.5% 23 11.5% 200 : variables. This makes the chi-square test for independence the relevant inference test.

Step 3: Describe the sample and calculate the p-score

Health rating * Sex of student Crosstabulation

= 3 We have already described the data in the crosstab above. To derive the test statistic frem the
en
Fs”” o preTRy Tocsd table so that we can look up the p-score we first need to calculate the expected frequencies
Feahh raung  Unhealthy  Gount 34 16 50 bascd on the Total columa percentages in Table 23.11.
% within Sex of student 42.5% 16.5% 28.2%
Wexlthy Count 29 2 29 '\ Table 23.11 Children’s TV newswatching by sex: expected frequencies
% within Sex of yudent 3B.3% 27.8% .0 | Wakhoewson TV? Sex
Very baaltyy Count 17 o 7% | Girl Boy Toul
% withio Sex of student 21.3% 55 7% 40.1% | No 302 268 60 (7.5%)
Tatal Count 20 97 e : Yes 371.8 3682 740 (92.5%)
% within Sex of student 100.0% 100.0% 100.0% Total 402 398 200
2 2 2 2 2
. , (fo-1)" (25-302)° (35-293)" (377-3718)"  (363-368.2)
Chi-Square Tests | x . = M = 302 + 798 4 + =19
pyr— | amp /e 30. . 371.8 368.2
Value df [2-sided) [
Pearson Chi-Square 24.426° 2 -000 ) Siep 4: Determine at what alpha level, if any, the result is statistically significant
Likelihood Ratio 25330 2 000 ) . . .
Linear-by-Linear — i - We have 2 2-5y-2 table, so there is only | degree of freedom. We look across this row in
Association : ’ Table 23.12 and find (kal the sample chi-square lies between the critical values fcr alpha
= cted :N:_ Jess than 5. The minimum | levels of 0.1 and 0.2. The result is therefore not statistically significant and we carnot reject
* W.hhﬂhﬁh.ﬂwmww.%_. o ’ the possibility that there is no relationship between these variables, despite he differences

Figure 23.4 SPSS chi-square output observed in the samples.

BRSNS e, -
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Tabje 23.12 Critical values of chi-square

4]

Level of signific

0.0i 0.001

10827

0.99 0.90 0.70 0.50
0.0158 S0455

0.211 1.386 3.991 9.210 13.815
0.584 2.366 7.815 11.341 16.268
1.064 3.357 9.488 13277 18.465
[.610 4351 X 7.289 11.070 15086 20517
20.599 25.508 29.336 33.530 36250 40.256 43.773 50.892 59703

We can also conduct a chi-square test and obtain the exact sigaificance level by tuming (o enc
of the intemet-based statistics calculation pages such as those iocated at:

* www.unc.edu/~preacher/chisg/chisq. htm
» www.physics.csbsju.edu/stats/contingercy NROW_NCOLUMN_form.hml

These indicale the exact p-score is 0.167, which fails in the range we determined with
reference 10 the table.

Step 5: Report results

A sample of 402 girls and 398 boys were asked if they watch the nightly news on TV. Of the
girls, 94 percent watched the news, while 91 percent of boys watched the news. This slight
difference was not statistically significant =19, p=0467, df = 1), so that we cannot
reject the possibility that the sex of students does pot affect the rate at which they walch the
TV news.

Example

A raodom sample of 50 migrants from non-English-speaking backgrounds (NESB) and a
random sample of 50 migranis from English-speaking backgrounds (ESB) are asked whether
or not they feel they have cver been discriminated against in seeking employment or
promotion. We suspect that perception of diserimination is somehow dependent on language
background, so that we will form crosstabs with language background as the independent
variable and perception of discrimination as the dependent variable. However, this suspicion
may cot be correct. These two variables may in fact be independent of each other, so that
koowing f a migrant is ESB or NESB tells us nothing about whether that migran? fecls a
stronger or weaker sense of discrimination. The results for all 100 respondents are shown in
Table 23.13.

Table 23.13 Perception of discrimination

Discrimination Total
No 40
Yes 69
Toral 100

If the two variables are independent we should expect to find the percentage distribution of
‘Yes’ and ‘No’ respoases for each migraot group to be the same as that for the two groups
combined. Tatle 23.14 illustrates the simplest way to calculate these expected frequencies.

gl
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Table 23.14 Expected distribution of respoases

Discriraination Stacus
NESB ESB Total
No 50x 40 - 50x 50
= T 20 40
Yes ool - 30 5060
100 0 x ®
Tolal 50 S0 130

v ns d ~:~ S OvaAuﬂn_ <.N—_.—Om EG sample TO equernct
> . d h C.
:O'CO er, wmstead of these p P uced the OUMO~<OQ frequel <s

Table 23.15 Actual distribution of responses
Discrimimation

Migrant status

NESB ESB Total
No 5 3< m
Yes 45 I» 60
Total 50 50 190

We could stop here and let the descriptive statistics contained in th
Q.omzmm?o% NESB migrants do have a relatively higher perception OnHWMEMUMMMow__”wM:WM
against that ESB migrants. However, we must remembec that becausc we are only workin,
5.5 mm.Bv_nm rather than populations, the result can simply be due to random variation <<m
::m.E Just happen ta select a high proportion of NESB migrants who feel Emoaaﬁu—na
2gainst and/or a slightly lower proportion of ESH migranis who feel discriminated against
\n_,<ovﬁ__ ..MM:WM in .._po_unonimno:m there is no difference. This is where the chi-square test helps

able 23.16 uscs the expected and observi ch ce : i ive
e - BE__ME‘EEEU oy ed values for each cell to calcutate their respective

Table 23.16 Calculations for chi-square

Discrimination Migrani status
NESB ESB £
(o)’ (s-2)’ |
Kei s PalT il AT
20
. ?TH&N b
Yes PR =
X = l’uc - 75 NN '} mﬁuohoh - 75
2 2 2 '
2 sk (5-20) (35207 (as-30)  (15-30)
X sample M 7. - 20 + % + 3 + % !

= 1125 3 1125+ 75 + 75 = 375

Jo a u-._@rw table such as this, there is 1 degree of freedom. Looking at the 1able for the
distribution of chi-square, with | degree of freedom, the level of significance is less 1han
0.001 (Table 23.17). We can therefore say that the probability of getting frequencies such as
those we observe, if the two variables are independent, is less than 0.001 (less than one in a
Eo:mau.&. Therefore, we reject the null hypothesis of independence, and argue thal the
_538:3 of discrimination does systematically differ between migrant groups, such c,x:
NESB migrants have a systematically higher perception of discrimination than ESB hum@.mnﬁ.

e —————————— e ———
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Table 23.17 Critical values of chi-square

Level of significance

0.50 0.10

43.773

Problems with small samples

You may have noticed the footuote atlached (o the Pearson chi-square vaiue i the SPSS
output (Figure 23.4) we gencrated ahove:

b 0 cells (.0%) have expected count less than 5. The minimum expected counl is 22.69

This is a check to see whether any cells in the crosstab have an expecied frequency of 5 or
less. SPSS basically runs through the (able and determines how many, aad what percentage
of, cells bave an expected frequency of less than 5. It then indicates what the lowest cxpected
frequency in the table is — in this case 156.12. You caa confism this for yourse!f by referring
to our calculations of expected frequencies in Table 23.6 (allowing for slight rounding error).

The reason why SPSS goes through such a procedure to indicate how many, if any, cells
have an expected frequency of less thao S, is because a problem can arise with the use of a
chi-square test when working with smal) samples. If the use of small samples leads to cither
of the fol'owing situations, the chi-square statislic becomes difficult to interpret:

* Any cell in the bivariate table has an expected frequency of less thao 1.
+The expected frequency of cases in a large percentage of cells is less than 5. Usually 20
percent of cells is considered too high, but any cells with expected values of less than 5 can

create a problem.

If the footnote to the chi-square value in the SPSS output indicates that one of these
conditions has been violated, the chi-square test cannot be meaningfully interpreted. In such
situations there are some altemnatives, depending oo the dimensions of the table.

With 2-by-2 tables some writers sugges! using Yate's comrection fer continuity:

Xe = T

s M? NAE ﬁ%
fe

Other writers suggest that for 2-by-2 tables, Fisher’s ¢xact probability test should be used.
SPSS calculates both of these altemnatives in the relevant sitwations (See H.T. Reynolds, 1977,
The Analysis of Cross-classification, London: Free Press, 9-10, for a discussion of these
procedures,)

With tables larger than 2-by-2 the only possible solution is to collapse categories togetber
for either or both variables so as to increasc expecied frequencies. Before doing this, though,
we peed to justify the procedure because information is lost when categories are collapsed
together. Originally there was enough information to say that one case differed from another
case in terms of a variable, but if these cases are now in the same category afier the original
categories are combined, we are saying that such cases are the same. For example, we might
need (0 collapse the four-point scale shown io Figure 23.5 into a two-point scale (in SPSS
using the Transform/Recode command) in order te avoid small expected frequencies.

eS|
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Thus cases p.rn: were previously classified into separate groups, such as Low and Very low
Bow are classified in :..n. same group, namely Low. The scale was originally constructed moq'
supposedly good theoretical reasons, and we should be wary of abandoning that scale simply

to allow us to use a statistical procedure.
Low <Inb..._|oi M

[ Veryhigh High |

=3 13

Figwre 23.5 Collapsing four categories into two

Problems with large samples

The o._._unq main proklem with the use of chi-squarc as a test of indepecdence is (hat it is
cspecially un:m:.?o to large samples. The chance of finding a significant difference oo.éwn.m
samples u_i@m increases with sampie size, regardless of whether we use z-tests. or f-tests, or
-tests, or chi-square. This in itself is not a problem; in fact, we should place @HQ:Q. _.m_.m in
W@ results of _E,.wﬁ m»q.zv_nu__.m.boq than small samples, since large samples are more R__.&.&_n.
&MW.«M«M.M—%MMM_@M‘SE chi-square, we may risk overstating the importance of a statistically
Ho illustrate this problem, imagine that you zre looking at twe people standing far awz
eSE the naked eye they zppear to have the same height. But through a pair of binoculars :ww
evident that one person is slightly taller than the other. The more powerful the _.ooE:m device
we use 10 make our observation, the more likely slight differences will be detected. However
this nwm::_u_@ .m_uoca also highlight the important distinction between statistical ﬁ:?ﬁanoo pnm
meaningful differcnce, There may be a statistical difference io height of 1 inch between two
nno.m_ﬁ but .‘,o., all practical purposes they are as tall as each other. Using too powerfu. a
_coxuam device may complicate a picture by exaggerating slight statistical differences that
aren’t nom_? worth worrying about in practice. When perferming inference tests, increasin
sample size has tke cffect of intensifying the ‘looking device’ we are employing .woa Ea_.ncm
accentuating slight diferences that may not be important. <

me:hﬁ lests we cover, chi-square is especially sensitive to sample size and might result in
a slatistically significant difference cven though a difference is trivial. To see this, assume that
we __mf respondents grouped according 10 their respective level of na:o...:ms. Level of
nac@:on Is measured by asking if the respondent has had a university education or not We
are interested in whether this affects cnjoyment of work, measured according to ;&w&ﬁ.
respondents find their job *Exciting’, ‘Routine’, or *Dull’. The distribution, when ex ressed as
percentages of the total for each group is shown in Table 23.18. ‘ ?

ﬁ»..im 23.18 Enjoyment of work by education lovel: Relative frequepcies
Enjoyment of work University education

) No Yes Tot
Dull 47.0% 45.7% 46 MM .|
xo:.:.:o 48.2% 47.9% hw..:.\,.
Exciting 4.8% 64% .pmo\__
Total 100% 100% 1 oW.ﬁ )

: .rnmn perceniages are derived from a total of 1461, consisling of 1242 people without
uaivers:ty educztion and 219 people with university education, the figures for observed and
cxpected values will be as listed in Teble 2339,

e —————
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Table 23.19 Enjoyment of work by ¢ducalion level
Enjoyment of work

University educalion

Neo Yes Total

Dull 584 100 684
(581.5) 102.5)

Routi 599 (05 704
(598.5) (105.5)

Exciting 59 4 73
(62) (an

Total 1242 219 1461

Just by iooking at the table il is clear that there is little difference between the observed
frequencies and the expected frequencies (shown in brackets). As a matter of common sense
we will say that the difference between the distribution of (hose without a university
education and those with a university education in terms of job satisfaction is so slight that it
could easily be put down ta chance: the null hypothesis of independence is not rejected. 1o
fact, the chi-square for this table is:

Xampie = 108148

The probability of getting this by chance zlone, with 2 degrees of freedom, is:
ﬁkj}.n” 0.58
Howevez, if we ob:aia cxactly the same patterc of responses, but from a sampie size _.o
times as large (2 = 14,610) tbe conclusion is diffsrent. The bivariate table will be as shown in

Table 23.20.

Table 23.20 Enjoyment of work by aducation level. Observed and expected froquencies

Eanjoyment of work University education
No Yes Total
Dull 5B4C 1000 6840
(5815) (1025)
Routine 5550 1050 7040
{5935) (1055)
Exciting 5% 140 730
(620) (110)
Total 12,420 2190 14,610

All we bave done is to multiply the value in each cell by a factor of 10. Tke effect is to also
increase the value cf chi-sauare for this table by exactly 10 times the value for that calculated
from the previous tabie:

X oomptc = 10.8748

This is now siga'ficant at the 0.01 level: the ¢iflerence between observed and expected
frequencics is large enough to aliow ts to reiect the null hypothesis of E@ﬁé:ﬁ_nunﬁ The
pattemn cf responses is the same relatively, yet the conclusion is reversed. This shows Eu.ﬁ any
relative difference in frequency distributions can be significans if it comes from sufficienily
large samples.
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One possible solution is to do the opposite to that when confronted with a2 small sample: use
even finer scales to measure the dependent and/or independent variables. For example, bere
wz could use more thap three possible responses for the question: ‘How much do you enjoy
your work?’ Unfortunately, by the time this problem arises — the data analysis stage of
research — it is usuatly too late to change the scale and resurvey the respondents. At best it i5
soiution to an anticipated problem, but it does indicate the value of allowing for a wide range
of possibie responses when working with nominal/ordinal data on large samples.

If this problem is not anticipated and a significant result is obtained that might be due to
sample size, then we should look at the percentage distribution of responses alone and make a
judgment based on these percentages, without adding the complication of chi-square (i.c.
work with the ‘naked eye’ rather than the statistical binoculars).

To aid this decision, we can refer to the appropriate measure of association and see if these
measures indicate a negligible association between the two vaciables. 1f we czlculate gamma
for cither of these tables it will equal 0.04, since measures of association are not affected by
sample size when reiative frequencies sizy the szame. This indicates that the relationship is so
weak as to be negligible; we should not even bother o proceed 1o determine whether such 2
trivial relationship derives trom a relationship in the population.

Appendix: hypothesis testing [or two percentages

This chapter discussed a widely used test of significance — the chi-square test of
independence. The reason for its popularity is that it is applicable in situations in which we
have categorical (cominal and ordinal) data and we are inferested in the frequency distribution
across the categories of the variable. This situation is very common in rescarch. The chi-
square test looks at the distzibution of responses in a bivariate table and assesses whether a
pattern of dependence eXists. In the case of a 2-by-2 bivariate table (i.e. when both variables
are binomial) a z-test of percentages can also be carried out on the same data; in fact, the two
tests are equivalent ways of analyzing the same data and yield the same result. Indeed, the z-
test of percentages can be considered a special case of the chi-square test, and since it is
commionly used in resezrch, it is waorth knowiag the mechanics of its calculation.

This appendix will work through an example of a z-test of sample percentages and then use a
chi-square tes! (0 show that the results will be the same. 3

The z-test for two percentages

A (hypothetical) survey is conducted 0 investigate the level of support for social welfare
reform, and whether this varies by age. Respondents are grouped according to whether they
are aged ‘under 45° or ‘45 or over’. Each respondent is also asked whether the government
should do moare to alleviate poverty. This is put to respondents as a simple ‘yes or no’
question. .

The null hypothesis is that the percentage of under 45s responding “yes' (P) is the same as
the percentage of those 45 or over responding ‘yes’ (Py):

Ho. Pr=P;

[£ this is true, samples taken from such populations will usually reflect the equality. In other
words, the difference between any two sample percentages, il there is no difference between
the populations, should be zero or close 1o it.

But this will not always be the case. Samples do not always exactly reflect the populations
from which they are drawn. Random variation may cause us to pick up a few ‘extra’ young
people who arc in favor of welfare reform, and a few ‘extra’ older people who are opposed,
causing the sample percentages to differ considerably. This means that if there is a difference
between the (wo sample percentages, we cannot automatically conclude it reflects an
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underlying difference in the populations. However, larger differences belweean the sample
percentzges are less likely to be due to random ckaace. The z-test for percentages gives wis the
precise probabiiity of such unlikely events occurring.

The survey consisted of 600 people under the age o 45 and 400 people agecd 43 years or
older. The percentage of each group responding 'yes', ithe government stould do more to
alleviate poverly, is:

490
under45: A = %xuoo = 82%

n = 600

232
: = —x100 = 58%
45 orolder: P> 200 x

ny = 400

Does this reflect an underlying difference betwecn the age groups on this issue? Ta
determine this we begin with the following formula:

_ nfirn
NU: -
V—-.*N-N

This is tasically a weighted average of the twc sample percentages, a sort of mid-poim
between (he two rezults. [f we substitute the relevant numbers into the equation we get:

p _ MmAtmPy _ 600(82) + 400(53)

= 72.2%
“ ny 4y 600 + 400

This calculation allows us to determine the standard error of the sampling distribution of a!l
pessible sample differences. One standard error is defined by:

[nyamy _ [A00-m3) [600+400 _
Oy, = ;ﬂ.s%ﬁﬁ- = 32_8-3.»:[8289 = 29%

The actual difference between our two samples in terms of z-scores is:
_ p-P  82-5%

Ipp 29

Lsample =33

This z-score is significant at the 0.01 level: we reject the null bypotbesis of no differepce and
argue that support for government assistance (0 the poor does vary with age.

Chi-square test for mdependence

Tbe alternative way of analyzing thesc data is to organize them into a 2-by-2 bivariate table
(Tzble 23.21}. The figuses in brackets are the expecied values based on the percentage of total
cespondents who said "yes’ or ‘no’. Notice that 72.2 percent of all respondents agreed with the
aeed for welfare r=form. Frem this figure we calculate the number of ‘under 45” respondents
aad *45 or over respondents who are expected to agree. The 72.2 percent is the same figure
that popped up in the two-samiple z-test for percentagss as the reference poin¢ for calculating
the standard éeviation of the sampling distribution.

= SERA
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Table 23.21 Aditude (0 government policy by age greup

Agree Age group
Under 45 ) 45 or over Total
No 110 168 278
(166.8) 111.2) 27.8%
Yes 490 232 722
(4332) (288.3) 72.2%
Totai 600 400 1000

We can substimte these observed and expected frequencies nto the equation for chi-square
to give us a test statistic of 67:

2
. Amm-wmm.&

~|MQ,USN A:c-_&.m% :%L:ANV_N ?8-&@%
X T 5. 1668 T 2 " w2 288 8

= 57

From the table for the distribution of chi-square the probability of getting this value (or
greater) from identical populations is 0.005 — the same as that for the z-test.

The conclusion to draw from this is that while two-sample binomial z-tests are very
common, and therefore worth knowing, they are in fact a special case of chi-square. Since the
formula for the z-test s more cumbersome, and the logic not as intuitively clear, it is probably
best 10 use chi-squarc in most situations. Also SPSS cannot conduct two-sample z-tests of
Pproportions, but it can calculate a chi-square on a 2-by-2 table.

Exercises

23.1 How many degrees of freedom are there for tables with each of the following

dimensions:
(a) 2by 4 (b) 4 by 2 (c) 6by 4 (d)3by 57 -

23.2  If a chi-square test, with 7 = 500, produces x*= 24, what will »* be with the mmﬂo
relative distribution of responses, but with:

(2) n=50 (®) 7= 1000?
23.3  For the following table, calculate the expected frequencies for ezch cell and identify
the ones (hat violate the rules for using chi-square. .
a b < d lotal
a 1 Q 6 48 55
) 2 0 7 40 49
Tola) 3 1] 13 88 104

23.4  For the data in Exercise 5.4, which you used 1o construct a bivariate table, conduct a
chi-square test to test your hypotheses about independence. Conducl this test on SPSS
and compare the results with your hand calculatiocs.

23.5 In earlier chapters we compared hypothetical samples of children from Australia,
Canada, Singapore, and Britain, in (erms of the amount of TV they waich. Assume that
this variable was not measured at the interval/ratio level, but rather on an ordinal scalc.
The results of this survey are presenled i (he following table. Can we =ay ka( the
amount of TV watched is independent of country of residence?
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23.6

237

23.8

Statistics for Research
Amount of TV Country
Canada Ausiralia Britain Singapore Total
Low 23 25 28 28 104
Medium 32 34 39 33 138
High 28 30 46 as 133
Total 83 29 197 96 375

A sample of 162 men between the ages of 40 and 65 years is taken and the state of
health of each man recorded. Each man is also asked whether he smokes cigareties on
a regular basis. The results are crosstabulated using SPSS, the results of which are
showu over the page.

(a) What are the variables and what are their respective levels of measurement?

(%) Should we characterize any possible relationskip i terms of one variable being
dependent and the other independent? Justify your answer.

(c) Calcu'ate by hand the column percentages and the expected values if the null
hypcthesis of independence is true, and confirm that they are the sarze as those iz
the SPSS wable.

Health tevel * king habit Cr
Smoking habit |
Doesnt Does

smoke SMoke Talal
Heshth  Poor Count 1) 34 47
level Expertad Coum 291 189 470
% within Smaking habit 13.4% 523% 29.0%
“Falr Coum 22 9| Y
Expecled Count 248 165 a0
% within Smoking habn 227% um.maxu. 253%
Gaod Count 35 9 44
Expeclad Count 263 7.7 440
% within 8moking habht 3BA% 13.6% 27.2%
Varygood  Coum 27 3| (1]
Expacted Count 180 120 ato
I wathin Smaoking hahit 27.8% 4 6% 185%
(Tatal Count 97 65 162
Expected Count 9710 B850 1820
% within Smoking habit 100.0% 100.0% 100.0%

(d) Looking at the column percentages, do you think that differences in bealth level
between smokers and non-smokers could be the result of sampling variation rather
than a difference in the populations?

{¢) Conduct a chi-square lest of independence on these data. Does it confiom your
answer to (d)?

The following information was obtained from a survey of 50 ‘blue-collar’ and 50
‘wkite-collac’ workers. The survey asked respondents if they could sing the National
Antkem from start o finish. The rssults are ‘Blue collar’: Yes = 29, No = 21; ‘White
collar’: Yes =22, No=28.

(2) Arrange these data into a bivariate table, and cczdust a chi-square ies of
independence.

(b) (optional) Conduct a two-sample test for proportions on the same data and compare
your results.

Use the Employee data file to 2ssess whether minority classification 2nd employment
category arc independent.

24

Frequency tests for two dependent samples

For each test for independent samples there is usually an analogous test for dependent
samples. For exarople, the independent samples t-test for the equality of two means has its
counterpant in the dependent samples r-test for the mean difference. A similar set of tests
exists where we are comparing sampies across the frequency distribution for a categorical
variable. We have looked at the chi-square 1est for independence, which assumed that the
groups formed by the categories of the independent variable for independent samples. Slightly
different tests are used when the samples we are comparing are related (see Chapter 20).

This chapter will consider tests that can be applied to dependent samples compared in terms
of a binornial scale. These two tests, the McNemar chi-square test for change and the sign test,
each of which are actually special applications of test we have already covered to the
dependent samples context. These tests compare two dependent samples in texms of their
distribution across a binomial variable. These two tests are equivalent, in the sense that they
will always produce the same p-value for any given difference between the samples. s the
text we will detail the McNemar test, since the SPSS output for this test provides slightly
more information than with a sign test. After working through the McNemar (est we will
conduct a sign test on the same data to show the difference in the presentation of the results.

The McNemar chi-square test for change

The McNemar test appiies o two dependent samples that are compared in terms of outcomes
for a binomial variable (i.e. a variable that has two possible outcomes). The McNemar test
compares the outcome for each case in one sample with the outcome for its respective pair in
the other sample. For example, a political scientist might be interested in whetber teleyised
debates between political candidates have an effect on voting intentions. The researcher
randomly selects 137 people and asks them whether they plan to vote Progressive or
Conservative at the forthcoming electicn, ignoring all other candidates. The researcher then
asks the same question of rhe same 138 people after they bave watched a televised debate
between the Progressive and Conservative candidates.

In comparing each individual in the ‘before’ stage with his or her own particular respcnse
afler the debate, there are four possibilities. Table 24.1 and Figure 24.1 illustrate thesc
possibilities.

The McNemar test only considers those pairs for which a change has occurred, and analyzes
whether any changes tend to occur in one direction (e.g. Conservative to Progressive) or the
other (Progressive to Conscrvative). The total pumber of pairs registering a change will be
cells (b) and (<) in Table 24.1. If the changes induced by watching the TV debate do not favor
a shift in one direction or the other, then we should expecr to find SO percent of the total
number of changes in cell (b), and 50 percent in cell (¢).

Table 24.1 Joint distribution of survey results

Before After

Conservative Progressive
Conservative No change (a) Change (b)
Progressive Change (¢) No change (d)
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still plan to voic Coaservalive
no change

initially planned 1o vote Conservauve

now plan (0 vote Progressive
change

stii} plan te vete Pregressive
na C RﬂE%n.

ially planred 10 votc Progressive

now plan to vote Conservalive
change

Figure 24.1 Before-2ad-afler votirg inteptions

Of course, random variation will cause samples to differ from the expected resely, even if the
debate did not affect the overall opinion of the population. It is possible (although very
unlikely) to select a random sample where 90 perceat of all pairs registering a change in
opinion are in cell (b), even if in the wholc population the changes are similar in either
direction. The greater the difference between the observed cell frequencies and the expected
cell frequencics, however, the less likely that such an event is due to sampling error when
sampling from populations where no change has occurred.

This discussion of expected and observed cell frequencies should sound similar to the chi-
square test. In fact the McNemar test (with large samples) is a chi-square test for the
difference between expected and observed cell frequencics. This test statistic is calculated
using the following formula:

fru=na=1)

LIE Y P

2
M =

where n, is the observed number of cases ir cell () or cell (¢), whichever is larges?; and n, is
the obsesved purnber of cases it cell (b) cr cell {¢), whichever is smallest.

The disiaibution of responses to this hypothetical study is shown in Table 24.2.

Table 24.2 Voting intentions before and afier TV debate

Before After
Conscrvative

Progressive

Conservauve
Progreasive

We cap immediately see that the total number of cases that did not change their opinion (the
unshaded cells) is 55:

28+27=55
whereas the tola: pumber of cases that did record a change (the shaded celis) is 82:

55+27=82

ST aTa

=R

R T .
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Obviously the sampie result differs from the expected result, but is the difference big enough
10 warrant re‘ecting the null hypothesis? Using the formula for the McNemar statistic we get:

V2
(35-27-1)
$5+27

2 _ A:_I:N1HVN _
xm motny

= 8.89

From Table A4 for the critical values of chi-square, with | degree of freedom, the p-score
for this chi-square is less than 0.0l level. This leads us to reject the null hypothesis. The TV
debate does have ao afJect on voticg inientions. Looking back at the table of raw numbers, it
is clear that the direction of change is from Conservative to Progressive,

The McNemar test using SPSS

Table 24.3 and Figure 24 2 go Guough the steps involved in conducting a3 McNemar test on
these data,

Table 24.3 McNemar test on SPSS (file: Ch24.sav)

SPSS command/action Comments

1 From the menu select Analyze/
Nonparametric Tests/2 Related Samples

This brings up the Two-Related-Samples Tests dialog box. You
will notice that in the area to the bottomn right of the window
headed Test Type the small square next to Willeoxon is scleeted.
This indicates that the Wilcoxon test for two dependent samples
is the default test. Here we want 10 conduct a McNemar test so
we need 10 “unselect” Wilcoxon and select McNemar instead

2 Click on the square next to Wilcoxon This removes ¢ from the tick-box
3 Click on the square next to McNemar This places ¢ in the tick-box, indicating that it is the selected test
4 Click on Voting Intendon pre debate and These two vaniable names will be highlighted
then click on Voting Intention post debate in
the source variables list
5 Clickon » This pastes the highlighted two variables into the Test Pairs:
target list indicating responses for the two variables will be
matched
6 Click on OK

Figure 24.2 The SPSS Two-Related-Samples Tests dialog box

Figure 24.3 presents the output from this set of insiructions. The first table in the oueput
contains the descriptive statistics for the sample datz, and is basically the same as Table 24.2.
The sccond table labelled Test Statistics contains the information for the McNemar chi-
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square tes: on the cells in the first table reflecting a change. The difference between the
observed and expected frequencies produces a chi-square value for :_m uw_.:_u_o_Om 8 890. With
] degree of freedom, the exact probability of getting this sample chi-square just by random
variation is .003. This is well below any normal alpha level such as 0.05. The rescarcher
concludes that the TV debate is likely 10 favor & change in opinion, {rom Conservative to
Progressive.

McNemar Test

Crosstabs
Vating imention pre dehste & Veling Mtention post dehate
Vating inention past
debate
Valing infention pre denals 1 2
1 28 55
2 17 27
Test Ratistics®
Vating
Inlertion
pre debate
& Vaoting
intention
past
debale
N 137
Chi-Bquare? 8830
Asymp. Sig 003

& Confinuity Correctad
b. McHemar Test

Figure 24.3 The SPSS Two-Related-Samples Tests dialog box and McNemar test output

Before leaving the discussion of the McNemar test, we should note _:_S. since :.a a special
application of the chi-square test, it also suffers [rom the same :E:.»:o:m_ Io particular, from
Chapter 23 we know that the chi-square test is only appropriate when @z_unﬁr&. oo.__
frequencies are 5 or more. This rule applies to the McNemar test, and ..:m same ooqno_._os is
eken. When cell sizes are small, SPSS will automatically use the binomial approximation lo
the normal curve, and print the two-tail probability associaled with this approximation.

The sign fest

You will notice that under Test Type in the Two-Related-Samples dialog box there are .._:.o.a
options for conducting an inference test on two dependent samples. One is the _Snznam.a nr._.
square test that we have just discussed. Another is the Wilcoxon signed-ranks test, Er.n_w is
the default test, and which we will discuss in detail below. The third is the sign test. j..n sign
test conducts a binomial z-test, much like that detailed in Chapter 21. The pairs in which EnR
is a change in one direction (such as Conscrvative 1o Progressive) are given a vo.ﬁ:ﬁ sign,
and the pairs in which there is a change in the other direction (such as Progressive to
Conservative) are given a negative sign. A binomial z-test is then aonn_:m—mﬁ_ by comparing the
proportion of positive changes (or negative changes) E:r.z.n test proportion of 0.5.

In the above SPSS procedure, if we bad selected the sign test rather than the KoZoEE. test
under Test Type in the Two-Related-Samples dialog bax, we would obtain the output
presented in Figure 24.4.
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Sign Test
Froquencles
N
Vating Intention pasl Negalive Differences? 27
debate - Voling intenifon Positive Oilterences® 65
pre debate Tias® 55
Total 137
@. Voling Inlentign post debata < Voting Intsntion pre
debate
b Vaoting Imentian past debate » Voting Intention pre
debate
¢ Voting intention pre debate = Voting intention post
debate
Test Statistics®
Voting
intention
post
debate -
Voting
intention
pre debate
PA -1982
Asymp 8lg. Q-tsliet) 033
8. Slgn Test

Figure 24.4 SPSS sign test output

In the first @able headed Frequencles we have liae sample descriptive statistics, which 15 just
another way of presenting the same information as in Table 24.2. The Test Statlstics table
presents the information on the binomial z-test for the signs. Note that the two-tailed
prabability of .003 for the sample z-score of -2.982 is the same as that for chi-square id the
McNemar test.

The probability obtained through the sign test is always cxactly the same as that obtained
from a McNemar test applied 10 the same data. Therefore the same decision is made regarding
the null hypothesis, regardless of which test is used. The advantage of the McNemar test is
that the crosstab that is generated as parl of the SPSS output provides a more detailed
brezkdown of the pairs than the output that comes with the sign test. This makes it easier to
interpret the data since it allows us to see in which direction the changes move.

Example

A study is conducted lo iavestigate attitudes toward computer games. Fifty people are
randomly choser and asked if they believe video games 10 be of any educational value, with
responses restricted to ‘yes’ or 'no’. Afler playing a range of video games each person is
asked the same question. The distribution of responses is recorded ‘n Table 24.4, with the
cells indicating a change in aitude highlighted.

Table 24.4 Attitude (o video games before and after playing

After Before
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Substituting this informalion into the formula for the McNemar tes! produces a test statistic
of 1.75. W>N‘HJ m

2 / \2
s ?_I:MD_V o 8-10-17 . . . .
xh = T -t s Inferential statistics: Other tests of significance

From the distribution for c¢hi-square table, this sample chi-squarc has a significance level
between 0.1 and 0.2. We therefore do not reject the null hypothesis: playing video gares does
nol seem to change people’s attitude in ore particular wey or the other.

Summary

We have observed that the McNemar test and the sigu test arc essentially the same: SPSS
presents them as alternatives yielding slightly different information, however, so we have
covered each separately. As an alternative to SPSS there are web pages that can perform the
McNemar and Sign tests calculations on data eatered, such as the following:

< www.fon.hum.uva.nl/Service/Statistics/McNemars_test.himl
« www fon hum.uva.nl/Service/Statistics/Sign_Test.btml
* home.<lara.net/sisa/pairwise.htm

Exercises

24.1 Conduct z McNemar test and sign test on the following data.

Anv Afier Before
1 2
{ 27 22 |
2 34 2%
(b) After ) Before
1 2
| 12 35
2 50 17
AOV After Before
1 2
1 32 134
2 79 12

24.2 Brothers and sisters are matched and asked if they play regular sport. The results are:

Sister Brother

Yes No
Yes 18 11
Nao 16 15

(a) Conduct a McNemar test and sign test to assess whether there is a difference
between brothers and sisters in terms of spart playing.

(U} Enter these data in SPSS, and conduct a McNemar iest and sigp test. Compare lhe
SPSS output with your hazd calculations.
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Rank-order tests for two or more samples

The previous parts of this book coucentrated on lests of significance for data described by a
mean or a frequency distribution respectively. These tests are very hanéy because the mean
and the frequency disiribution are such important descriptive tools in research, However,
these by no means exhaust the possible ways of describing a sct of sample data. We know
from Part 2 that there are other descriptive statistics such as the median and the standard
deviation that are itoportant ways of asscssing aspects of a distribution that a mean or
frequency distribution do not capture. Generally, for each descriptive statistic that we can
generate for a random sample, there is also a corresponding inferential statistic that will allow
us to generalize from this sample to a population. We have concentrated thus far on tests for
means and (requency distributions becausc :hese specific ways of data description are
particularly common and useful. This part of tke book will detail some other tests that rely on
other descriptive statistics that are common, but to provide an exhaustive account of all the
tests of significance that are potentially applicable 1o research dzta would (ake us beyond the
needs of most researchers. This chapter will discuss rank-order tests of significance called the
z-test for the rank sum of ¢(wo independent samples (also known for short as the Wilcoxon
W test), and its very close counterpart, the Wilcoxon siguoed-ranks test for two dependent
samples.

Data considerations

Rank-order tests of significance are often used as substitutes for tests for means in situations
where the mean is not an appropniate measure of ceatral tendency. This can occur for two
maip reasons: 5

\. The level at which the variable is measured is only ordinal and there are many points on
the scale. 1n research we do pot always work with iaterval/ratio data but ordinal-level data
instead. Sometimes this ordinal data looks interval/ratio. For example, we might construct
an ‘index of satisfaction’, whereby we ask individuals to rate themselves on a scale from |
to 10, with | indicating ‘Not at all satisfied” and 10 indicating *Extremely satisfied":

|]l—2— 3} — 44— 55— 6—7—8—9——10
Not at all Extremely
satisfied satisfled

Such an index is ordinal because the numbers assigoed 1o each group are purely arcbitrary.
We car just as easily, aod just as validiy, label the grades on the index 2, 5, 8, 12, 100, (33,
298, 506, 704, 999, rather than 1, 2, 3,4, 5, 6, 7, 8,9, 10. All we need to do in constructing
an index is preserve the ranking of cases, since we are not measuring satisfaction by some
unit of measurement, as we do when measuring age in years. All we can say is that one
cas¢ is more ¢r less satisfied than the other; we do not have a unit of measucement that
allows us to say by how much onc case is more or less satisfied than the other. For
example, we canpot say that someone with a score of 6 is three limes more satisfied than

v
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someone with a score of 2. In fact, instead of using numbers to label the calcgories, we
could have used (erms like ‘Moderately satistied” 2nd “Very satisfied’ without losing any
information at all. The problem is that when we use a long ordinal scale with numbers for
labels, like 1, 2, 3, ..., 10, there is the appearance of intervalratio data. This might tempt ug
to calculate a mear in order to compare two samples that have been measured on this scale.
This is, strictly speaking, not a correct procedure.

Urfortunately, calculating a mean on essentially ordinal data is not an infrequent
occurrence. Markel research companies do this as a standard procedure when describing
survey data. [ndeed, this writer’s own academic institution, the University of New South
Wales, has introduced cougse evaluation measures, much like the above satisfaction scale,
and uses thc means of such scales to compare student evaluations of courses and
instructors. What a score of 5.6 1s meant to siguify, however, and whether this is different
in apy meaoiogfil way to a score of say 5.3, is not very obvious. Clearly, even such an
august institutioa as this is ot immune from statistical silliness!

2. We cannot assume that the population is normally distributed. Even if the level of
measurement allows the mean to be calculated as the descriptive statistic for a set of data,
10 conducl an inference test on this meaa requires the additional assumption (especially
when working with small samples) that the population is normally distributed. This
assumption is sometimes questiogable. For example, we know that income in the
population is not normally distributed: it is usually skewed to the right. Therefore, it is
inappropriaie t¢ conduct a test for mean income. Fortunately, there is a range of
significance tests such as those we will discuss in this chapter, called distribution-free (or
nom-parametric), tests that do nof require any assumption about the shape of the
underlying population distribution.

The rank sum and mean rank as descriptve statistics

To see the logic of the Wilcoxon renk sum test, we need to remind ourselves of the
relationship between descriptive and inferential statistics. We begin wilh the raw data from a
sample, and then calculate a descriptive statistic that somehow captures the ‘cssence’ of these
data that will help us answer a specific research problem. We then use inferential statistics to
see if we can generalize from this sample result to the population. For any of the reasons we
have just discussed the mean may not be an appropriate descriptive statistic. We might need
to generate a different descriptive statistic from a sample, and then apply our inferential
statistics to it. With data measured at least at the ordinal level, we can order cases from lowest
to highest according to the *score’ cach case receives on the scale. Once arranged in this
order, cach case can be assigned a rank that indicates where in the order it appears: first,
second, third, and so on. Think of the way that tennis players are given a ranking, with the
best player ranked number one, the second best ranked two, and so on. These numbers do not
measure tennis playing ability as such, they merely indicate a position in an ordered series
based on tennis playing ability. Just as we can rank-order people according to their tennis
ability, we can rank cases according to any variable measured at least at the ordinal level.

To see how we use the rank sum and the mean rank as descriptive statistics for such data,
we will elaborate the example we bave used in preceding chapters regarding the TV viewing
habits of Australian and British children. Let us assume that in trying to assess whether there
is a difference between Australian and British children in terms of their TV watching
behavior, the researcher is dissatisfied with using just viewing time measured in minutes as
the operationalization of TV viewing behavior. The researcher believes that a child may sit in
front of the TV for long periods of time, but this does not indicate the intensity with which the
child watches TV, the level of interest in what is actually screened.
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To incorporate this factor inte the measurement of TV waiching behavior the researcber
observes 20 children from Australia and 20 children from Britain, taking note of their level of
attention ard their responses 1o what they see on the screen. Based on these observations, each
child is given a score between 0 and 100 indicating their level of intensity of TV viewing. A
score of 0 indicates a child who is completely disinterested with what is oo TV, while a score
of 100 indicates a child who shows an extremely high interest in the TV. The raw data from
this research arc listed in Table 25.1.

Table 25.1 Scores on viewing intensity index: Raw data from a (hypothetical) survey of children’s TV
viewing behavior '

Australia Britain
3 . 1
9 4

12 B
19 10
20 14
23 21
33 24
37 30
38 35
45 37
58 40
58 43
64 50
69 59
73 62
75 65
78 70
80 74
83 76
89 95

Clearly, this listing of the raw data, even when rank-ordered as in this table, is difficult to
interpret. One British child shows the least interest i wbat be or she watches, but another
Britisb child is alse the most highly ergaged. What about the overal! distribution across the
range of scores? Before proceeding, ‘eyeball’ these data and try o make a judgment about-
any difference between these two samples in terms of their intensity of TV viewing. .

You have probably concluded that the scores for British children tend to be clustered at the
low end of the scale (relatively uninierested in TV), while the Australian children tend to be
clustered at the other end (relatively interested in TV). We might be inclined 1o take just the
mean for each set of scores and compare them. However, we need to resist this temptation
because this is only an ordinal scale and therefore the mean will not ‘mean’ anything. We
might more usefully calculate the median for eack sample: I will leave it to you to calculate
that the median for the Ausuralian children is 50.5 and for British children it is 38.5. This
gives us a better sense of the distribution, but since the median only makes use of the central
score(s) of a distribution, rather than all the data points, it has limitatioans of its own.

A better way of describing these 40 pieces of data in a more digestible way is o assign each
case a rank and to sum the raoks for each sample. If one sample tends to cluster at the low end
of the scale then the sum of the ranks for this sample will be smaller than that for the other
sample.

We first assign ranks to each case in our survey. To do this imagine that all 40 chi:ldren are
lined up with the British child who scored | at the head of the line, followed by the Australian
child who scored 3, and so on down 1o the British child who scored 95 at the end of the line.
Each child is then given a number, indicating their place, or rank, in the line (Table 25.2).
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Table 25.2 Scores and ranks on viewing intensity index
Australia Britain Rank
Score Score

95 40
ZR=378.5

ZR=441.5

A problem arises i1 assigning ranks when two or more cases score the same score for the
vaniable. These are calleC tied ranks.

For example, an Ausiralizo child and British chiid each scored 37 on the index. Tkese (wo
children occupied positions 17 and (8 in line, so their average cank is 17.5:

17+18
2

average rank = =175
Having allocated raoks to all the cases we siply theo sum (kem for each sample. This

produces rank sums of 441.5 acd 378.5 for Australian and British children respectively. We
can now easily compare ‘hese two purabers retker thar compare the two sets of 20 numbers

A e R
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that made up the raw data, and make an assessment of our research findings. The bigher rank
sum for Australian children indicates that they tended to cluster toward the high end of the
scale, indicating that they waich TV with more intensity than British children.

In this example we conveniently have two samples with the same number of cases. If we had
samples of uneagual size, the rank sums would not be so easily compared because they will be
affected by the number of cases in each sample rather than just the relative positions of the
cases in the rank-ordering. To compensate tor this problem with raok sums, an even more
meaningful way of describing rank-ordered raw data is to calculate the mean rank (R) for
each sample. This is tbe rank sum for a sample divided by the number of cases in that sample:

= 441.5
Rpusiratia = ﬂ =2
— 3783
N&-:n:,a = 20 =19

On average Ausiralian children are 22nd in lice, whereas on average British children are
19th in line. We can see by comparing these two oumbers, rather than by compariog the
original 40 scores from which these mcan ranks are derived, that British children watch TV
with less intcrest than Australian children, although the difference does nol seem very greal.

To sharpen this notion of the rank sum and mean rank as descriptive sialistics for long
ordinal scales, let us consider the extreme situation depicted in Table 25.3.

Table 25.3 Scores on vicwing ic(ensity index

Australia Dritain
4% i
52 3
$2 h}
56 5
58 3
82 10
3] 12
&9 15
69 15 X
7 19 -
73 20 4
78 23
i 28
85 29
86 3)
86 31
89 38
91 39
92 44
95 46

We can immediately see that if we ned these children up accordiog to tkeir index scores the
British children wili occupy the first 20 racks, while the Australian cbildren wil! occupy ranks
21, 22, 23, ..., 40. The mean ranks for each sample will be 10.5 and 30.5:

= 1+2+3+..+20 2.0
Ronoin = ———g— = 55 = 103

= 21+22+23+..+40 610
wmfﬂ\ﬁ_f = [[M@li - |.N.m| =305
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These two mean ranks clearly and conciscly describe the basic difference in the
distributions, which is the clustering of cases from one sample al one end of the scale and the
clustering of cases from the other sample at the other end of the scale.

The z-test for the rank sum for two independent samples

We have observed two samples in Table 25.1 that differ in terms of the variable with which
we are comparing them: intensity of viewing TV. In particulac, we have found that the sample
of Australian children tends to watch TV with mor¢ interest than the sample of British
children. Can we draw an inference from this to the entire populations of Australian and
British children?

Let us assume that in fact there is no difference between the two populatiops of children in
terms of this variable. If there is no difference between these two populations (remember, this
is just a hypothesis) we expect that the two samples will not differ. It is possible to select
randomly twc samples that produce the extreme rank sums from Table 25.3, even though
there is no difference between the populations. Such a result, however, is highly improbable.
If the two populations do not differ, the more likely result is that the sample of Australian and
the sample of British children will be evenly spread through tbe joint distribution. In this case
the rank-orders for the two samples will be identical so that each Australian child will tie with
a British child on the intensity scale. Where the two samples are evenly spread through the
rank-ordering, the rank sums fer either sample will be equal to:

|
Hy = Ma_?_ +=~+&
where n, is lhe sample with the fewest cases and n, is the sample with the most cascs.
In this exzample, cach sample has 20 cases, so if the samples conformed exactly with our

hypothesis of no difference between the populations, we will generate rank sums of:
sy = Sm(n +ng+1) = L20(20+2041) = 410
277 h 2

The actua! rank sums that we observe in our samples do not conform 1o this, reflecting the
fact that ore sample tended to cluster bigher up the scale than the other. The raok sum for the
szmple of Austrzlian children is 441.5 and for the sample of British children the rank sum is
178.5. We know, however, that random samples do not always exacily reflect the populations
fcom which they are drawn. Random variation will often cause samples to differ frem eack
other, even though the populations from which they are drawn are not different. What is the
probability, in other words, of drawing samples that are as different in their index scores as
that which we observe from populations that are not different?

To determine this probability for sample sizes of 20 or more we conduct a z-lest on the
difference between the smallest of the two rank sums (which is given the symbol /) and the
value for py. The formula for the z-value that is the test statistic is:

_ W-uy
Zsample ~ ow
where:
1
Gy = m=_=~A=_+=N+&
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We substitute our sample results into these equations to determine the sample z-score, Here
the smatlest of the two rank sums is that for British children so that the value for /= 378.5:

oy = ,\W‘._S?_t;iv = Wuoﬁox“fsiw =37

W~ 378.5-410
Lyampie ~ iw = = -0.35
Oy 37

Such a z-score 18 not significant at any usually accepted alpha Icvel. In plain words, aithough
our samples differ, the difference is not so great for it to suggest the samples come from
populations that differ. We cannot reject the bypothesis that the populations of Australian and
British children do not differ in terms of TV viewing iotcnsity and the sample difference is
due just to random variation.

We should note that the sampliag distribution of W is only approximately normal, but this a
reasonable 2pproxXimation for sample sizes larger than 20. A table for the exact distribution for
W should be used for probabilities in the small sampie case, a copy of which can be
downloaded at fsweb.berry.edu/academic/education/vbissonnette/tables/wilcox_r.pdf. ln the
small sample case SPSS will automatically conduct an exact test rather than use the normal
approximation.

Example

We want to see if people from rural areas are more or less conservative than people from
urban areas. We asked a random sample of 22 people from rural areas and 22 people from
urban areas a detailed set of questions, and from their responses constructed ao ‘index of
conservatism’ which ranges from 0 ta 40. A score of 40 indicates someone who is extremely
conservative, while a score of 0 indicates soneone who is not at all politically conservative.
All 44 scores are listed in Table 25.4.

Table 25.4 Scores (and ranks) ob conservalism index: Samples of rural and urban residents

Urban Rural 'a
o 209
..&3 3
5 6(7)
3(0) 7(8)
10 (11 8(9)
11{12) 9(16)
13(14) 12(13)
1415 17(18)
15 (16) 18 (20) '
16 (17) 19(22)
18 (20) 21 (249
13 (20) 22 {2
» 0 na
25(28)
26 (29) 28 (31)
27(30) 29 (32
31 (39 30(33)
3239 33(36.5)
35 (29.5) 33(36.5)
35(39.5) 34 (39)
37(42) 3641
38 (43) 39 (44)




350 Siatislics for Research

Now imagine lioing up these 44 people from lowest to highest (i.e rank-ordering the cases),
An urban residen: scored the lowest wita 9, and s0 appears ficst in line, while a rural dweller
had the highest score of 39, and appears at the end of the line. Ranks arc assigned to each
person (indicated in the brackets) according to their position in the line-up.

Just to remind ourse,ves of how to assign tied ranks, look at the one rural and two urban
dwellers who each scored 18 on the index of comservatism. Together, these three people
occupy three spaces, which are 19th, 20th, aed 21st in line:

19+20+2!

=20
3 2

Therzefore they are cach assigned a rank of 20. Notice that in assigring this rank of 20 to
cach of these three cases we do not use ranks 19 or 21 for Whc cases immediately precediog or
following them in line.

Can we say that (he data o Table 25.4 indicate hat urbac and niral residents are politically
distinct? To make this inference we will work through owr five-step hypothesis testing
procedure.

Step 1: State the null and alternative hypotheses

I this exaraple with sample sizes of 22, the vatue of py is:

,_ f 1 A
py = ms_,;_;i; = mwﬁ?mi‘ = 495

Remember, this is the rank sum we will get on average from samgles drawn from
porulations that are no different in terms of the conscrvatism scale. Therefore the null and
alternative hypotheses for this example are:

Hy: py=495
H,: pp# 495
Step 2: Choose the test of significance

In this example we are comparing two random samples to sce if they differ in terms of their
rankings on an ordinal scale with maoy points. The appropriate test, therefore, is the
Wilcoxon z-test for the rank sum.

Step 3: Describe the sample and derive the p-scare

[f we sum and average the ranks for each group, we get descriptive statistics that indicate the
relative spread of the two saraples in the joint distribution:

IR, = 480, R, = 21.82

510, R,

1]
I

IR, 23.l8

These rank sums and mean ranks give 2 sense 2s 1o whether one sample is more or less
conservative thac the other. Here we see that the mean rank for the urban sample is 21.82,
whereas for the rural saraple :t is 23.18. This indicates that urbao residents tended 1o have
lower scores on the conservatism scale than rural residents.
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The smallest of the two rank sums is that for urban dwellers, so thal:
=430

This is obviously different to the value assumed in the null hypothesis, indicating that the
samples differ. Can we conclude from this that the populations are different as well? The
Wilcoxon test analyzes whether 480 is ‘different enough’ from the expected value of 495 to
suggest that there is also a difference between the populations.

The standard error of the sampling distribution of rank sums (o) for this example is:

(1 .
ow = <f~~?bﬁf-+; = 426
The z-test for B produces the following result:
C Weopy | 480-495
Zsampte = gy - 426 = -0.J52

If we refer to the table for (he areas under the standard normal curve, we see that this test
statistic of —0.352 has a p-score between 0.689 and 0.764 (Table 25.5).

Table 25.5 Area under the standard normal curve

z Area under curve : e} Arca under curve
between both points deyond one point
0.080 £ : 0.4600
{.15% gt sl 0.4205
: 0.3820
*RF ; ! 0.3445
0.5 0.383 0.617 0.3085
0.6 0.451 0549 0.2745
+0.7 D516 0.434 0.2420
(0.8 0.576 0.424 02120
0.9 0.632 0.368 6..840 =
*1 0.683 0317 C.i58S ’
&3 >0.996 <0.0¢4 <0.0020

As an alterative to these hand calculations (or to SPSS), we can enler our sampie
information into the following web calculation pages:

* www.for.hum.uva.nl/Service/S:atistics/'Wilcoxon_Test.html, which allows the input of raw
data;

< home.clara.ncU/s!sa/ordinal ki, which requires summarized data, specifically the sample
sizes and the smallest of the two raak sums ().

These pages indiczte that the exact significance level for these data is p = 0.64.

Step 4: Decide at what alpha level, if any, the result is statistically significant

The diffecence between the (wo samples is clearly no* statistically significant; it has a high
probabitity of occurring as a result cf sampling error from population that are .o different.
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Step 5- Report resulfs

Samples of 22 urban residents and 22 rural residents were a detailed set of questions, and
from their responses constructed an ‘index of conservatism’ which ranges from 0 to 40. A
score of 40 indicates someone who is extremely conservative, while a score of 0 indicates
someone who is not at all politically conservative. The sample of urban residents was slightly
less conservative than the sample from the rural areas, with 2 mean rank of 21.82 compared to
23.18. This difference, however, was not statistically significant (z = -0.352, p = 0.64, two-
1ail). We cannct dismiss the possibility that urban and rural residents are no different in their
political orientation and that the sample difference is due 1o sampling error.

Wilcoxon’s rank sum z—test using SPSS

To conduct a rank-sum test on these data we follow Table 25.6 (Figure 25.1). The results from
this set of instructions are presented in Figure 25.2.

Table 25.6 Wilcoxon’s rank sum test using SP'SS (file: Ch25-1.sav)

SPSS command/action Comments
1 From the menu select Analyze/ Nonparametric This brings up the Two-Independent-Samples Tests
Testw2 Independent Samples dialog box. Notice that in the area for Test Type the tick-
box next to Mann-Whitney U has « indicating that this
is the defaull test. This is the same test as the Wileoxon. In
other wonds, the Wilcoxon test is the default test which
will automalically be generated under this command

2 Click on Score on censcrvafism index i1 the This highlights Score on conservatism index
source variables list

3 Click on » that poinss to the Test Variable List: This pastes Seore on conscrvatism index into the Test

Variable Lisc:

4 Click on Area of residence (n the source variables  This highlights Arca of residence
list

5 Click on » that points to the acca headed
Grouping Variable:

This pastes Area of residence into the Grouping

Variable: list. Notice thal in this list the variable appears

as area(? ?)

6 Click on Define Groups This brings up the Define Groups box

7 In the area next o Group 1: type 1, and in the urca  This identifies the two groups to be compared, which are
next to Group 2: type 2 urban and rural residents

8 Click on OK

jia Independent Samples: Define G... wﬂﬂ

Figure 25.1 The Two-Independent-Samples Tests and Define Groups dislog box
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NPar Tests
Mann-Whitney Test

Ranks
sum of
Ated of residence N Mean Rank Rattks
Score an consenalism urbian 2 21.82 48000
index rural 2 2318 51000
Talal 44

Test Siatistics®
Scare on
consenatism
index
Mann-vnitney U 227 000
Wilcaxon W 480.000
z -.352
Asymp, Slg (2-tailed) 125

3 Grouping Wariable: Area of residence

Figure 25.2 SPSS rank-sum sest outpet

The first thing you will notice is that the output is titled Mann-Whlitney Test. As we show in
the Appendix to this chapter (for those interested) the Mann—Whitney and Wilcoxon tests are
equivalen: ways of reaching the same conclusion.

The Ranks table provides the relevant descriptive stalistics for the two samples we are
comparing: the number of cases in each and in total, the mean ranks, and the swr of racks,
These figures al! correspond to the values we calculated by hand above.

Below this descriptive information is the table providing the Test Statistics. The footaote
indicatcs the samples have been formed on the basis of their area of residence variable. The
value for Wilooxon W is 480.000 (the smallest of the two rank sums froro the Ranks table).
The value for Z is —.352, which is the same as our samplc z-score calculated above. This has a
two-tail probability, if the null hypothesis of no difference is true, of .725. Clearly; the
difference between the samples of rural and urban residents should not be taken to indicate a
difference between the population of rural and the population of urban residents. ‘We do not
reject the oull hypothesis of no difference. .

The Wilcoxon signed-ranks 2-test for twa dependent samples

The previous section detailed the process of comparning independenit saropics using the ranks
of the cases rather than the raw scores. Similar principles apply when working with ranked
data and we want to compare dependent samples. The Wilcoxon signed-ranks test comparcs
two dependent samples, using the ranks of the pairs of scores formed by the matched pairs in
the samples. This is analogous to the relationship between the independent samples r-test.for
the equality of means and the dependent samples (-test for the mean difference.

For example, assume that the researcher wbo conducted the McNemar test in Chapter 24 tc
assess people’s aftitude to video games is dissatisfied with the results. The researcher suspects
that plzying video games really does affect a person’s attitude to the educational value of such
games, aand thzt the simple binomial scale used in the original study was not sensitive enough
to detect this change. The researcher therefore conducts another study involving 15 people
who are asked 10 rate on a 10-point scale whether they believe video games have any
cducational value, with 1 indicating no educational value and 10 indicating very high
educaticoal value. Each of these 15 people is then asked to play a variety of video games 2nd
again rate whether they believe video games are of educational benefit. What effect does
actually playing the game have on opinion?
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Tte scores fcr cack person, before and after playing, are recorded in Table 25.7, together
with the cifference, for each pair.

Table 25.7 Raticg of video pames before and after use
Person Difference in soores

B

R Mie s wies SR Gt bt T
i ST e

3
4
s
6
S
3
9

The first step is to exclude the cases with wo change in scores, which are those shaded in (he
table. As wilk the McNemar test, cases that show no change are not used in the analysis. Here
cases 2, 7, aed 14 record no chacge in the'r scores before and after,

It would be templing simg.y ‘o czlculate an average change in scores and copduct a J-lest on
the dfference. However, we are working with ao ordinal scale and such averages arc ot
appropriate. lostead we take a slighily more difficult route. We rank the cases, starting with
those registering the smallest change ia scores (these will be cases 4, 8, 5, and 10, which each
registered a change of 1) and contiauing through (o the case with the largest charge (case 11
with a change of 8). Pairs, that is, are ordered according to the absolute difference between
their ‘Before’ and ‘Afler’ scores (Table 25.8).

Table 25.8 Ordering of all non-tied pairs

Pair number 4 5 8 10 1 12 [ 15 S 3 13 it
Difference +1 -1 -1 +i +2 -2 -3 —-4 +5 +6 -7 +8
Rank 2.5 2.5 2.5 2.5 5.5 5.5 7 8 S 10 11 12

Notice that cases that have the same absolute change in scores have been assigned an
average raok. For example, four cases each changed their score by cae point on the scale.
Since collectively these cases occupy ranks 1, 2, 3, and 4, the average rank for these four
cases is 2.5:

1+2+3+4
4

=25

If playing video games bas no effect on aititudes regarding their educational value, there
should not be & tendency for pairs with either positive or negative changes 1o bunch up at ope
end of the ranking or the other. Another way of assessing this is to compare the rank sum for
pairs registering a pesitive change in attitude to the rank sum for pairs registering a negative
change io altitude. If the positive and segative changes are equally distributed through the
ranks, the sum of these ranks will be equal, and can be calculated using the formula:

dr = p
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The value of ur is the rank sum we expect from samples drawn {from a population wkere
attitude to video games does not change systemztically in one direction cr the other, and is the
value we use in slating the null hypothesis. For these catz we obtain:

1202+1) _
4

Hr = s

The ruli hypothes’s in this instance will Lerefere be:
Ho: pr =39

However, even if this is the case, randorm samples drawn from such a population wil. not
always produce a value of 39. We need to compare thus hypothesized value witk the sample
statistic we obtair, and assess whether aay difference car be attributed 10 random vapation.

We derive this sample sialistic by separating cut those cases that kave a positive change
(increase) ic thei score afier playing the videc games from those cases that bave a aegative
change (reduction) in score. We thep sum: the rarks for each group (Table 25.9).

Table 25.9 Ordering of pairs

Pair number 4 10 N 9 3 11
Difference +i +1 +2 +5 +6 +8
Positive rank 25 2.5 53 9 10 12
Pair number S 3 12 6 [N 13
Difterence -4 -1 -2 -3 —4 -7
Negative rank 2.3 25 53 7 3 11

Tu this example we have rank sums of 36.5 and 41.5. What is the probability of obtaining
such 2 sample result if the null bypothesis is true? The sample statsstic, called Wilcoxon’s 7,
is the smallest rank sum, which in this case is the rank sum for the positives. We conduct g z-
test on the difference between the value of ur and the sample value, T, where:

T -
N.ﬁsﬂ.\h = Qitﬂ. =
_ _a?:xu:iv
TENT e

If we substitute the data from the example into these equalions, we ge¢ Z,gmpre = —0.2:

L =A=+~XM:+_W _ ...ﬁmﬁ_m,:xux__&+_“ B
or = 24 = < 2 = 1275

. = . = ~02
Comgl or 12,75

This value for z, from the table for the arez under the standaré aormel curve, bas a two-tail
probability of 0.8445. We cannot reject the null kypothesis since the differences observed in
the pairs could easily come about through sampliog error wher drawing from a population in
which playing video games has no effect on attitude to the'r educaticnal vaiue.
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The Wilcoxon signed-ranks test using SPSS

The actions required to conduct this test in SPSS are listed in Table 25.10 and Figure 253,
which also presents the output from this command.

Table 25.10 Wilcoxon signed-ranks test on SPSS (file: Ch25-2.5av)
SPSS « d/action Comments
I From the menu select Analyze/ Nonparametric Tests/  This brings up a window hcaded Two-Related-

2 Related Samples Samples Tests. You wili notice that in the area 1o the
boftom left of the window headed Test Type the small
square next to Wileoxen is selected. This indicates that
the Wilcoxon test for two dependent samples is the

default test
2 Click on after and while holding down the command These two variable names will be highlighted
key click on before
3 Clickon » This pastes the highlighted variables into the area
headed Test Palrs Lixt:
4 Click on OK

Wilcoxon Signed Ranks Test

Ranks
Sum of
N Mean Rank Ranks
Affitude afler videos - Negative Ranks [J 6.09 36.50
Allitude pre videos Positive Ranks [ 6.92 41.50
Ties I°
Total 15

3. Alitude anter ideos < Attilude pre videos
b Atitlude afler ideos = Aftitude pre videos
<. Attitude pre videos = Aflitude afler idecs

Test Statistics®
Atitude
afler

wdeos -
Amitude pre

videas

z -1a74

Asymp. Sig. (X talled) 644

3. Based on negative ranks.
b Wilcoxon Signed Ranks Test

Figure 25.3 The SPSS Two-Related-Samples Tests dialog box and output
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The SPSS output gives us the same results as those we calculated by hand. As with many of
the other tests we have covered, the first part of the output presents the descriptive statistics
for the samples, foilowed by the information from the inference test. In the table labelled
Ranks we first see (hat there are six pairs that registered an increase in score after playing
videos (Aflitude after videos > Altitude pre videos). There are also six pairs that registered a
decrease (Attitude after videos < Attituce pre viceos), aad three pairs whose score did ot
cbange (Aftitude after videos = Attitude pre videos).

Second, SPSS calculates the mean ranks and sank sums for the positives and pegatives, [f we
multiply these mean ranks by the number of cases in each group we get the sum of ranks:

IR =6.92x 6=41.5
IR, =608 x 6=1365

The Test Statistics table, which contains the information on the z-test for the rank sums,
indicates that we should not reject the null bypothesis, given that the probability of .844 is
greater than the alpha level of 0.05. In otker words, even if playing video games makes no
difference in attitude toward their educational valuc, we will still get sarmple results with this
amount of difference or greater more than 8 times out of 10.

Other non-parametric tests for two or more samples

This chapter has worked through one of the most common non-parametric lests: the Wilcoxon
test for two indepeadent saraples. The other common non-parametric test is the chi-square
test, which we introduced in previous chapters. A researcher, in fact, can lackle most
problems with a sound knowledge of the Wilcoxon and the chi-square tests. However, there
2re mapy other non-parametric tests available, to which some reference should be made.
Indeed, the attentive reader will have noticed that SPSS offered a number of choices in the
Test Type area when conductiog a test of two independent samples. This range of choices is
furlher extended when we consider situations where more than two samples are being
compared.

Kruskal-Wallis A test on more than two samples .

The Wilcoxon test compares two samples in terms of a variable measured at least at“he
ordinal level. In the example, we had a sample of rural and a sample of urban residents. But
what if we have more than two samples that we want to compare? What if we want to
compare urban, rural, and semi-rural residents, rather than just urbaa and rural residents?

One way of doing this is simply to conduct multiple Wilcoxon rank-sum tesls, using all the
possible combinations of samples:

Urban by Rural
Urban by Semi-Rural
Rurzl by Semi-Rural

Thus with three samples to compare we will need to undertake three separate two-sample
Wilcoxon tests. In practical terms, on SPSS, this will involve specifying under Define
Groups, one test at a time, each possible combination of values for the grouping vanable, and
then rerunning the test. This is obviously a cumbersome procedure.

When we have more than two samples, a more direct path is to conduct a Kruskal-Wallis H
test. The Kruskal-Wallis test compares all possible combinations of the samples in one test. It
has very similar Jogic to the Wilcoxon test, in that it compares rank swrs for each sample
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being compared. The test statistic, though, is nc longer a z-score. The Kruskai-Wallis test
uses a chi-square test to assess the pull hypothesis that the populations have the same
distribution in some ordinal scale. It is available in SPSS as pant of the Aualyze/
Nonparametric Tests/K Independent Samples command.

The difference between the Wilcoxon W and Kruskal-Wallis H tests is analogous to the
difference between a two-samples f-test and an ANOVA. These latter tests compare the
relevant number of samples in terms of the difference between means, whersas the W and #
tests compare samples 1o terms of rank sums.

Wald-Wolfowitz runs test

This test uses the same logic as the one-sample runs test we introduced in Chapter 21. It can
be used in similar situations to the Wilcoxon test, where the cases in the two samples are
pooled and ordered in terms of their scores on an ordinal scale. The aumber of runs of cases
from each same sampie is counted, and this number of runs is the sample stztistic tested, In
the extreme case, using the example above, all 22 rural residents will be at one end of the
distribution and all 22 urban residents at the other end, thus forming only two runs. Such 2
szmple result will strongly suggest that the two populations arc different in terms of this
ordinal scale. On the other hand, if the two samplcs were scattered throughou! the combined
distribution, the number of runs will be much higher. The Wald—Wolfowitz runs test conducts
a z-test on the difference between the number of runs from the samples and the expected
number of ruas, if the null hypothesis of no difference is true. It is available in SPSS as part of
the Analyze/Nonparametric Tests/2 Independent Samples command. One limitation of this
test though is that ic is seriously affected by tied ranks.

Appendix: the Mann-Whitney U test

In generating the results of the Wilcoxon tes( on SPSS, we actually clicked on the box under
Test Type next to Mann-Whitney. The SPSS output produced, along with the Wilcoxon ¥,
another statistic called 2 Mann-Whitney U. This is also common in many textbooks, and is
based on a slightly different calculation. Since il is 2 lilile more complicated than simply
looking at the sum of the ranks, and will always result in the same probability value as the
Wilcoxon rank-sum test, we have detailed the latter in the text. However, for those who are
interested, the logic of the Mann—Whitney U is presenled here. In the example, the 44
respoudents in the sample were lined up from highest to lowest rank on the conservatism
scale. We ask the rural resident who scored 39 to step out of the line and count how many
urban residents be or she is ranked above. This of course will be all 22 urban residents. We
then ask the second highest ranked rural dweller to step out of the line and count how many
urbanites he or she is ahcad of in the line. If we get each rural resident (o do this and add up
all the figures, the number obtained is the sample U-statistic. This sample stalistic can be
calculated for any sample using the following formula:

:.?. + &

U =
mrp+ 2

IMN_

where n, is the smaller of the two samples, n, is the larger of the two samples, and ZR, is
the sum of ranks for the smaller sample.

If the two samples came from populations that were not different in terms of this variablg,
then we would on average randomly select samples that produced a U-statistic given by the
following formula:
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nny

2

By =

In this example, the expected va.ue of U will be:

22(22)
2

by = = 242

From: the SPSS output we see that the sampie U is 227. We cao conducl a z-test to see if the
difference between the sample and expected values of U is large enough to warraal the
rejection of the sull hypotbesis.

Qlte
Tu

Lsample
where:

1|
; 1
oy - ,‘k_“ +)

The z-score oblained will be exactly the same as that derived from coaducting a cS._ooxoz
st op the same data, and therefore, regardless of the test used, the conclusion regarding the
aull bypotkesis will be the same.

Exercises
25.0 Determize the correct rank for the score of 10 in each of the following series:

(@) 2,9,17,10,11,6
(®)2,9,17,10,11,6,8
(€)2,9,17,10,10, 11,6
(d)2.9,17,10,10, 11,6, 8, 11

(e) 3,20, 15, 10,22, 4, 19,9, 16,16

252  Identify and assign the carrect raok 1o the score immediately following 10 o ¢ach of .
the foliowing rank-ordered scries: a

(@) 2,6,9,10,11,17
(©)2,6,8.9,10, 11,17

() 2,6,9,10,10,11, 17
4)2,6,8,9,10,10,11, 11,17

(€) 3,4,9, 10, 10, 10, 15, 16, 20,22

253  When comparing two samples, under what conditions will you use a Wilcoxoa z-tesl
for the rank sum cather than a t-test for the equality of mcans?

25.4 (a) Order the following data, assigning ranks to each case:

Group | Group 2

1 12
15 25
12 29
16 8
23 15

9 20
i1 7
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{b) What are the rank sums and mean ranks for each group?
(¢) Which rank sum is the sample statistic for conduciing the Wilcoxon test?

(d) Calculate the value for 1y, 259 Ten people are asked to rate the effectiveness of two franir.g programs, with 1 equal o
(¢) Conduct a Wilcoxon test to assess Whether there is a sigoificant difference in ranks. cMMNrmoMs..mn»ua 10 cqual (o “Very good’. The responses are summarized in (he table

25.5 A trial is used to evaluzte the effectiveaess of = specific exercisc program to iraprove
standing up performance of individuals who have suffered a stroke. Twenty subjects
are randomly assigned to cither a treaument or control group, and their individual
scores on a Motor Assessment Scale (MAS), which measures standing up performance

(@) Can we say thal one pregram is prefersed over asother, at a 0.01 level of
significance?
(b) Enter these data into SPSS and cenfism your restits.

for stroke patients on a scale 0f 0 to 6, are recarced: Prograr | Prog-am 2
3

Treatment group Control group 2 M
Subject MAS Subject MAS 3 7
1 0 1 3 2 2
2 4 12 1 1 4
3 5 13 0 4 2
4 & 14 z s s
5 a 15 3 I 3
[ 4 16 6 [ 9

7 5 17 ]

8 3 18 2

9 6 19 2

i0 Z 20 2. |

Using the Wilcoxon rank-sum test assess the elfectiveness of the exercise program,
Enter these data on SPSS and conduct the test.

25.6 Eoter intc SPSS the data in Table 25.1 for the example o the text for the cormparison
of Australian and British children.

(2) Conduct a2 Wilcoxon rank-sum test on these dala anc compare the results with the
calculations in the text.

(b) The following data arc the viewirg intensities for a sample of 23 American
children:

S, 8, 16,21, 26, 35, 39, 45, 45, 54, 59, 61, 78, 79, 83, 85, 85, 90,97, 99

Add thesc data to the SPSS file and conduct another Wilcoxon rank-sum test to see
if there is a significant differeace between British and American children.

(c) Conduct the same Wilcoxon test by band and compare your results with the SPSS
output.

25.7 Usc the Employee data file lo dstermine whether there is a significant difference io
the slarting salanies of emgloyees based oo their minority status. Why might we use tke i
Wilcoxon test rather than the twe-sample /-test to make this comparison? !

25.8 The following are scores of 8 matched pairs in a before-and-after experiment. Use the
Wilcoxon signed-ranks test o assess whether there is a difference.

Belore After
75 65
63 67
82 5!
37 43
46 47
59 [\
39 52

33 33
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The z-test for a correlation coefficient

The last test we will detail corresponds to the descripiive statistics we covered in Chapter 12.
In Chapzer 12 we calculated he regression line, and the correlation statistics that go along
with it, for a set of cases measured in terms of two joterval/ratio scales. We inucduced these
descriptive statistics in the conlext of invesligaling the relationship between unermployment
and <ivil unrest across cities. The result we arrived at was:

civil unrest = 4.4 + 0.53(uncmployment rate)
r=20.38I

These statistics tell us that in our sample there 1s 2 strong, positive associalion between civil
unrest and unemployment rates. But this is 2 result that obtains in the sampie, and therefore
might not reflect what is happening in all cities. As with any otber descriprive statistics that
wg may calculate for a sample, we need to determine whether the correlation coefficient that
describes the sample data reflects the population from which it is drawr.. There may be no
correlation between these variables in the population of all cities (r,) and it is oaly sampling
error that has caused us to select five citics that are not iike the rest. We thercfore need to
conduct an inference test on the value of the correlation coefficient we have obtzined.

The f-test for Pearson’s carrelation coefficient

The null hypotbesis foz this test is that there is no correlation in the population, whereas lbe
alternative hypothesis is that there is some correlalior:

mc..ﬂ =0

u
Hyr,#0

Obviously the sample correlation coefficient of 0.81 does not conform to the null
hypothesis. But can we reject the hypothesis of no correlation in the populatios on the basis of
this samplc result? What is the probability of obtaining a samgple of five cities with a
correlation between civil disturbances and unemployment of 0.81 from 2 populaticn wihere the
correlation is zero?

To obtain this probability we conduc: a (-test, using the following formuias:

\i\t

! sumple
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If we substitute the sample values for r into this equation, we get £y, = 2.38:

| 2
1-r? 1-(0.81)
s, = 4 = ——L =034
n-2 5-2
r-v, 0.81-0
Comple = "= =238

5, 0.34

In determining the p-score for this test statistic we refer to Table 26,1, which presents critical
values of 1 for a range of degrees of freedom (df). For this test df=n - 2.

Table 26.1 Critical values for r-distnbutions
Level of significance for one-tail test

31.821

6.965 9.925
4.541 5.341
3.747 4 604
s 1.476 2.015 2.571 3.365 4.032
0 1.282 1.645 1.960 2.326 2.576

The p-score lies somewhere between 9.10 and 0.05; in fzct we can sec that it is almost equal
10 0.10. It is important to stop and consider what has happened. [n the sample we measured a
strong positive correlation betweer unemployment and civil uaresi. The inference test tells us
that despite this the sample result might be due to chance when sampling from a population
where thesc variables are vot correlated. To sec why we cannot conclude the sampie reflects a
relationship in the population, it is heipful to ook again at the scatter plot (Figure 26.1).

18 Y =44 +0.53X -

Civil disturbances

T T T T U 1 T g
10 2 4 6 18 20 22 24 26

Cnerployment rate (%)
Figure 26.1 The OLS regression line
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We can see that the regression line has been heavily influenced by the one score for City A
with an unemployment rate of 25 percent and 17 civil disturbances. Because we are working
with such a small sample (n = 5) one ex(reme case can throw out the results for the whole
sample. If this one score was different, the regression line would also be very different. Since
small samples are so easily influenced by scores that are outliers for either variable, or for the
two variables jointly, even sirong correlations may not turn out to be significant when
working with very small samples.

Testing the significance of Pearson’s correlation coe(ficlent using SPSS

The test of significance for Pcarson’s product moment correlation coefficicnt is generated as
part of the output when conducting a regression analysis. The procedures we followed in
Chapter 10 for gencrating regression statistics therefore are the same as those for generating
the necessary information for conducting an inference test on these statistics. There is also an
zllernative means by which we can generate the corrclation coefficient between two variables
and the associated t-score and significance level. This is through the Bivariate Correlations
coramand (Table 26.2, Figure 26.2). We use this command if we wish to geperate just the
corrslation coefficicnt without all the additional information that cormes with a complele
regression analysis.

Table 262 Bivariate Correlation with a r-test using SPSS (file: Ch26.sav)
SPSS command/action
I From the menu select Analyze/Coreclate/Bivariate

2 Click on Number of civil disturbances

Comments
This brings up the Bivariate Correlations window

This highlights Number of civil disturbances

3 Click on the » that points 10 the Variables: target list  This pastes Number of cf
Variables: arget iist

This highlights Unemployment rate

discurbanees into the

4 Ciick on Unemployment rate
5 Cisck or the » ihat points to Variables: target list This pastes Unemployment rate into the Variables:
target list

6 Chek on QK

.

Rigure 26.2 The Bivariate Correlations dialog box

Notice that the radio button under Test of Significance and next to two-tailed is selected
indicating that a two-tail £-test is the default serting. Tbis command will generate the output in
Figure 26.3.
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Correlations
Cortelations
Number of
Unemployment tivil
ratg disturbances
Uriemployment cale Pearson Cormelation 1.000 807
Sfa. (2-tailed) X 09g
N 5 5
Nurmber of chyil Pearsun Carrelation 807 1.000
disturbances Sig. (2-tailed) nag
N 5 5

Figure 263 SPSS biveriate carrelation output

With two variables being correlated the table produces four correlation coefficients. One is
between Unemployment rate and itself and the other is between Number cf civil dislurbances
and itself, each of which prodzces a coefficient of 1.000. This s necessarily so since any
variable is perfectly correlated with itself. Jo the first row the table also provides the
correlation between Unemployment rate and Number of civil disturbances, which is .807, and
the significance of this coefficient which is .099. This indicates that the cocfTicient, despite its
strength, is not significant at the 0.05 level, and therefore could be the result of sampling
variation. The next row of the table provides the correlation coefficient between Number of
civil disturbances an¢ Unemploymen! rate, which is ¢xactly the same as that in the first row of
the table since it is the same correlation looked at the other way and Pearson’s » is symmetric.

The t-test for Spearman’s raok-order correlation coefTicient

We have, in earlier chaptes, leamt be techmiques for calculating two different correlation
coeflicients: Pearson’s r and Spearman’s rho (ry). The former is used lo investigate the
association between two variables measured a: the {ntervalratio level, whereas the latter is
used when at least one of the two variables is measured on an ordinal scale. However, if we
look closely at the procedures for calculating the two types of correlation coefficients we see
that they are almost identical. The difference is that Pearson’s r uses the raw data in the
computations, whereas Spearman’s rbo is calculated on the ranks of the data.

Given the basic mathematical equivalence between the two measures of correlation, the test
of significance for eacb is the same. That is, the formula for calculating the sampie #score is
the same regardless of whether we ere testing for the significance of Pearson’s correlation
coefficient or Spearman’s correlation coefficient, where p is the hypothesized value for
Spearman’s correlation coefficient for the population:

‘.S:_En =

e

YN

To see how we conduct a lest for Spearman’s 1bo we wil: use the five-step hypotbesis testing
procedurc on the example we introduczd in Chapter 12.

Step 1: State the null and alternative hypotheses

Ho: There is no correlat.on between age and mobility scores.

Hy p=10
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H,: There is a correlation between age and mobility scores.
Hyp+#0

Step 2: Choose the lest of significance

Since we are investigating the correlation between two variables measured at the ordinal
level, the datz have been described by calenlating Spearman’s rbo. The appropnate infereace
test is therefere the f-test for a correlation coeflicient.

Step 3: Describe the sample and derive the p-score
The correlatior between age and mobility scores for 16 physiotherzpy paticots is:
r,=-038
To see whether this correlation might result from random variation when sampling from 2

poptlation where these variables are not correlated, we first need to calculate the standard
error for the sampliong distribution of tho:

T -0.8)’

- -!\u T =
L T é_?u s

The sample t-score will therefore be —5:

. _ fi-p _ -08-0 _ i3

K 0.16

Step 4: Deiermine at what alpha level, if any, the resull is staiisticaily significant

Feom the iable for critical values of the z-distribution we sce that the test statistic of ~5 is
significant at even the lowest reported level io the table of 0.01.

Step 5: Report results

A physiotherapist uses a pew reatment co a group of 16 patients and is interested in whether
their age affects their ability to respond to the treatment. After treatment each patient is given
a mobility score out of 15, according to his or her ability 1o perform a number of tasks. On the
basis of the strong, negative relationship we find in the sample of 16 patients (Spearman’s rho
= —{.8), we reject the hypothesis that there is no correlation between age and mobility scores
(t=-5, p <0.01, two-tail). These variables do scem to be related such that older patients do
pot respond as well to the treatment.

Testlng the significance of Spearman’s correlation coefficient using SPSS

As with testing for the significance of Pearson's r, the relevant inferential statistics are
automatically gencrated when we ask SPSS to calculate Spearman’s rho. Thus the procedures
we introduced in Chapter 12, page 181, provide the relevant information. Here we reproduce
the output from that SPSS command so that we interpret the relevant portion of it for
hypothesis testing (Figure 26.4).
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Nonparametric Correlations

Corelations
Score on
mability
AGE test
Spearman’srho  AGE Caorrelation Coefiicient 1.000 -.814%
Sig. (2-ailed) ; 000
N 16 16
S¢ore on mobilitylest  Correlation Coeflicient - B14™ {.000
Big (2-1ailed) pilifi]
N 18 16

**. Correlshon is signiicant al the 01 level (2-1aited)

Figure 26.4 The SPSS Bivariate Correlations output

SPSS calculates a correlation coefficicnt befween each variable selectzd and all the other
variables selected in the target list, including tis¢lf. Thus with only two variables selected in
this example, we end up with four correlations: age with mobility score, mobility score with
age, age with age, mobility score with mobility score. The correlatioas for each variable and
itself are irrelevant since any variable is always perfectly correlated with itself — hence the
velue of 1.000 in the SPSS wble. The carrelation for age and score on mobliity test is —.814.
This is the same as the cerrelation for score on mobility test and age, since it is exaclly the
same relationship. Notice the ** next to this correlation coefficient. As the footuote to the
tabie states, ** signals a value for rho that is significant at the 0.01 leve! on a two-tail test. In
fact we can see that the exzct significance is reported to be .000, which indicates that less than
5 in every 10,000 samples drawn from a population where these variables are not related will
have a correlation coefficient this strong or stonger.

Testing for significance in mulfiple regression

A bivariate correlation is reasonably straightforward in terms of testing for the significance of
the correlation coefficient. In a multivariate analysis, however, such as that we undertook in
Chapter 13, the problem of inference is a little more complex. We will repeat the way we
interpret the statistical significance of SPSS multiple regression output that we presented on
page 191. The relevant portion of the regression output is again presented as Figure 26.5. =

ANOVAP
Bum of Mean
Modgel Sauares ar Square F S
1 Regression 6248759 2 3124.379 51.298 000”4
Resfdual 548158 9 60.908
Tolal 6796917 n

a Predictors: (Constant), Age in years, House size (squares)
b Dependent Vatiable. Seliing price ($000)

Coefficionts®
Standard
zed
Unstandardlzed Cgefliclen
Coeflicients tz
Mocel B Std. Emor Bela 1 3ig
1 (Canstang 224,280 26.222 8453 000
House slze (squares) 2578 973 487 2650 02¢
Ajo i years ~24974 1.078 -.508 -2754 022

3 Dependsn! Variable: Selling price ($000)
Figure 26.5 SPSS Linear Regression output



368

Statistics for Research

Exercises

26.1

26.2

263

264

In Chapter 12 we calculated the rank-order correlation coefficient for a set of 15
students to see if therc is a relationship between performance in cxams and
performance in presentations. The correlation coefficient was found io be —0.26.
Assuming that these data came from all the students in the class, do we need to
conduct an inference test?

In Exercise 12.16 you were asked to calculate the value for rho for a samiple of wings,
relating price to quality. Conduct a f-test to assess whether the result reflects a non-
zero correlation for the population of all wines. Check your SPSS output to confirm
your resulis,

A survey of empioyed workers found that the correlation coefficient between (he
number of years of post-secondary education and current annual income measurted in
dollars is 0.54. The sample size for this survey was 140. The significance of this
correlation coefficient was tested using a f-test, which gave a f-value of 7.54. What
conclusion should be drawn about Lhe nature of the relalionship between these two
variables?

The firm from which the Employee data file is generate¢ is interested in whether
starting salaries are correlated with current szlaries. Generate the necessary
information to determine whether any observed corrclation i the sample is due to
sampliog variation or whether it reflects an underlying relationship for all employees
in the firm.

Appendix

Table A1 Area under the standard normal curve

z Area under curve Area under curve Arce under curve
between both points beyond both points beyond one point
{two tails) {one 1ail)

+0.] 0.080 0.920 0.4600
+02 0.159 0.84] 0.4205
=03 0.236 0.764 0.3820
.4 0.311 0.689 0.3445
0.5 0.383 0.617 0.3085
0.6 0.451 0.549 0.2745
20.7 0516 0.484 0.2420
20.8 0.576 0.424 0.2120
=0.9 0.632 0.368 0.1340
=l 0.683 0317 0.1585
1.l 0.729 0271 0.1355
+1.2 0.770 0.230 Q.115Q
*1.3 0.806 0.194 0.0970
+l4 0.838 0.162 0.0810
1.5 0.866 0.134 0.0670
1.6 0.890 0.110 0.0550
+1.645 0.900 0.100 0.0500
1.7 0911 0.089 0.0445
+1.8 0.928 0072 0.0360
1.9 0.943 0.057 0.029¢
+1.96 0.950 0.050 0.0250
+2 0.954 0.046 0.0230
221 0.964 0.036 0.0180
»22 0.972 0.028 090140
23 0.979 0.021 0.0105
*2.33 0.980 0.020 0.0100
+24 0.984 0.016 0.0080
+2.5 0.988 0.012 0.0060
+2.58 0.990 0.010 0.0050
2.6 0.991 0.009 0.0045
2.7 0.993 0.007 0.0035
228 0.995 0.005 0.0025
229 0.996 0.004 0.0020
23 0.997 0.003 00015
3.1 0.998 0.002 0.0001
+3.2 0.9936 0.0014 0.0007
£33 0.9990 0.0010 0.0005
+34 0.9993 0.0007 0.0003
3.5 0.9995 0.0005 0.00025
+3.6 0.9997 0.0003 0.00015
=37 0.9998 0.0002 0.00010
=38 0.99986 0.00014 0.00007
=39 099990 0.00010 0.00005
) >0 99990 <0.00010 <0.00005
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Table A2 Critical values for r-distributions Table A3 Critical values for F-distibutions (a = 0.05)
Level of significance for one-tail test Degrees of freedom for estimates of variance botwocn samples k — |
0.10 0.05 __002 _001 0,005 a3 = 3 y s 6 S s s —
Level of significance for two-tail test ] 1614 1995 2157 236 102 340 2368 71389 205 543
o .10 0.05 0.02 0.0, 2 1850 1000 1916 1925 1930 1933 1935 (937 1938 19.5C
1 3 1013 955 928 912 901 894 889 884 881 853
N mwwm _wwww 2 _aww_u awwww 4 771 694 659 639 626 6.6 609 604 600 <63
: 25 3Im 434 s e | B Sh B in im am an s 4 e
4 Nk 9 3 4 60 L 3 D - . 2 . . B
5 peh i 3 P 57 550 474 435 412 197 387 379 375 368
i ; 2 8 532 446 407 384 369 358 350 344 339
6 1,943 2.447 3,143 3767 5 s S12 426 386 365 248 337 329 323 3.8
7 1.895 2.365 2.998 3.499 2 10 496 410 371 348 333 322 314 307 302
8 1.860 2.306 2,896 3355 2 n 484 398 359 336 320 309 300 295 290
9 1.833 2.262 2.821 3.250 3 12 475 388 349 326 311 300 291 285 280
10 1.812 2228 2764 3.169 8 13 467 380 341 318 302 292 283 277 271
z 14 460 374 334 AUl 296 285 276 270 265
" 2% 2 s 3106 £ 15 | 454 388 329 306 290 279 271 264 259
1 =ty 5 1 650 So12 216 449 363 324 301 285 274 266 259 254
_M_ _..wo— N.TG o.&N\_ N.ﬁq 0. 17 445 3.59 3.20 296 2.81 2.70 261 2.55 2.49
s ol % > z & s 44i 355 316 293 277 266 258 251 246
1753 213 2.602 2947 E 19 438 352 313 290 274 263 254 243 242
16 1.746 2.120 2583 2971 m 20 435 349 310 287 271 260 251 245 239
17 1.740 2110 2.567 2.898 5 21 432 347 307 284 268 257 249 242 237
18 1.734 2.101 2552 2.878 & 7 430 344 305 282 266 255 246 240 2M
19 1.729 2.093 2536 2861 E 23 428 342 303 280 264 253 244 238 232
20 1.725 2.086 2528 2.845 g 24 426 340 301 273 262 251 242 236 230
g 25 424 338 299 276 260 249 240 234 228
21 £
n L 200 2318 il 5 2% 422 337 298 274 259 247 239 2132 227
1.717 2074 2.508 2.819 e A3l XA e o
o ] i 5 257 246 237 230 225
2 1.714 2,069 2.506 2.807 S
% W 23 420 334 295 271 256 244 236 229 224
1.711 2064 2492 2797 29 418 333 293 270 254 243 235 228 222
25 1.708 2060 2483 2.787 & 3 417 332 292 269 253 242 233 227 221
26 1.706 2.056 247 2779 40 408 323 284 261 245 234 225 218 212
27 1.703 2052 2473 2771 50 403 308 279 256 238 229 220 213 207
23 1.701 2048 2.467 2763 60 400 345 276 252 237 225 217 210 204
25 1.699 2045 2.462 2756 B0 396 3L 272 248 233 221 212 1.99 1.91
10 1.697 2.042 2457 2.750 100 3.94 309 270 246 230 219 210 203 1.97
15 120 392 391 268 245 229 217 209 202 19
2 1.690 2.030 2438 274 Py 384 296  26C 237 221 209 201 194 188
40 1.684 2.021 2423 2704
45 2014 2412 2.550 3
50 2.009 2.403 2673
55 2.004 239 2.668
60 2.000 239 2,660
0 1.994 2381 2.648
30 1.990 2374 2.639
20 987 2.368 2,632
120 1.980 2358 2617
o0 1.960 2.326 2.576
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Table Ad Critical values for chi-square distributions Table AS Sampling errors for 2 binomial distribution (95% confidence level)
Level of significance Sample size Binomial percentage distribution

1 000016 00158 0.198 0455 1074 1632 2.706 3831 6635 10327 50 13.3 13.1 12.4 11.1 9.0 7.4
2 | 00201 0211 0713 138 2408 3219 4505 5991 9210 13815 Z
3 0415 0584 1424 2366 3665 4642 6251 7815 11341 16.258 100 9.6 5.4 m.m 18 w._ u..m
4 | 0297 1064 2195 3357 4878 5989 7779 9488 13277 18.465 150 7.9 7.7 7.2 6.4 9 5
5 | 0554 1610 3000 4351 6064 7.289 9236 11070 15086 20517 200 5.9 6.7 6.2 5.5 4.3 3.2
6 | 0872 2204 3828 5348 7231 8558 10.645 12592 16812 22457 250 6.2 6.0 57 5.0 3.3 29
7 | 1239 2833 4671 6346 8383 9.803 12017 14067 18475 24.322

8 | 1646 3490 5527 7344 9524 11030 13362 15507 20090 26.125 4490 3.6 5.3 M.m M,.m 34 2.6
9 | 2088 4168 6393 B343 10656 12242 14.684 16919 21.666 27.877 400 4.9 4.8 4.5 39 3.0 22
10 | 2558 4865 7.267 9342 11781 13.442 15987 18307 23209 29588 500 4.4 43 4.0 3.5 2.7 2.0
11 ] 3053 5578 3.148 10341 12899 14631 17275 19.675 24725 31.264 600 4.6 39 37 3.2 2.4 1.8
12| 3571 6304 9034 (1340 {4011 15812 18549 21.026 26217 32.909 700 37 36 34 30 219 1.6
13| 4107 7042 9926 12340 15119 16985 19.812 22362 27.688 34.528 : - - - - :
14 | 4660 7790 10821 13339 16222 8.5 21.064 23685 29.141 36.123 800 3.5 3.4 32 2.8 2.1 1.5
15 | 5229 8547 11721 14339 17322 19311 22307 24996 30578 37.697 900 13 32 3.0 2.6 2.0 1.4
16 | 5812 9312 12624 (5338 (8418 20465 23.542 26296 32000 39.252 _ ) . . 1. 1.4
17 | 6.408 10085 13.531 16338 19.501 21.615 24.769 27.587 33.409 40.790 i w_ WM uw ww ,m 13
13| 7015 10865 14440 17338 20601 22.760 25989 28869 34805 42312 1100 S - 2. . . -
19 | 7.633 11.651 15352 21.689 23.900 27.204 30.144 36191 43.820 1200 2.8 2.8 2.6 23 1.7 1.2
ol Pronaisensfisifinolfoéiiimmmicommaloglionui i 27 27 1S 12 3 1.2
1 897 13,240 17.182 33 23. 710 29.61 2.671 38, .7

2 | 9542 14041 18101 21337 24930 27301 30813 13924 40289 48.268 1400 2.6 2.6 2.4 2.1 2 1.2
23 | 10.196 14348 19021 22337 26018 28429 32007 35172 41.638 49.728 2000 2.2 2.1 2.0 1.8 t3 1.0
24 | 10856 15659 19943 23337 27.096 29.553 33.196 36.415 42980 51.179 10,000 1. 1.0 09 0.8 0.6 0.4

25 | 11524 16473 20867 24337 28172 30.675 34382 37.652 44314 52.€20

26 | 12,198 [17.292 21792 25336 29246 31.795 35563 18885 45641 540352
27 | 12879 18114 22719 26336 30319 32912 36741 40.113 46.953 55476

28 | 13.565 18.939 23.647 27336 31391 34027 37916 41337 48278 S56.893 Table A6 Samrpling crrors for a binomial distribution (99% confidence level)

29 | 14256 1976R 24577 28.336 32461 35139 39087 42557 49588 58300 - . . T

30 | 14953 20599 25508 29.335 33530 36250 40.256 43773 50.892 $59.703 Sample size Binomial percentage distribution

50/50 60/40 70/30 80/20 90/10 95/3

50 17.6 17.3 16.3 14.6 1.8 9.0
100 2.6 12.4 11.7 10.3 8.1 63
150 20.4 10.2 9.6 8.4 6.5 5.0
200 9.0 8.9 $3 7.3 5.6 4.3
250 8. 7.9 7.4 6.6 5.1 4.0
300 7.4 7.3 6.8 6.0 4.5 34 -
400 6.4 6.3 5.9 5.2 3.9 2.8
500 5.7 5.6 53 4.6 3.5 2.6
600 5.2 5.4 4.8 4.2 32 2.4
700 19 4.8 4.5 3.9 2.9 2.2
800 4.5 4.5 4.2 3.6 2.8 2.0
900 43 4.2 3.9 3.4 2.6 1.9
1000 4.1 4.0 3.7 3.3 2.5 1.8
1100 39 3.8 3.6 a1 2.3 1.7
1200 37 3.6 3.4 3.0 22 1.6
1300 3.6 3.5 33 2.9 2.2 1.6
1400 34 3.4 3.2 2.8 2.1 1.5
2000 29 2.8 2.6 2.3 1.7 1.3
10,000 1.3 1.2 ;.2 i 0.8 0.6




Key equations

The mean of a population: listed data

IX,
N

u =

N is tbe size of the population
X; is each score in 2 distribution
The mean of a sample: listed data

TX;
n

X -

n is \he size of the sample

The mean of a sample: frequency data

M\X—

n

X -

/is the frequency of each value in 2 distzibution

The mean of a sample: class infervals

Zfm

n

X -

m is the mid-point of a class interval

The standard deviaton of a population: isted data

oo i)

The standard deviation of a sample: Listed dats

Coefficlent of reladve variation

CRV = < x100
X

Key equarions

Index of qualitative variation

observed differences
maximum possible differences

n*{k-1)
2%

1QV =

maximum poss:ole differecces =
k is the rumbder of calegories

Z-scare for describing a population

z-score for describing a sumple

X, -X
5

z =

Lambda
E-E
£

A=

E, is the number of errors without infonmation for the indepeadent variable
E; is the number of errors with inforruztion for the independent variable
Cramer’s ¥V

2
X

n{k- 1)

x~ is the chi-square statistic for the crogstab
 is the number of rows or the number of columns, whicheves is sraaller

Gamma
N.-N,

G =
N.+N,y

N, is the number of concordant pairs
Ny is the number of discordant paixs

Somers’ d

d= N <~ N d
N +Nyg+T,
T, is the number of cases ted on the depeadent variable but varying on the independent variable

Kendall’s tau-b
Zﬁ ht 2&

%ﬂc eNG AT N, +Ng+T.)

7, is the number of cases cc on the indepeadent variable but varying on the dependen( vaniabie

tav-b =

375



3¢ Key equations

Kendall’s tau—
26N =N y)

lau-¢ = Y
N ,zl_v

Spearman’s rank-order correlation coeflicient

52n?

=_\~..~l i
\ /

rg = 1-

Equation far a straight Line
Y=axbX

Y is the dependent variable

X is the wdependent variable

a is the F-intercept (the value of ¥ wher X is zero)
b is the slope of the line

+ indicates positive associaton

—~ indicates negative association

Regression coeflicient

AX(X;Y;5 - (X )zY)

) X(x, - x)r: - ¥) o b-

b
MCDtvIQN E.N - AMR.VN

Pearson’s product momen( correlation coefficient

r =

r = 7

2x;~X)r,~7) rE(XY). - (2X;j(Ey,)
%B-mm—?ﬁﬁu_ o %ﬁxw - AMx_%TMxM - AM«.L

Confldence Interval for a mean
i 5 K . - 5
lower Jimit = X - 2z ﬂ , upper limit = X + 2 H
/]

n

z-test for a single mean

Key equarions 377

z-test for a binomial percentage

P,-0.5) - P P, +0.51 <P,
z= A .llt wkere P, > P, or 7= Au‘\ whkere P, < P,
r,(100-2,) gm.:o?i
n n
P, is the population percen‘age
Runs test
R+0.5)- R-0.5)-u )
o B0 ke o g BOTER
ag Or
pp = 2nig ol
n
2
n:-2n

R is thc number of runs in the sample
n: is the number of cases with a given value
ny is the pumber of cases with the other value

Chi-square tesi for {udependence and goodness of fit

x"Mgﬁﬁ

118 the obsesved frequency in cach category
J. 13 (e expected Tequency in each category

df=¢-)-1)

ris the number of rows
¢ is e number of columns

The s-test for the equality of two means

L R-X
Ix-x
——
A:_l_vhm+ﬁzul_vaw _=.+=~ . . .
ox-¥ = |— (pooied variance cstimate)
Hy+n,=2 < Ry

ANOVA F-test for more than ¢two sample means

SSB

Fo k=l
Ssw
n-k

7SS = SSB + SSW

7SS = 2x}-nX?

—\2
ssw o= ¥(X, - X,
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—2
ssB = n (X, - X)

X, is the mean for a given sample
n, is the number of cases in a given sample
The two-sample z-test for the rank sum (Wilcoxon’s rank-sum test)

W-pw
Ow

7=

Hy = W:.?..+:~+&

{
Oy = d_‘._um\::m?_ +~_~+_v

ny is the sample with the fewest cases
n, is the sample with the most cases

The dependent-samples r-test for the mean difference

1= Xp_

sn =
L n-1

The McNewar chl-square test for change

? . a2

2 _ \Mimrem

An = J. S I S 2
ny+ny

ny is tae observec pumber of cases in cell (b) or cell (c), whichever is largest
n, is the observed number of cases in cell (b) or cell (c), whichever is smalless

The Wilcoxon signed-ranks z-test for dependent samples

Hr =

Glossary

Arithmetic mean The sum of all scores in a distribution divided by the total number cf cases
in the distribution.

Asymmetric measures of association Measures of association whose value depends on
which variable is specified as independent and which variable is specified as dependent,

Binomial distribution A distribution that has only two possible values or categories.

Bivariate descriptive statistics A class of statistics that can be used to analyze whether a
relationship exists between two variables.

Bivariate fable A table that displays the joint frequency distribution for twe variables.
Case An entity that displays or possesses the traits of a variable.
Census An investigation that includes every member of the population.

Central imit theorem A tkeorem which states that if an infinite number of raadom samples
t equal size are sclected from a population, the sacpliag distribution of the sampie m=zans
will approach a normal distribution as sample size approaches infinity.

Class lnterval A range of valacs on a distribution that are grouped together for presentation
and analysis.

Coefficient of relative variation A descriptive statistic that expresses the standard deviation
of a distnibution as a percentage of the mean.

Conceptual definition The use of literal terms to specify the qualities of a variable (also
called the nominal definition).

Concardant pair Two cases in 2 joint distribution that are ranked the same on each of the
variables, )

Confidence level The probability that an interval estimate will include the value of the
population parameter being estimated. E

Constani Ap attribute or quality that docs nol vary from one case 1o another.
Contingency table See Bivariate ¢able,
Continuous variable A variable that can vary io quaatity by infinizesimaily small degrees.

Coordinate A point on a scatter plot that simuitaneously indicates the values a given case
takes for each variable.

Critical region The range of scores that will cause the pull hypothesis to be rejected at a
specified significance level.

Crosstabulation See Blvariate table,

Cumulative frequency table A table that shows, for each value in a distribution, the number
of cases up 10 and including that value,

Cumulative relative frequency table A uble that shows, for each value in a distribution, the
percentage or proportion of the total aumber of cases up 1o and including that value.,

Dependent samples Samp'es for which the criterion for inclusion in one sample is affected
by the coraposition of the otlier samples.
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Dependent variables A variable whose distribution is zflected or caused by variation in 'he
independent variable.

Descriptive statistics The numerical, graphical, and tabuiar techniques for organiziag,
presenting, and analyzing data.

Dichotomous variable A variablc that bas only two possible vaiues.

Discordant pair Two cases in a joint distribution whese rank o3 oce variable is different to
their rank cc tke olber variable.

Discrete variable A variable that has a countable number of values.
Error term See¢ Residual.
Frequency The oumber of \imes that a particular score appears in a set of data.

Frequency table A table that reports, for each value of a vanable, the number of cases that
have that value.

Hypothesis A staternent about some characteristic of the distdbution of a population.

Hypothesis testing The procedure for deciding whether some aspect of a population
distribution bas a specified characteristic.

Independence Two variables are independent if the pattern of vanation ib the scores for one
vanable is not related to the pattern of variation in the scores for the other vaniable.

Independent variables A variable whose distribution af¥fects or causes the variation in the
dependent variable.

Index of qualitative variation The number of differences between scores in a distribution
expressed as a proportion of the total number of possible differences.

Inferential statistics The oumerical techniques used for making conclusions about a
population distribution, based on the data from a random sample drawn from that population.

Interquartile range The difference between the upper limits of the first quartile and the third
quartile; the range for the middle 50 percent of cases in a rank-ordered series.

Interval scale A level of measurenient that has units measuring intervals of equal distance
Setween vaiues on the scaie.

Mean Se¢ Arithmefic mean.

Measurement The process of determining and recording which of the possible traits of 2
vanable za iadividual case exhibits or possesses.

Measures of association Descriptive s:austics that indicate the exiest to which a change in
the value of one vanable is related 10 8 change in the value of the olaer variable.

Measures of central tendency Desciptive statistics that indicate the typical or average value
for a distribution.

Measures of dispersion Descriptive slatistics that indicale the spread or variety of scores in a
distribution.

Median A measure of central endency wiich indicates the value in a rank-ordered series that
divides the scries in balf.

Missing cases Cases in a data set for which measurements of a variable have not been taken.

Mode A measure of cectral tendency; the vzlue in a distributien with the highest frequency.

Glessary 381

Multivariate regression A technique Lbat investigates the relationship between two o moze
independent variatles and a single dsperdent variable.

Nominal definition See Conceptual definition.

Nominal scale A level of measurericct that only indicates (be category of a variable into
which a case fzlils.

Nou-parametric test A test of an hypathesis about so:n¢ feature of a population disribution
other than ils parameters.

Operational definition The specification of tae procedures and crileria for taking a
measurcmee! of a vaniable for individual cases.

Ordinal scale A level of measurement that, in addizion to the function of classification,
alows cases 10 be ordered by degree according to measurements of a veniable.

Ordinary least squares regression A rule which states that the lige of bes! fit for a linear
regression is the one that minimizes the sum of the squared residuals.

Parameter A statistic that describcs some feature of a populadon.
Parametric test A test of a0 hypothesis about the parzmeters of a population cistributior.
Percentages S:atistics that standardize the total number of cases ¢ a base value of 100.

Perfect association A statistical relationship where all cases with a pa-ticilar value for one
variable have a certain value for the other variable.

Papulation Thae set of al! cases of inlerest.
Proportions Statistics that standardize Lhe totai number of cases 10 a base value of ove.

Random selection A sampling method where cach member of the population bas the same
chance of being selected in the sample.

Range The differeace between the lowest and highest scores in a distribution.
Rank A number that indicates the position of a case in an ordered series.

Ratio scale A leve: of measuzement which assigns a value of 0 1o cases which passesg or
exkibit no quantity cf a variable.

Region of rejection See Critical Region.

Regression coeflicient A descriptive statistic that indicales by bow many units the dependent
variable wiil change, givet. 2 ote-unit change in the independent variable.

Relative frequencies Statistics that express the number of cases within each value of a
variable as a percentage or proportion of the total number of cases.

Residual The difference between the observed and expected value of a variable.

Run A sequence of scores that have the same outcome for a variable. A run is preceded and
followed by scores that have a different outcome for a variable, or no data.

Sample A sct of cases that does not include every member of the population.

Sampling distribution The thecretical probability distribution of an infinitc number of
sample outcomes for 2 statistic, using random samples of equal size.

Scatter plot A graphical technique for describing the joint distribution for two variables.

Standard deviation A measure of dispersion (bat is the square root of the variance.
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Stated class limits The upper and lower bcunds of ar inierval that determine its width.

Symmetric measures of association Mcasuse of associztion whose strength will be the same
regardless of which vaniable is specified as iodependent and whick vaciabic is specified as
dependent.

Type 1 error The error of rejecting the null hypothesis of no differeace when in fact it is
correcl.

Type II error The error of failing to reject the null hypothesis wken 1o fact if is false.
Valid cases Cases in a data set for which measurements of a variable bave been aken.
Variable A cordition or quality that can vary fom one case to another.

Variance A statistic that expresses the mean deviation of scores (rom the mean of a
distribution,

z-scores Numbers thal express the interval between a poiot and the mzan of a normal
distribution as a proportion of the standard deviation of that porcial diswibution.

11

1.2

L5

1

3.2

34

35

3.6
3.7

4.1

4.2

43

Answers

(a) Not exhaustive: no option for people not ¢ligible to vote. Not mutually exclusive:
someone can be either of the first two options and did not vote at the last election.

(b) Not exhaustive: needs an ‘other category® at least for students enrolled in other
courses. Not mutually exclusive: social sciences is a broader category that includes
sociology and economics,

{¢) Not mutually exclusive: someone can bave multiple reasons for enlisting.

(a) interval/ratio (b) nominal (c) nominal
(d) interval/ratic (¢) nominal (f) nominal
(g) ordinal (h) interval/ratio (i) crdimnal

(j) nominal (k) ioterval/ratio () npominal
(m) ordinal (n) ioterval/ratio (o) ordinat

(p) nomiual

(a) discrete (b) continuous (c) cortiauous
(d) discrete (¢) continuous (H continuous

A pie chant emophasizes the contribution that the frequency for each category makes to
the total, whercas a2 bar graph empbasizes the frequency of each category relative to
each other.

A bar graph expresses the distribution of discrete variables whereas a histogram
expresses the distribution of continuous variables.

This is continuous interval/ratio data, so that a frequency polygon is the best techaique,
given the number of values in the distribution. If these data were organized into class
intervals a histogram could also be constructed.

(a) Price Frequency

70008459
8500-9999
1000011499
11500-12999
1300014499

- O N

The pie graph illustrates the large proportion of migrants from Europe ia the total.

(a) A pie graph will highlight that clerical workers make the most significant
contribution, ip terms of employment categories, to the total.

(b) You should bave a bar chart with three spikes, on¢ for each of the employment
categories. The spikes should be divided into males and females. The graph will
reveal that women are highly conceotrated in clerical positions, whereas men
dominate managerial and, especially, custodial positions.

(¢) The curve is highly skewed to the right.

A proportion standardizes totals to a base of 1, whereas a percentage standardizes
totals 10 a base of 100.

A percentage is calculated using the same formula as a proportion multiplied by 100,
cnsuring that the percentage will be a higher number (by a factor of 100) than the
comresponding proportion.

(2) 0.01 (1%) () 0.13 (13%) {c) 1.24 (124%) (d) 0.0045 (0.45%)
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4.4
4.5

4.6

4.10

5.1

52

Answers

(a) 12% (0.12) (b) 14.4% (0.144)  (c) 167% (1.67) (d) 4.5% (0.045)

Time to complete fitness trial

Interval  Mid-point Frequency  Cumulative frequency  Percent Cumulative percent
19 S 0 0 0.0% 0.0%
10-19 145 S 3 12.5% 12.5%
20-29 24.3 7 12 17.5% 30.0%
30-39 34.5 14 26 35.0% 65.0%
4049 44.5 6 32 15.0% 80.0%
56-59 54 ¢ 4 36 10.0% 90.0%
60-69 64.5 ¢ 36 0.0% 90.0%
70-719 745 1 37 25% 92.5%
80-89 843 3 40 15% 100 0%
Heart rate in minutes
[ntirval Mid-point  Frequency Cumulative frequency  Purcent Cumulative percent
60-69 645 ) 4 10.0% 0.0% -
70-79 74.5 10 14 25.9% 25.0%
80-39 84.5 14 23 35.0% 60.0%
90-99 94.5 11 39 27.5% 87 5%
106109 104.5 1 40 2.5% 90.C%
Region  People atiending Relative People attending popular Relative frequency, %
public libraries frequency, % ¢ congerts

A 1409 31.7 1166 33.7
B 1142 25.7 870 252
C 713 16.1 604 17.5
D 423 9.5 280 8.1
E 497 11.2 332 9.6
F 130 2.9 99 29
G 90 20 32 0.9
H 38 0.9 7 2.1
Total 4442 100 3456 100
(a) 104 ®) 21.9% (©) 17% @) 27%

The conclusion drawn incorrectly about the causzlity of the refatiopship from the
observed statistical association. It is more appropriate to regard the causality as
running in the opposite direction: the higher injury rate ‘causes’ the higher number of
ambulance officers attending the accident.

(a) Dependent Independent
- { 2 Tota!
1 40% 55% 49%
Z 60% 45% 51%
Total 100% 100% 100%
(b) Dependent Independent
1 2 3 Total
i 79% 57% 16% 53%
2 21% 43% 84% 47%
Total 100% 100% 100% 100%

53

54

5.5

5.6

5.7

6.1

6.2
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(a) Dependent {ndependent
1 2 Total
1 33% 67% 100%
2 47% 53% 100%
Totai 4% 59% 100%
(b) Dependent Independent
1 2 3 Total
1 3% 38% 9% 100%
2 16% 32% 47% 100%
Total 35% 35% 30% 100%

(a) It is most likely that since a father’s voling preference is formed before his own
child’s that this is the independeat variable and the child’s voling preference is the
dependent variable. Voling prefercnces are measured at the ordinal level.

(b) Owm voting preference Father's voling preference

Progressive Conservative Other Total
P-opressive 22 4 4 30
Conservative 5 19 6 36
Totul 27 23 10 60

(¢) Adding column percentages will help determine by eye whether there is any
dependence. The partem of depcadence suggests that children tend to vote in a
similar way 10 their respective (zther.

After calculating the relative frequencies there appears 10 be po relationship berween
cour.try of residence and amount of TV watched.

{a) Smoking habit is ordinai, and bealth level is ordinal.
(b) Both of these are behavioral variables so acy plausible explanation which has either
variable as the independent, or mucually dependent, is permissible. ’

(c) Health level Smoking level R
Doesn't smoke Does smoke Tolal
Paor t3 34 47 ~
13 4% 52.3% 29.0%
Fair 22 19 41
2.7% 29.2% 25 3%
Good 35 9 44
36.1% 13.8% 27.2%
Very Good 27 3 30
27.8% 4.6% 18.5%
Total 97 65 162
59.9% 40.: % 100%
(a) 84 (b) 254 (c) 74 (d)83.i% ()0

An asymmetric measure will be affected by the choice cf which variable is specified as
the dependent and which variable is specified as independert, A symmetric measure
will yield the same value for the sirength of association irrespective of the model of ihe
relationship. A symmeiric measuse is therefore the appropriate one.

It is important to specify the dependent and independent variables since lambda is an
asymmetric measure of association, whose value is therefore affected by this choice. If
the pattern of dependence is not thought to be that of one-way dependerice, the
symmetric version of Lambda should be used.
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6.3

6.4

6.5

6.6

6.7

71
72
73

7.4

75

7.3

8.1

Answers

(a) Lambda=0C.11 (very weak 8ssociation)

(b) Lambda=0.42 (moderate association)

(c) Lambda=0 (this does not necessarily indicate no association. Looking at the table it
is clear that there is some variation between columns, but the modal respense for
all values of the independent variable is one, causing lambda to equal zero).

Lambda=0.54. Looking at the table the moderate association is due to the higher
proportion of gun owuers in favor of capital punishment.

Can sing anthem? Job classification

Blue collar Whit¢ collar Total
Yes 2% 2 51
No 21 28 49
Total 50 SG 100

Lambda = 0.12

The study iadicates that the strength of the association has increased in recent times. [n
a relative sense we might say that the association is strong, but this is only in relation
1o the pasl studies, rather than in some absolute sense.

(a) Lambda = 0.19 (with current income dependent)
(b) Lambda = 0.262 (with current income dependent)

Negative
Nominal variables de ot kave a direction of change

(a) 14(60)=840 (b) 24(8)=192
(c) 19(12+17+20)=93( (d) 16(12+17+10+14+22)=1200

(a) 14(12)=168 (b) 32(24+12)=1152
(c) 24(32)=768 (d) 11(25+42+19+24)=1210

{(a} 8(14432)=1472 (b} 32(14+8)=1472
(c) 24(60+12)~1728 (d) 11(6+16+20)=462

The number of cases tied on the dependent but a0t on the dependent variable is S030.
The value of Somers’ d is 0.25.

Concordan! pairs: 26(20+58+15+62) + 22(20+58) + 62(20+15) +62(20) = 9234
Discordanl pairs: 12(58-+224+62+23) + 15(58+22) + €2(22+23) + 62(22) = 7334
Gamma = 0.11; therefore a very weak, positive relationship berweee these variables.

(a) Inspection of the tzble by eye reveals a negative association, since health level
seems to decrease as smoking level increases (it is helpful to calculate the column
percentages (o see this). This will appear as a negative sign in front of any measurc
of association calculated on these data.

(b) The vaiue for gamma is —0.69, indicating a moderate to strong negative association.

Somers’ d with current income as dependent is 0.794 and Gamma is 0.914 indicating a
strong, postive relationship. Tau-b is not useful because there is not the same number
of columns and rows.

This is an example of a spurious relationship; there is no theoretical basis for
concluding that a direct causal relationship exists berween these two variables. Rather
they are each determined by a child’s general state of development.

8.2

83

9.1

9.2
93
9.4
9.5

9.6

9.7
9.8

5.9

9.10

9.11
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The relationship remains the same for each of the partial wbles, indicating that the
control variable does not alter the direct relationship between X and Y.

The original cclationship is not as strong once the control variable is added (by
comparing the original gamma with the partial gamma). This indicates that the
relationship is partially spurious or intervening, although some direct relationship also
exists between age and coocem for the covironment. This is stronger for conservatives
than for Lberals.

No: the nurbers on an ordinal scale are values which have no quantitative
significance. They are merely labels which preserve the ordesing of cascs. To calculate
a mzan we need to perform (he mathemalical operation of addition and this requires
interval/ratio data.

p1s the mean for a populatiot: X is the mean for a sample.
2
{2) mean=23.3; median=14 (t) mean=267.4; median=289 {c) mean=2.9; median=2.4

This student had 2 lower than average 1Q in the first class, and a higher than average
1Q for (ke class the student joiced.

(a) 9, 11, 20, 22, 36, 36, 39, 43, 45, 50, 56, 57, 59, 60, 66, 68, 68, 73, 75, 80, 87
Median=56

(b) 50.5 (rounded to I decimal place)

(¢) The median is greater than the mean, therefore the dist’buticn is skewed to the left,

(d) Me21=57; Median=56.5

The median is a relatively stable measure of centra: tendency that is not sensitive to
extreme outliess, whereas the mean, by including every value in its czlculation, is
affected by the addition of one extreme score. '

mean=$33,500; mediar.=$32,500: mode=322 000

(a) mean (ungrouped)=29.6 minutes; mean (grouped)=28.25 minutes
median (ungrouped)=31.5 minutes; median (grouped)=3!-40 minutes

The differences are due to the fuct that class intervals do not provide as much
information as a listing of the raw scores. Since we use class mid-points rather than the
actual dat in calculating the mezn, tbe answer will vary. With median and mode we
can only report the class, rather than the specific value.

Degree of enrolment:

(a) Nomioal (b) mode=Arts

Time spent studying in library:
(a) Interval/ratio (b} meaa=3.275 hours; median=2 hours; mode=4 hours

Satisfaction witk emplcyment:
(a) Ordinal (b) mode=satisfied; median=satisfied

(a) mean=8.7 years; median=9-]2 years; mode=9-12 years
(b) the disiribution is skewed to the right

No; the vaiue thet occurs the most is Europe. The mode is not !h¢ frequency with
wiich it occurs.

(a) $17,403
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10.2
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104
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11.10
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12.2

Answers

The advactage of the rznge is that it is very easy ‘o calculale anc everyone understacds
it. Its disadvantage is that because it only uses ™o scores it dces not use ail the
inforration available ia a disteibution. For the same reason it is very semsilive 0
ex‘reme values.

o'is the standard deviation for a population; s i3 the standaré deviation for 8 semple.

(a) range=67; standard deviation=24.9
(b) range=332; standard deviation =120.6
(¢) range=4; standard deviation =1.4

(a) range=$60,000; /QR=3$15,000; standard deviation=$§14,183

(a) The CRV for beginning salaries is 46.4%. The CRV for current salaries is 49.6%.
Therefore current salaries have slightly more variation.
(b) 10 years, | month

(@) 0.097 () 0.097 (c) 03082 (d)0.9665 (e) 0.0915 (f) 0.110 (g)0.050
(@) %I ®+2.1  (c)-1.645 (d) %15
(@) 0 ® 08 ()25 (d-17 ()13

The z-score for the poverty line is —0.83. The proportion for z = —0.8 is 0.212, and the
proportion for z = -0.9 is 0.184. Therefore the proportion of zll families beaced by a
single mather also liviag in poverty is between 0.212 and 0.184 or around ! in 5.

z = -1.6, and the area uader curve is 0.055. Therefore 5.5% of light bulbs last 462
hours or less.

(a) z =—1.65, area under curve is 0.05. A
(o) z = £1.96; for z = —1.96 the selling price is $15,292; for z = 1.96 the selling price is
$24,308. Therefore the raage is $15,292-$24,308.

(a) z = 1.4, probability is 0.081
(b) z= 1.645, distance is 48.225 meters

(2) for 18 years z=—1.3, proportion between mean aad 1§ is 0.403
for 65 years 2 = 2.1, proportion between mean and 65 is 0.486
proportion between 18 and 65 years is 0.403+0.486=0.889
{b) middie 50%: closest probability in Table is 0.516 with z=20.7
for z = —0.7 the age is 26, for z = 0.7 the age is 45 (both figures rounded to nearest
whole year)

{2) At$1.7 million z = 1, which kLas a one-tail probability of 0.1585
{b) At$1.2 million z=—1.5, which has a one-tail probability of 0.067

At 15 kmv/h z = 0.5, which has a probability of 0.3085. This means that the wind speed
will be over 15 km/h 30 percent of the time, which meets the proposal requirements.

The purpose of drawing a scatler plot is 10 make judgment aboul whether the
conditions for using a linear regression hold. In particular, we can assess visually
whether there is a linear relatioaskip, rather than a curvilinear relationship.

The Y-intercept indicates the expected value for the dependent vanable wben the
independent variable is zere. 1t is equal to @ in the regression equation.
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The principle, oftea called the ordinary least squares regression iing, is to draw a line
that minimizes the sut of (he squaered residuals betwecen eack poin! in a scatter plot
and the regression line.

(a) positive (b) negative  (c) positive (¢) no relationship  (¢) negative

The correlation coefficient is a stacdardized measure of correfation that ranges from
—1 to 1, regardless of the units ia whick the variables ar¢ measured. The coefficient of
the regression line indicates the amount of change in the dependent variable expected
from a onc-unit change in the independent variable. [t is therefore sensitive to the unils
of measurements.

(d) Y= 27.165 - 0.15(X); when X= 12, Y =24.885

(a) Wien X'=0, Y= 40 yecars

(b)) ¥ =40 + 0.7(30) = 61 years {note that we use 30 in the equation not 30,000, since
the ueits of measurement are $,000).

(¢) We canno: use the regression coeflicient of +0.7 to assess the strength of the
correlation. To do this we need to calculatc the comelation coefficient.

(a) Y=334+0.511(X)

(b The value for r indicates a sirong, positive relationship.

{¢) When hours (X) are zero, ¥=33.4, indicating a fail.

(d) 50 = 33.4 + 0.511(X), X = 32.6 hours. The bigh value of 7 indicates that tke
student can be very conlident in the prediction. It is wroog {0 use the regression
line in this way because it is not a deterministic relationshzp: there is an element of
error. The student may aot actually work when in the library, thioking (kat just
spending the timne there wall be sufficient.

() Y=157 + £.88(X), r = 0.92, ¥ =0.85
(b) The regression coefficient changes to 4880. Since r and r? are standardized
coefficients their vaiues are unaffected by the urits ¢f measurement.

(a) r=-0.77
(o) cays lost = 14.4 — 0.83(hours of exercise); for 8 hours of exercise, days lost =7.4

current salary = $1928 + i.9(beginning sa:ary) 3
The value for 7 is 0.755 indicating that using beginsing salary to predict current salary
will produce reliable predictions.

Rho = 0.85. There is a strong positive association between these variables.
Rho=0.51
Rho=-0.19

(a) Days lost

(b) [t would be reasonable to suspect that days lost decrease as the amount of exercise
increases (negative) and that days lost increases as age increases (positive).

{c) days lost = 16.99 — 0.942(exercise hours) — 0.06(age in years); note that the sigo in
front of age is not the one expecled.

{(d) The cocflicient for age is not significant, and the value for the adjusted R-squared
indicates that it has not improved our predictive ability over the regression equation
usiag exercise alone.

A sample statislic is a numerical measure of a sample while a parameter is a3 measure
of some feature of a population.
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Descriptive statistics summarize the data from a sample, inferential statistics attemp: to
generalize from a random sample to the population.

Random variation is the vanatios in sample outcomes brought about by random
selection from a population. It requires us to use probability theory wheo generalizing
to a population.

(a) False; it is evident [rom the equation for the standard crror that the size of the
population 1s ot a factor affecting the reliability of a sample.

%) True

(c) Faise; the sizndard error is equal to the standard deviation of the population divided
by the square root of the sample size and therefore must be smaller than the
slapdard deviation of the population.

(d) False; provided the sample size is large (i.e. greater thao 12) the ceatral limit
theorem s‘ates that the sampling distribution of sample means will be normal, even
where the population from which the samples are drawn is pot normal.

In either case the mean of (he sampling distribution is 40.

The standard error is the stancard deviation of a sampling distribution. It is always
smaller than the stardard deviation of the population since the effect of any extreme
individual scores included in a sample will be muted by ruore representative scores
included in the sample.

The difference is that where 7 = 30 the distribution bas fatter tils thao the distribution
for n = 200; that is, the standard error is smaller in the larger sample. They are similar
because they both approximate the normnal curve and centered on the population mean.

[t appears to be random because each letter in the hat bas an equal chance of being
selected; however, since there may not be the same number of students for every lefter
it does not mean every student in the class bas ao equal chance of being selected. For
example, if there were a lot of people with a sumame beginning with G in the class the
sample would over-represent that pasticular group.

The sampling method is random if every book in the libracy has an equal chance of
being borrowed and then returned on a Thursday and there is nothing about Thursday
that will influence the condition of books retumed oo that day.

The theorem is important because it allows (he use of a normal sampling distribution to
carry out statistical amalysis, even where samples are drawn from non-pormal
populations, and such populations are very common in social research.

There is far greater variation in the sample means from the 7 = 20 samples. The spread
of scores st} skould be centered oa the population mean.

The distribution approaches the normal curve as sample size increases towards infity,
as described by the cenmal limit theorem, regardless of the shape of the populatioa
distribuuoc.

Type | etror occurs when the null hypothesis is rejected even though it is 1rue; a type Il
ercor occurs when the null hypothesis is accepted when a rejection should have been
made. The probability of one happening decrezses the possibility of the other occurring
Lncreases.

As the significance level is increased the critical region becomes smaller; that is, the
higher the significance level the larger the difference has to be before the null
hypothesis is rejected
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Probability Test 2-scare
0.230 Two-tail +1.2
0.100 Two-anl +1.645
0.018 One-tall 2.1
0.021 Two-tail +23
0.0003 One-tail +3.4
(@) z>1.645, x=0.05  (d)z<-1.645, =005 (c)z>1.960rz<-1.96, x =0.05
(@yz=-1.9 b)z=-118

(2) The probability of sciecting, from a populatiop with a mean of 15 years, a random
sample with 8 mean that differs from the population mean by three or more is
0.003.

(b} The w.damc::« of drawiag, from a population with a2 mean of 15 years, a random
sample with a mean less thap (he population mean by three or more is 15 in 1000.

No; significance lests never definitively prove anything about a population. They only
indicate the probability of drawing a sample with a known mean value from a
population wilh an hypothesized mean value. Even with extremely low significance
levels we risk making a type [ error.

Ho: p=24, H,: u> 24, a=0.05, Zeampie = 113, p=0,0445, z,,,,..— 1.645

We are using a one-tail {right-tail) test because we are inierested in whether this judge
has an average greater than the rest. At an alpha level of 0.05 the probability of the
judge being the same as other judges is less than the alpha level, leading the null
hypathesis to be rejected. Note that an alpha level of 0.01, or on a two-iail test, the
sample score wiil not be significaotly different to the hypothesized value.

The sample 1s drawr: fromu a normal population.

1-score Probability Test df
201s 0.05 Onic-tail 5

2764 0.02 Two-tail 10
1.708 0.05 One-tail 25
2.000 0.05 Two-tail 85
1.292 Q.10 One-tail 228

(a) 1=-3.08 (reject) rwo-tail
(b) 1=-3.08 (reject) one-tail
(¢) 1=-2.18 (reject)

(d) r=—6.13 (reject)

(e) £=1.29 (fail to reject)
() 1=3.86 (reject)

(a) ! mpte = —2-35, 50 the null hypothesis is rejected, the pay risc has ot been achieved.

However, at the 0.01 I¢vel the null hypothesis is not rejected.

(a) mean = 63 years; standard deviation = 16.63 years
(b) p =0.045 (around 45 in every thousand)

Lmpte = —12.96, the rull hypothesis is rejected. Hip Fractures affect walking speed.

The following sample scores and decisions regarding the nulf apply:
Canada:  r =3.85 (reject)

sample
Singapore: ¢ =—6.87 (reject)

sample
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Australia: =-1.02 (do not reject)

sample

Aww Loty = ._m_uosmgoAE:_am.muo;wmf.__o_.nmoﬂnnono:é.oo;::rvﬂo:ﬁmmw
Interval cstimation is the process of inferring the range of values that contain the
{unknown) population parameter, togethber with the probability (confidence level) that
this estimate does include the parameter.

A ceofideace level is the probability that a particular range of values will include the
popuiation paramelez. As the confidence level increases the width of (ke confidence
interval aiso increases, and vice versa.

As samplc size increases the width of the confidence interval becomes smaller,

The starclard deviation of the population alters the width of the confidence intcrval by
affecting the stacdard error of the estimate. As the standard deviation increases so does
the standard error, meaning the confidence interval will also widen.

Age of pre-school children:
90% confidence leve!: 3.75 [3.64, 3.86]
99% confldence level: 3,75 [3.27,3.93]

TV watching:
90% coufidence level: 150 [145.24, 154.76]
99% confidence level: 150 [142.49, {57.51]

Economics: 6 [5.26, 6.74]
Sociology: 4 [3.32,4.67)
History: 4.5 [3.56, 5.44]
Statistics: 3 [2.62, 3.38]

Increase for all workers across the industry at 95% is $1018 [3907.68, $.128.32], 2nd
at the 99% confidence level is $1018 [$871.65, $1164.35].

(a) 4.3 days (3.79, 4.82] at 99%.

(b) Compared 1o the other hospital it is about the same since the counfidence interval
includes the value of 4 days.

(¢) To improve the accuracy of the estimate it could include more people in the
sample.

B.5 years [8.28, 8.72)

(a) $34,420 [$33,127, $35,712)
(b) $34,420 ($32,878, $35,961]
(c) $34,420 [$32,391, $36,448)

The samples come from normal populations, and when using the pooled variance
estimate, the populations have the same vanance.

(2) Liampi: =—1.5, df = 83; do not reject null
() fampre = —3.38, df = 238; reject null

(©) lyampte = —1.5, df = 83; do not reject null
(d) fiampre = 2.5, df = 218; reject null

Lsampte = 2.2, (@ = 0.05, two-tail, df= 196). Re‘ect nuli hypothesis.

{sample = 35
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Reject nuil hypothesis. Important considecations are the number of samples to be
compared, ioterval/ratio data used to describe a mean, and pcpulation s:andard
deviations are unknown,

Lampte = —12.2. Reject null hypothesis, the organic pesticide is different and better.

The sample r-score is 3.2, which is significant at the 0,01 level. Therefors reject the
nuli hypcthesis.

(a) .<<u are comparing more than :wo samples in terms of a variable measured at the
interval/ratio level.

(b) There is no difference in the average number of cases handled a! each agency.
Ho: uy = ptg = ps = g = g

(¢) The F-ratio is 0.245. Al a= (.05, and dfb = 4 and dfiv = 106, F_u0 = 2.52.
Therefore the Null hypothesis is not rejected: all means are equa..

(3) Method A: meac = 22.72, standard deviation = 2.05
Method B: mean = 29.82, standard deviation = 2.87
Method C: mear = 20.27, standard deviation = 3.95

roo_E.m at the means and the standard deviations it seems that ozly Metaed C will
be signiGicantly different to each of the others.

(b) Tte F-rado is 29, whick is statistically significan? ac the 0.01 level,

The h-.uao.no Is 24.6, which is significant at the 0.01 level. Aq least ore of the
populations has 2 mean not equal to that of the others.

ﬂuo&«i:omﬂ&?ﬁdcnnmmao?dn:rgm__N.E_u_:rnou_oqruﬁwcmc_ooa m_no_uo_‘
but no other combinations. :

(a) Mean differcace =—1.3

(b)s.=1.212

() Lampte =—1.07; do not reject nul:

(3) Lspmpr. = 7.16; reject null

() fampt = —1.012; do not reject null

Isampie = 13.3, which is significant at the 0.01 leve!l. Therefore the treatmeat should be
adopted.

Hy: X=0,

H,: \ﬂb >0

Liampie = 2.5. Reject the null, the changes ia workgplace hzve tnproved productivity.
fsampte = 1. 4. The two-tzil significance is greater than = 0.05, therefore accept the nu!l
bypothesis: people do secin, 01 average, to get the price they offer,

(a) Weight in kg Pre Test; Weiglt in kg Post Test

(b) 21

(c) 70.1 kg

(d) 6€.43 kg

(e) 2.67 kg

AO \.S.Eix = MW@Q‘ &\” NO
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(g) Jess tban 0.00C5 (note that SPSS rounds c¢ff io 3 decirzal places. so that the
probability is not actually cqual to zero)

(h) upper limit = 4.5 kg

(i) lower limit=2.38 kg

(J) Using the -test, the sample value is lowsr than any critical value, thercfore reject
the null — the program is offective in reducing weigh’. We could also refer (o the
confidence interval, which does not include the value of 0.

The 95 percent confidence izterval does nat inciude the value of 5. The range of
estimated values for weight loss is below the targe! value; therefore the program is
oot successful.

The meaa difference is beth significantly greater than $0 and also $15.000. We cen
test the latter by looking at tbe confideace iclerval whiclh daes not include the test
value of $:5,000.

The s:atement 1s false. The width of an interval estimate is only affected by the sample
size, lhe cepfidence Jevel, and the sample proportion. No other factor enters into the
aquation for the confidence interval. Given these factors the interval estimate will be
the same cogardless of the size of the population from whick the sample is drawn.

Zsample Two-tail One-tail
(a) 1.78 Fail 1o reject Reject
) —0.36 Fail 10 reject Fail to reject

(2) Zyompte = —0.31, at a = 0.05, oue taiicd, therefare the nuli hypotbesis is nof rejected:
the sampie percentage is ot significantly differeut to the target of 40 percent, so
that the program was successful,

(b) The confidence interval supports this because 40 pereent is inside the 95 percent
confidence interval of [35.6%, 42.2%].

At 95 percent, the confidence interval is [43.6%, 61.4%). This includes values of less
than 50 percent so that the sample does not confirm that the cagdidate is a certain
winner. Similarly, if we conduct a z-test using 50 percent as the test value, the sample
percentage is not significantly different.

At an alpba level of 0.05 the z-score of —3.08 will lead us 10 reject the null hypothesis
80 that taping does reduce ankle sprain injury.

The confidence interval is [51.6%, 60.4%], at a 95 percent confidence level, meaning
that a majority of the population supports decriminalization.

(a) [5.4%, 34.6%] (b) [8.9%, 31.1%]

{a) Runs test applicable because the results are in sequence and using a binomial
distribution. Runs test is applicable because the research question is interested in
whether a series of outcomes for a binomial variable is random.

(B) Zeampre = —0.19, fail to reject.

(a) 12
(b) 9.9

(c) Not significantly different to the test value; therefore we cannot say the series is
non-random.
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df =910 a=0.05
Three categorics 2 4.605 5991
Five categories 4 7779 9488
Eight categories 7 12017 14.067

(a) NMS_:: =328 df =4, p=0.35;do oot reject nuli
(®) R,ME.: =1.33 df =6, p=0.965; do not reject null

Xw&%x =40, df =4, p<90.0!l;reject null
Rwe,s: = 6.246; do not rejec: null

(a) 26.8 is tae expected value for each school,

(b} The sample chi-squzre value is 2.49, which is not sigotficani at the 0.05 level. We
cangot reject the statemert that these schools bave the same percentage of students
£oing on to university.

ﬂxuno.na frequencies are Clerical 389, Custodial 38, and Manager 47. This is
significantly different.

(a3 ®)3 () 15 (@) 8
(a) 0.24 (b) 48
Expected frequencies:
[ d Total
6.87 46.54 55
- x 6.13 41.46 49
Total 3 0 13 33 104

The shaded cells violate the rules that expected frequencies should not be less than 5.
Xempte = 209, which is significant at the 0.01 level with 2 degrees of freedom.

Rms__ux =0.76 (your answer may differ slightly due to rounding); we cannot reject the -

null hypothesis of independence, since this has a very fow p-score. There appears 1o be

no relationship between country of residence and atount of TV watched.

(a) Health level (ordinal), Smoking habit (ordinal).

(¢) The significance level for the sample chi-square indicates that we should reject the
null hypothesis of independence.

Can sing anthem? Job type

Blue collar White collar Total
Yes 29 22 51
No 21 28 49
Total 50 50 100

Nuwér =156, With 1 degree of freedom, p is belween 0.1 and 0.2; we do vot reject
the null hypothesis.

(a) xar = 2.16; do nos reject pull
(b) xi - 0.343; do not reject ouil
(©) x% = 14.723; ceject aull

(@) xa =0.593: do no! reject null
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(a) 2, 6,9, 10, 11, [7; rank is 4
(©)2,6,8,9,10,11, 17; rank is 5

() 2,6,9.10, 10, 11, 17; rank is 4.5
(d)2.6,8,9,10,10, 11, 11, 17; rank is 5.5

(¢) 3,4, 9,10, 10, 10, 15, 16, 20, 22; rank is 5

In the preceding exercise identify and assign the correct rank to the score unmediately
following 10 in the rank-ordered series.

(2) 2,6,9,10,11,17; 11 isrank §
(b)2,6,8,9,10, 11, 17: 11 is rank is 6

() 2,6,9,10,10,11,17; 11 is rank is 6
d)2,6,8,9,10,10, 11,11, 17; 11 isrank is 7.5
(e) 3,4,9, 10, 10, 10, 15, 16,20, 22; 15 is rank is 7

A rank sum test is used when (i) the test variable 1s measured at the ordinal level, or
(i1) the test variable is measured at the interval/ratio level but the samples come from
populations that are not normally distributed.

(a) (Raoks in brackets)

Group 1 Group 2

1(1) 12(6.5)

15(3.5) 25(13)

12(6.5) 29(14)

16 (10) 8(3)

23(12) 15 (8.5)

9 (4) 20(11)

19 7(2)

() Group 1: 47, Group 2: 58

(¢) The smallest rank sum is that for Group 1, W=47
(d) uw =52.5

(€) Zsampte=—0.7, do not reject null hypothesis

The sample z-score is —2.15, which is significant at the 0.05 level. Therefore reject the
null hypothesis that the exercise program makes no difference.

Zeampte = 0.84, which has a two-tail probability of 0.4; therefare do not reject the null.
(8) Zuampir = —2.31, which has a two-tail prabability of 0.02; therefore do not reject the
null at the 0.01 level. We cannot say that one program is preferred over the ather.

No; inferenice tests only apply when generalizing from random samples (o the
population. Flere we have data for the population so there is no need to make an
inference.

The sample r-value is 2.14.

We reject the hypothesis that there is r.o correlation between these nwe variables in the
population.

Index

a. See Y-intercept, 166
Abscissa, 43
Alpha (a), 222, 271
Alpha error. See Type | errer 225
Alpha level, 250

def, 247

null hypothesis and, 225
Alternative hypothesis, 217, 218
Analysis of variance (ANQVA) 266-277

computation of, 2¢9-272

cxample of, 274-277

logic of, 268

SPSS procedures for, 272-27%

post hoc comparisons foc, 273

test of significance for, 219
ANOVA. See Analysis ¢f variance
Area above or below a scere, 149, 152, 154
Area between two scores, [49, 156
Area under normal curve, 1$Z, 216
Arithmetic Mean. See Meap
Association, 12-13

asymmetric, 82, 104, 379

def, 82

existence of, 12

measures of. See Measures of associaLon

negative, 76, 98, 164

pattern and/or direction of, 75-77

steength of, 75-76

perfect, 83, 100

positive, 76, 98

symmetric, 82, 106. 112
Average. See Measures of centzal tendency

b. See Ordinacy least-squarces regression

Bar chart, 42-44

Beta error. See Type 1] error

Beta-weights, 192

Biss, of estimator, 242

Binomjal distribution, 291-303, 305, 379
def, 291
hypothesis test for, 293
SPSS procedure for, 295-296

Bivanate tables, 71, 316, 379, 394, 501
association between variables, and 81-93,
chi-square test, and, 219, 305-308, 317-

322

def, 71

dimensions of, 72

independence between variables, and, 12
SPSS procedures for, 74-75

Causal relationships, 118
Causalion. 83
Cells, 20, 34
Census, 203, 379
Central Limi: Theorem, 210
Central tendency, measures of. See Measures
of ceniral tendency
Charts. See Graphs
Chi-square test, 305-313, 316-331
calculation of, 306-308
def, 305
goodness-of-Lit, 305-308
limitations of, 308-331
logic of, 306
SPSS procecarces ‘or, 308-310, 323-325
test for independer.ce, 219, 317-322
Class intervals, 61-64, 127-128, 379
def, 61
Class Limits, 62-64
for histograms, 44
real, 62
stated, 62
Coefficient of Determinatioe r%), 170-172
Caefficient ¢f Relatve Variation (CRYV). 140
14, 379
Coocitional rclationship, 115-116
Confidence interval, 242-253
and alpha lcvel, 247
and sample size, 25C
def, 245
for & mean, 244
for a percentage, 297-299
Confidence level, 247, 379
Constuct validity, 5
Coatingency lable. See Crosstatuiation
Continuity correction, 328
Continuous variable, 7-8, 379
def 1
Control variable, 111
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Coordinate, 161
Correlation, 164, 180
Correlation coefficient {(r}. 169, 362
Cramer’s V, 92
Critical region, 222-224, 226, 279
def, 222
Critical scores, 230
Crosstabulation, 70-72, 324
Elaboration of, 110
SPSS procedure for, 7475
Cumulative frequency, 60, 379
Cumnulative percentage, 60

DATA EDITOR window. SPSS, 19-21
DATA FILES, SPSS, 33-35
Deciles, 64
DEFINE VARIABLES command, 21
Degrees of freedom (df),

for ANOVA, 271

for chi-square test, 323

for one sample t-test, 237

for two sample r-test, 261
Dependent samples, 280, 379

def, 280

hypothesis test for means, 280-281

hypothesis test for nominal data, 333-340

hypothesis test for ranked dals, 353
Depeadent variable, 13, 256
Descriptive statistics, 14-]15. 380

def, 14
Discrete variable, 7-8, 380

def, 7
Dispersion. See Measures of dispersion
Distribution, 56

binomial, 291-303

frequency, 127

F, 371

normal, 147-159

skewed, 128

symmetric, 128

1, 233, 370

2, 151, 215, 369
Distribution-free tests. See Non-parametric

tests

Efficiency, of estimator, 243
Elaboration of bivariate tables, 1J0-)18
control variable in, 111
partial Gamma in, 113
SPSS procedures for, 112-113
Estimation procedures, 243-253
bias and efficiency, and 246-247
interval estimates, controlling width of,
250

Index

for sarmple means, 242

for sample percentages. 297
Exclusiveness, 8
Exhaustiveness, 8
Expected frequency, 306, 309, 311, 319, 325
Explained variadon, 141

F-distribution, 37!

F-ratio, 271

Frequency, 55, 380
cumulative, 60, 379
def. 55
expected, 306
observed, 306
relative, 57, 381
sumple table, 55-57

Prequency disiributions, 55-64
categories for, 56
computing mean for, 126
computing median for, 125
computing standard deviation for, 138
for interval/ratio scales, 56
for nominal scales, 56
for ordinal vanables, 56
SPSS procedures for, 65-6€

Gamma (G), 99-101

computation of, 99

partial, 113-114

SPSS procedures for, 103
Goodman-Kruskall rau, 92
Goodness-of-fit test. See Chi-square test
Graphs, 39-53

bar, 42-44

for compariog (wo variables, 47-49

frequency polygon, 4546

histogram, 44-45

pie, 40-42

scatter plot, 161
Grouping variable, 256

def, 255

Histogram, 44-45
Homoscedasticity, 178
Hypotheses, 380
Hypothesis est, 214-231, 380
alpha level in, 222
analysis of variance, 266-269
five-step procedure for, 217
for & mean, 233
for a percentage, 291-293
for correlations, 362-364
for difference between meaas, 255-261
for difference between percentages, 331

for goodness-of-fit, 305-313
for independence, 316-323
one sample case, 234-238
one-lailed, 221, 29

two sample case, 266
two-lailed, 221, 227, 228

Independence, 380
Chi-square test for, 219, 317-322
[ndeperdent sample, 280
Independent variable, 12
Index of qualitative variadon (1QV), 14§-143,
380
Inferential statistics, 380, 204
def, 204
Interaction betwecn variables, 116
InterquartiJe range. 137, 380
def, 137
Interval estimates, 242-253
controlling width of, 248
for means, 242-247
for percertages, 297
Interval-ratio level of measurcment, 10, )1
Intervening relationship, 114-115

Kendall's tau-b, 102
Kendall's tau-c, 102
Kruskall-Wallis H test, 219, 357

Lambda, 84-91
calculaton of, 86, 87
limitations of, 90-91
SPSS procedure for, 87-38
Least squares regression line. Sec Ordinary
least squares regression line
Level of measurement, 8-{1
interval-ratio, 10-11
nominal, 8-9, 122
ordinal, 9-10
specifying in SPSS, 27-28
Linear relationship, 177
Line, equation for scraight, 163-164
Line of best fit. See Ordinary least squares
regression line

Mann-Whimey U test, 219, 353, 358-359
Marginals of a bivariate table, 72
Matched pairs. Sce Dependent samples
Mean, 126, 380

calculation of, 126

def, 126

estimating, 242-247

for grouped data, 126, 127, 128, 346

for a population. 126
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relationship 1o median and rode, (23
for a sample, 126-127
Mecasures of associator, 81-93, 380
def, 82
gamma, 99-101
Kendall's tau-b, 102
Kendall's tau-c, 102
lambda, 84-91
for nominal scales, 70-73, 83
for ordinal scales, 98-102
Somer's d, 101
Spearman’s rho, 179-183, 365-356
SPSS procedures for, §7-88
Measures of central tendency, 123
choosing, 123
def, 124
mean, 126-128
median, 125-126
mode, 124
SPSS procedures for, 130-133
Measures of dispersion, 136-145, 380
coefficicnt of relative variation, 140-141
def, 136
index of qualitative variation, 141-145
interquartile raage, 137
range, 136-137
SPSS procedures for, 145
standard deviation, 138-140
Median, 125-126, 3280
def, 125
for grouped data, 125-126
relationship to mean and mode, 123
Mid-point, 63, 125-126
MIJSSING VALUES command, SPSS, 25-26
Made, 124, 380
def 124
reladonship to mean and median, 128
Multiple regression, 187-199, 381
and categorical variables, 197
assumptions behind, J98
SPSS procedures for, 190-192
stepwise regression, 194-198

Negative association, 164
cef, 76

Nomiral level of measurement, 8-9
def, 8

Non-parametric tests, 344, 381
Kruskall-Wallis H 1est, 219, 357
McNemar test, 337-338
runs test, 299-302
SPSS procedures for, 74, 87-88, 102-1C3
Wilcoxon rank sum test, 2,9, 343
Wilcoxon signed ranks (cst, 348-352
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Normal distribution. 147-159
arca above or below a score, 149, 151
area between two scores, 152, 155
area under, 147, 149150, 152
compuling z scores, 151-153
def, 147
table for standard, {50. 151, 369

Null bypothesis, 217
for analysis of variance F test, 266-269
for chi-square test, 316
for goodness-of-fit test, 308
for McNemar Test, 335-337
probability of rejecting, 217-225, 225-
227
for one sample r-test for a mean, 234-238
for runs test, 299-301
for two sample r-test for means, 259-261
for Wilcoxon rank-sum: lest, 348-355
for Wilcoxon signed-ranks test, 355, 356-
357
for one sample z-test for a percentage, 294
for 1wo sample z-test for percentage, 33)

Observed frequency. 306, 309, 311, 319
One-12il hypothesis tests, 229
Ozne way analysis of variance. See Apalysis of
Variapce
Ordinal scales, 10
def, 10
Ordinary least squares (OLS) regression line.
166-169, 170, 381
calculation of, 167-168
def, 166
scatter plot and, 16)-162
slape of, 162-165
SPSS procedures for, 172-175
Y-ictezcept of, 164
Ordinate, 43

Parameter, 203, 381
Parameiric tests, 381
Partial gamma, 113, 114
Partial tables, 111
Pearson’s correlation coefficient (r), 168-170
calculation of, 169-170
SPSS procedure for, 364-3€5
tesiing significance of, 364
Percentages, 58, 381
def, 58
cstimating, 297
hypothesis tesi for one, 263
hypethesis test for differcace between
1wo, 331
Perfect association, 83, 100, 381

Pie graph, 40-42
Polygon, 45
Pooled variance estimate, 258
Population, 3, 203, 381
def, 3
Population mcan, 374
Positive association, 76. J64
Post hoc comparison. See Analysis of
variance
Probability sampling. See Random sampling
Proportional reduction i eror, 84
for nominal scales, 83
for ordinal scales, 98
Proportion, 58

Quartiles, 137
Quintiles, 137

Random sampling, 204-211
SPSS procedures for, 210-211
steatified, 205
Random selection. See Random sampling
Random variation, 204, 320
Range, 136-137, 381
def, 136
Rank, 9, 344, 38]
Raw data, 204
Rejection of rejection. See Critical region
Regression and prediction, 164
Regression coefficient, 168
Regression line. See Ordinary least squares
regression line
Relative frequency, 72
uable, 59, 73
polygon, 45-47
crosstabulations, 73
Residuals, 381
in chi-square test, 307
in regression analysis, 165
Run, 300, 381
Runs test. 299-302
SPSS procedure for, 302-303

Sample, 204, 381
def, 4
biased, 205
random, 204-205, 381
snowball, 205
stratified random, 205
Sample percentage, 292-296
estimating, 297-299
one sample hypothesis test for, 234-239
two sample bypothesis test for, 331
Sampling distribution, 203-212, 381

SAVE/SAVE AS commands, SPSS, 30-33
Scatter plot, 161-162, 172-175, 381
def, 161
Significance test. See Hypothesis lest
Skew, 128
Slope. Sec Ordinary least squares regression
Somer's 4, 101
Spearman’s rho, 179-182
calculation of, 130
SPSS procedures for, 180-181
Spurioas relationship, 114-115
Standard deviation, 138-140, 381
calcutations for, 138
SPSS procedure for, 132-133
Standard error, 208
effect of sample size on, 208
effect of alpha level on, 247
Standard normal distribution, 148
Stated class limits, 62, 382
Siatistical significance, 222, 226
interpretation of, 226-227
Sicpwise regressicn, 194-197
SPSS procedure foi, 196
Stratified sample, 205
Statistics,
descriptive, 39-199
inferental, 203-367
Seudent’s f-distribution, 236, 233
Sum of squares between, 269
Sum of squares within, 269

Tables,
bivariate (contingency), 71-73
cumulative frequency, 60
relative frequency, 57-60
simple frequency, 55-57
SPSS procedures for. 65-66

Index

t-distribution, 233, 236

r-test, 280-285
for a single mean, 234
for correlation coefficient. 362-364
for difference belween means, 219, 257-
258, 280-286
for mean difference, 280-283

Test variable, 256

Tied ranks, 346

Time series, 299

Total sum of squares, 269

Two-tailed test, 227, 228

Type 1 error, 225, 382

Type Il emror, 225, 382

VALUE LABELS command, SPSS, 24-25
Vanable, 3-7, 382

conceptual definition., §

continuous, 7

dependent, 71, 317

discrete, 7

independent, 12, 71

operational definition, 5
VARIABLE LABELS command, SPSS, 23

Wald-Wolfowitz runs test, 358

Wilcoxon rank-sum test, 219, 353
SPSS procedure for, 352

Wilcoxon signed-rank test, 353-357
SPSS procedure for, 356

X-axis, 163

Y-intercept (a), 164, 166
Y-axis, 201, 163

z-scorcs. 151-154, 155-156, 382



