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Preface 

Until recently a book on the history of statistics in the 19th century was 
badly needed. When I retired six years ago, I decided to write such a book, 
feeling that I had a good background in my statistical education in the 1930s, 
when the curriculum in statistics was influenced mainly by the writings of 
Laplace, Gauss, and Karl Pearson. Studying the original works of these 
authors I found no difficulty in understanding Gauss and Pearson, but I 
soon encountered difficulties with Laplace. The reason is of course that Gauss 
and Pearson are truly 19th century figures, whereas Laplace has his roots 
in the 18th century. 

I then turned to the classical authors and worked my way back to Cardano 
through de Moivre, Montmort, Nicholas and James Bernoulli, Huygens, 
Fermat, and Pascal. Comparing my notes with Todhunter’s History, I found 
to my surprise that his exposition of the topics in probability theory that I 
found most important was incomplete, and I therefore decided to write my 
own account. 

The present book, covering the period before 1750, is an introduction to 
the one I had in mind. It describes the contemporaneous development and 
interaction of three topics: probability theory and games of chance; statistics 
in astronomy and demography; and life insurance mathematics. 

Besides the story of the life and works of the great natural philosophers 
who contributed to the development of probability theory and statistics, I 
have told the story of important problems and methods, in this way exhibiting 
the gradual advance of solving these problems. I hope to have achieved a 
better balance than had been achieved before in evaluating the contributions 
of the various authors; in particular, I have stressed the importance of the 
works of John Graunt, Montmort, and Nicholas Bernoulli. 

The contents of the book depend heavily on research carried out by many 
authors during the past 40 years. I have drawn freely on these sources and 
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vi PREFACE 

acknowledged my debt in the references. The manuscript was written during 
the years 1985-1987, so works published in 1986 and 1987 are not fully 
integrated in the text. Some important books and papers from 1988 are 
briefly mentioned. 

With hesitation, I have also included some background material on the 
history of mathematics and the natural and social sciences because I have 
always felt that my students needed such knowledge. I realize of course that 
my qualifications for doing so are rather poor since I am no historian of 
science. These sections and also the biographies are based on secondary 
sources. 

The plan of the book is described in Section 1.2. 
I am grateful to Richard Gill for advice on my English in Chapters 2 and 

3, to Steffen L. Lauritzen for translating some Russian papers, and to Olaf 
Schmidt for a discussion of Chapter 10. In particular, I want to thank SBren 
Johansen for discussions on the problem of the duration of play. 

I am grateful to two anonymous reviewers from the publisher for valuable 
comments on the manuscript and for advice resulting in considerable 
reduction of the background material. I thank the copy editor for improving 
my English and transforming it into American. 

I thank the Institute of Mathematical Statistics, University of Copenhagen, 
for placing working facilities at my disposal. 

I thank the Almqvist & Wiksell Periodical Company for permission to 
use material in my paper published in Scandinavian Actuarial Journal, 1987; 
the International Statistical Institute for permission to use material from 
three papers of mine published in International Statistical Review, 1983, 1984, 
and 1986; and Springer-Verlag for permission to use material from my paper 
published in Archive for History of Exact Sciences, 1988. 

I am grateful to the Department of Statistics, Harvard University, for 
permission to quote from Bing Sung’s Translations from James Bernoulli, 
Technical Report No. 2, 1966, and to Thomas Drucker for permission to 
quote from his (unpublished) translation of Nicholas Bernoulli’s De Usu Artis 
Conjectandi in Jure. 

My first book on statistics, written fifty years ago, was dedicated to G. K., 
so is this one. 

ANDERS HALD 

September I988 
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C H A P T E R  1 

The Book and Its Relation to 
Other Works 

1.1 PRINCIPLES OF EXPOSITION 

This book contains an exposition of the history of probability theory and 
statistics and their applications before 1750 together with some background 
material. A history should of course give an account of the time and place 
of important events and their interpretations. However, opinions differ greatly 
on where to put the main emphasis of interpretation. 

We have attempted to cover three aspects of the history: problems, 
methods, and persons. We describe probabilistic and statistical problems 
and their social and scientific background; we discuss the mathematical 
methods of solution and the statistical methods of analysis; and we include 
the background and general scientific contributions of the persons involved, 
not only their contributions to probability and statistics. 

Since history consists of facts and their interpretation, history continually 
changes because new facts are found in letters, archives, and books, and new 
interpretations are offered in the light of deeper understanding based, in this 
case, on the latest developments in probability theory, statistics, and the 
history of science. 

In the 17th and 18th centuries many problems were formulated as 
challenge problems, and answers were given without proofs. Some books on 
probability were written for the educated public and therefore contained 
statements without proofs. In such cases we have tried to follow the author's 
hints and construct a proof which we believe represents the author's 
intentions. 

The material has been ordered more according to problems and methods 
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2 THE BOOK A N D  ITS RELATION TO OTHER WORKS 

than according to persons in an attempt to treat the achievements of the 
various authors as contributions to a general framework. 

A leading principle of the exposition of probability theory and life 
insurance mathematics has been to rewrite the classics in uniform modern 
terminology and notation. It is clear that this principle may be criticized for 
distorting the facts. Many authors prefer to recount the old proofs with the 
original notation to convey the flavor of the past to the reader. There are 
two essential steps in modernization that we have made here. The first is to 
use a single letter, p, say, to denote a probability instead of the ratio of the 
number of favorable cases to the total number of cases, a/(a + b), say, where 
a and b are positive integers. This change of notation conceals the fact that 
nearly all the probabilities discussed were constrained to rational fractions. 
The advantage of this notation was noted by de Moivre (1738, p. 29) who 
writes, “Before I make an end of this Introduction, it will not be improper 
to shew how some operations may often be contracted by barely introducing 
one single Letter, instead of two or three, to denote the Probability of the 
happening of one Event” and, further (on p. 30), that “innumerable cases of 
the same nature, belonging to any number of Events, may be solved without 
any manner of trouble to the imagination, by the mere force of a proper 
Notation.” However, de Moivre did not rewrite the Doctrine of Chances with 
the new notation; he used it  only in his Annuities upon Lives (1725 and later 
editions). We have followed the advice of de Moivre and rewritten the proofs 
in the new notation, feeling confident that the reader will keep in mind that 
most probabilities were defined as proper rational fractions, a fact which is 
nearly always obvious from the context. 

The second great simplification of the proofs is obtained by the 
introduction of subscripts. In analyzing some complicated games of chance, 
for example, Waldegrave’s problem, Nicholas Bernoulli and de Moivre had 
to use the whole alphabet divided into several sections to denote probabilities 
and expectations of the players corresponding to various states of the game. 
De Moivre achieved some simplification by using superscripts in a few cases. 
In many problems they gave the solution for two, three, and four players 
only and concluded that “the continuation of this rule is manifest,” in this 
way avoiding a general proof which would have been rather unintelligible. 
Using modern notation with subscripts, it is easy to rewrite such proofs in 
much shorter form without invalidating the idea of the proof; in fact, we 
believe that our readers will get a clear idea of the proof because they are 
accustomed to this symbolism, just as readers in the past understood the 
original form of the proof because they were educated in that notational 
tradition. 

Comparison of proofs and results in a uniform notation makes evaluating 
the contributions of various authors easier and minimizes the danger of 
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attributing too much to an individual author. Furthermore, the importance 
of the results to the following period and to today becomes evident. 

The same principle of exposition cannot be used for statistics, because 
statistics before 1750 was nonmathematical. We shall therefore illustrate the 
development of statistical methods by typical examples, giving both the 
original data and their analysis at the time and adding some comments from 
a modern point of view. 

The book is written in textbook style, since our main purpose is to give 
an account of the most important results in the classical literature. Like most 
histories of mathematics and science, our exposition concentrates on results 
which have proved to be of lasting importance. 

The persons who laid the foundation of probability theory and statistics 
were natural philosophers having a broader background and outlook than 
scientists today. The word “scientist” was coined about the middle of the 
19th century, reflecting an ongoing specialization and professionalization. 
Nevertheless, we Shall often use the words “mathematician” and “scientist” 
to stress certain characteristics of the persons involved. 

To convey the flavor of classical works, we shall present quotations of 
programs from the prefaces of books, the formulation of important problems, 
and some heated disputes of priority. 

We shall point out priorities, but the reader should be aware of the 
uncertainty involved by taking note of Stigler’s Law of Eponymy, (Stigler, 
1980), which in its simplest form states that, “No scientific discovery is named 
after its original inventor.” 

The driving force behind the development of probability theory and 
statistics was pressure from society to obtain solutions to important 
problems for practical use, as well as competition among mathematicians. 
When a problem is first formulated and its solution indicated, perhaps 
only by a numerical example, the problem begins a life of its own 
within the mathematical community; this leads to improved proofs and 
generalizations of the problem, and we shall see many examples of this 
phenomenon. 

Finally, it should be noted that any history is necessarily subjective, since 
the weight and interpretation of the events selected depend on the author’s 
interests. 

For the serious student of the history of probability theory and statistics, 
we can only recommend that he or she follow the advice given by de Moivre 
(1738, p. 235), discussing the works of James and Nicholas Bernoulli on the 
binomial distribution: “Now the Method which they have followed has been 
briefly described in my Miscellanea Analytica, which the Reader may consult 
if he pleases, unless they rather chuse, which perhaps would be the best, to 
consult what they themselves have writ upon that Subject.” 



4 THE BOOK A N D  ITS RELATION TO OTHER WORKS 

1.2 PLAN OF THE BOOK 

A fuller title of the book would be A history ofprobability theory and statistics 
and their applications to games of chance, astronomy, demography, and life 
insurance before 1750, with some comments on later developments. The topics 
treated may be grouped into five categories: 

Background in mathematics, natural philosophy, and social conditions 
Biographies 
Probability theory and games of chance 
Statistics in astronomy and demography 
Life insurance mathematics 

Probability theory before 1750 was inspired mainly by games of chance. 
Dicing, card games, and lotteries, public and private, were important social 
and economic activities then as today. It is no wonder that intellectual 
curiosity and economic interests led to mathematical investigations of 
these activities at a time when the mathematization of science was going 
on. We shall distinguish three periods. 

The period of the foundation of probability theory from 1654 to 1665 
begins with the correspondence of Pascal and Fermat on the problem of 
points, continues with Huygens’ treatise on Reckoning at Games of Chance, 
and ends with Pascal’s treatise on the Arithmetical Triangle and its 
applications. The correspondence was not published until much later. In 
his treatise, Pascal solves the problem of points by recursion and finds a 
division rule, depending on the tail probability of the symmetric binomial. 
In their correspondence, he and Fermat had solved the same problem 
also by combinatorial methods. Huygens uses recursion to solve the 
problem numerically. He also considers an example with a possibly infinite 
number of games, which he solves by means of two linear equations 
between the conditional expectations of the two players. All three of them 
solved the problem of the Gambler’s Ruin without publishing their method 
of solution. 

After a period of stagnation of nearly 50 years, there followed a decade 
with astounding activity and progress from 1708 to 1718 in which the 
elementary and fragmentary results of Pascal, Fermat, and Huygens were 
developed into a coherent theory of probability. The period begins with 
Montmort’s Essay d’Analyse sur les Jeux de Hazard, continues with de 
Moivre’s De Mensura Sortis, Nicholas Bernoulli’s letters to Montmort, 
James Bernoulli’s Ars Conjectandi, Nicolaas Struyck’s Reckoning of 
Chances in Games, and ends with de Moivre’s Doctrine of Chances. Hence, 
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by 171 8 four comprehensive textbooks were available. We shall mention 
the most important results obtained. They discussed elementary rules of 
probability calculus, conditional probabilities and expectations, combi- 
natorics, algorithms and recursion formulae, the method of inclusion and 
exclusion, and examples of using infinite series and limiting processes. 
They derived the binomial and negative binomial distributions, the 
hypergeometric distribution, the multivariate version of these distribu- 
tions, the occupancy distribution, the distribution of the sum of any 
number of uniformly distributed variables, the Poisson approximation to 
the binomial, the law of large numbers for the binomial, and an approxi- 
mation to the tail of the binomial. They solved the problem of points for a 
game of bowls and for the game of tennis, Waldegrave’s problem, the problem 
of coincidences, and the problem of duration of play, and found the minimax 
solution for the strategic game Her. 

The third period, from 1718 to 1738, was a period of consolidation and 
steady progress in which de Moivre derived the normal approximation 
to the binomial distribution, developed a theory of recurring series, 
improved his solution of the problem of the duration of play, and wrote 
the second edition of the Doctrine of Chances, which became the most 
important textbook before the publication of Laplace’s ThPorie Analyrique 
des Probabilitks in 1812. 

We shall discuss these books in detail. We have, however, singled out the 
most important problems for separate treatment to show how they were 
solved by joint effort, often in competition among several authors. 

Many problems were taken up by the following generation of 
mathematicians and given solutions that have survived until today. We 
shall comment on these later developments, usually ending with Laplace’s 
solutions. 

The successful development of probability theory did not immediately 
lead to a theory of statistics. A history of statistical methods before 1750 
must therefore build on typical examples of data analysis; we have 
concentrated here on examples from astronomy and demography. 

Astronomers had been aware of the importance of both systematic and 
random errors since antiquity and tried to minimize the influence of such 
errors in their planning of observations and data analysis. We shall discuss 
some data by Tycho Brahe from the end of the 16th century as an example. 
The mathematization of science in the beginning of the 17th century 
naturally led many scientists to determine not only the mathematical form 
of natural laws but also the values of the parameters by fitting equations 
to data. They inserted the best sets of observations in the equations, as 
many as the number of parameters, solved for the parameters, calculated 
the expected values, and studied the deviations between observed and 
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calculated values. Prominent examples are Kepler’s three laws on 
planetary motion derived from his physical theories and data collected 
by Copernicus and Tycho Brahe. Kepler’s data were used by Newton to 
check his axiomatic theory. Galileo used several sets of observations on 
the new star of 1572 to compare two hypotheses on the position of the 
star. We shall also see how Newton used an interpolation polynomial to 
find the tangent to the orbit of a comet. 

A paragon for descriptive statistical analysis of demographic data was 
provided by Graunt’s Natural and Political Observations made upon the 
Bills qf Mortality in 1662. Graunt’s critical appraisal of the rather 
unreliable data, his study of mortality by cause of death, his estimation 
of the same quantity by several different methods, his demonstration of 
the stability of statistical ratios, and his life table set up new standards 
for statistical reasoning. Graunt’s work led to three different types of 
investigations: political arithmetic; testing the stability of statistical ratios; 
and calculation of expectations of life and survivorship probabilities. 

Petty also employed Graunt’s method of analysis, although less critical, 
to economic data and coined the term “political arithmetic” for analyses 
of data of political importance. Similar methods were used by natural 
philosophers and theologians to analyze masses of data on human and 
animal populations. The many regular patterns observed were taken as 
proof of the existence of a supreme being and His “original design.” We 
shall remark only slightly on this line of thought. 

It  is surprising that probabilists at the time recognized the importance of 
Graunt’s work and without hesitation used their theory on games of 
chance to describe demographic phenomena. They wrote about the chance 
of a male birth and the chance of dying at a certain age. 

Graunt gave a detailed description and analysis of the yearly variation of 
the sex ratio at birth in London and Romsey and suggested that similar 
investigations should be carried out in other places. Arbuthnott used some 
of Graunt’s data extended to his own time to give a statistical proof, based 
on the symmetric binomial, for the existence of divine providence, a proof 
that was further strengthened by ’sGravesande. Nicholas Bernoulli 
compared the observed distribution of the yearly number of male births 
with a skew binomial distribution, the parameter being estimated from 
the data, and discussed the probability of the observed number of outliers. 
His investigation is the first attempt to fi t  a binomial to data and to test 
the goodness of fit. Some years later, Daniel Bernoulli used the normal 
approximation to the binomial in his analysis of deviations between 
observed and expected values of the number of male births to decide 
between two hypothetical values of the sex ratio. 

Huygens used Graunt’s life table to calculate the median and the average 
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remaining lifetime for a person of any given age. He also showed how to 
calculate survivorship probabilities and joint-life expectations. His results 
were, however, not published, but similar results were published without 
proof by James Bernoulli and later proved by Nicholas Bernoulli. 

The usefulness of probability theory was convincingly demonstrated by 
application to problems of life insurance. In the 16th and 17th centuries, 
states and cities sold life annuities to their citizens to raise money for 
public purposes. The yearly benefit of an annuity was fixed as a percentage 
of the capital invested, often as twice the prevailing rate of interest and 
independent of the nominee’s age. In a report from 1671, de Witt showed 
how to calculate the value of an annuity by means of a piecewise linear 
life table combined with the age of the nominee and the rate of interest. 
De Witt’s life table was hypothetical, although he referred to some 
investigations of the mortality of annuitants. In 1693 Halley constructed 
a life table from observations of the yearly number of deaths in Breslau, 
calculated the first table of values of annuities as a function of the nominee’s 
age, and explained how to calculate joint-life annuities. 

After these ingenious beginnings one would have expected rapid 
development of both mathematical and practical results in view of the 
fact that many economic contracts in everyday life depended on life 
contingencies, but nothing happened for about 30 years. The breakthrough 
came in 1725 with de Moivre’s Annuities upon Lives, greatly simplifying 
both the mathematics and the calculations involved; however, as shown 
by Simpson, de Moivre went too far in his simplifications. Simpson 
therefore constructed his own life table for the population of London, and 
by recursion he calculated tables of values of single- and joint-life annuities 
for various rates of interest. In the strong competition between de Moivre 
and Simpson, a comprehensive theory of life annuities was created, and 
the necessary tables for practical applications provided. 

In some chapters in this book we have supplemented the text with 
problems for the reader, mostly taken from the classical literature. 

Although we have not included every classical paper, or every paper 
commenting on the classical literature, we believe that we have covered 
the most important ones. However, for various reasons two important 
results before 1750 have been omitted. The first is Cotes’s rule (1722) for 
estimating a true value by a weighted mean, when observations are of 
unequal accuracy (see Stigler, 1986, p. 16); the second is Daniel Bernoulli’s 
results (1738) on the theory of moral expectation, the utility of money, and the 
Petersburg problem (see Todhunter, 1865, Jorland, 1987, and Dutka, 1988). 

We shall discuss our reasons for stopping our history at 1750. 
By 1750 probability theory had been recognized as a mathematical 

discipline with a firm foundation and its own problems and methods as 
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described by de Moivre in the Doctrine of Chances. A new development 
began with the introduction of inverse probability by Bayes (1764) and 
Laplace (1 774b). 

By 1750 statistics had still not become a mathematical discipline; a 
mathematical theory of errors and of estimation emerged in the 1750s, as 
described by Stigler (1986). 

Also about 1750, the first phase of the development of a theory of life 
insurance had been completed. In the 1760s life insurance offices arose so 
that new and more accurate mortality observations became available. A 
theory of life assurances was developed, and new ways of calculating and 
tabulating the fundamental functions were invented. 

The reader should note that formulae are numbered with a single number 
within sections. When referring to a formula in another chapter the decimal 
notation is used, (20.5.25) say, denoting formula (25) in $ 5  of Chap. 20. 
Within a chapter the chapter number is omitted so that only section and 
formula numbers are given. 

1.3 A COMPARISON WITH TODHUNTER’S BOOK 

The unquestioned authority on the early history of probability theory is 
Isaac Todhunter (1820-1884) whose masterpiece, A History of the 
Mathematical Theory of Probability from the Time of Pascal to that of 
Laplace, was published in 1865. Kendall (1963) has written a short 
biography of Todhunter in which he gives a precise characterization of 
his work: “The History of the Mathematical Theory of Probability is 
distinguished by three things. It is a work of scrupulous scholarship; 
Todhunter himself contributed nothing to the theory of probability except 
this account of it; and it is just about as dull as any book on probability 
could be.” 

We consider Todhunter’s History an invaluable handbook giving a 
chronological review of the classical literature grouped according to 
authors. For the period before 1750, however, we shall argue that 
Todhunter’s account of important topics is incomplete, that he has 
overlooked the significance of important contributions, and that the trend 
in the historical development is lost by his organization of the material. 

In the many references to Todhunter’s History in the following we shall 
omit the year of publication (1865) and give page references only. 

As a mathematician Todhunter concentrates on the mathematical theory 
of probability and disregards the general background, the lives of the 
persons involved, and the application of their theories to statistics and 
life insurance. 
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Todhunter’s book is ordered chronologically according to authors; each 
important author is allotted a separate chapter in which his works are 
reviewed page by page and commented upon. This method makes it easy 
for the reader to locate the contributions of each author but difficult to 
follow the advances made by various authors to the solution of a given 
problem. We have avoided this dilemma by reviewing the works of each 
author and referring the detailed treatment of the most important topics 
to separate chapters that show the historical development for each topic. 

More important, however, are the different weights given to many topics 
by Todhunter and by us. I t  is not surprising that the significance of a 
theorem or method differs when viewed from the perspectives of 1865 and 
today. Todhunter meticulously reports proofs of many results which are 
without interest today; conversely, he omits proofs of results of great 
importance. We shall give some examples. 

Today one of the most important and interesting topics is the development 
from James Bernoulli’s law of large numbers for the binomial distribution 
through Nicholas Bernoulli’s improved version of James’s theorem and his 
approximation to the binomial tail probability to de Moivre’s normal 
approximation. These three results are treated by Todhunter in less than 
two pages (pp. 72, 131, 192). He states Bernoulli’s theorem without giving 
his proof; he has overlooked the significance of Nicholas’ contribution 
and gives neither theorem nor proof; he states de Moivre’s result for 
p =  1/2 only and indicates the proof by the remark, “Thus by the aid of 
Stirling’s Theorem the value of Bernoulli’s Theorem is largely increased.” 
Todhunter has completely overlooked de Moivre’s long struggle with this 
problem, the importance of de Moivre’s proof as a model for Laplace’s 
proof, and de Moivre’s statement of the theorem for any value of p .  Instead 
of giving the historical development of the method of proof, he gives Laplace’s 
proof (pp. 548-552) because, as he says, previous demonstrations are now 
superseded by that. This is ofcourse a very peculiar argument for a historian. 

It is a common misunderstanding, perhaps due to Todhunter’s incomplete 
account, that de Moivre gave the normal approximation only for the 
symmetric binomial. 

The deficiency of Todhunter’s method is most conspicuous in his analysis 
of the correspondence between Montmort and Nicholas Bernoulli, 
published in the second edition of Montmort’s Essay ( 1  713). These closely 
intertwined letters contain formulations of new problems, usually as a 
challenge to the recipient; theorems without proofs, sometimes with hints 
for solution; replies to previous questions; a running commentary on 
progress with the solution of various problems; and remarks on the 
contributions of other authors. A single letter often treats five to ten 
different topics. It is of course impossible to get the gist of these letters 
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in a page-by-page review; rather, it is necessary to give an overview of 
the contents grouped by subject matter. Todhunter therefore does not 
realize the importance of Nicholas Bernoulli’s work; perhaps he was also 
under the influence of de Moivre who in the later editions of the Doctrine 
tried to conceal the importance of Bernoulli’s results to his own work. 

The most difficult topic in probability theory before 1750 was the problem 
of the duration of play. It was formulated by Montmort in 1708; the first 
explicit solution was given by Nicholas Bernoulli in 1713. Two solutions 
were given by de Moivre in 1718, and these were worked out in more 
detail in 1730 and 1738. Todhunter gives up analyzing this important 
development, instead he uses Laplace’s solution from 1812 to prove de 
Moivre’s theorems. Furthermore, he does not comment on Laplace’s 
solution from 1776 by solving a partial difference equation because this 
method “since [has] been superseded by that of Generating Functions” 
(Todhunter, p. 475). 

The same procedure is used by Todhunter in his discussion of Waldegrave’s 
problem, the probability of winning a circular tournament, which was 
solved incompletely by Montmort and de Moivre. A general solution was 
given by Nicholas Bernoulli, but Todhunter gives only Laplace’s proof 
without noting that Bernoulli’s is just as simple. 

Todhunter’s discussion of the strategic game Her is rather incomplete. He 
has overlooked the fact that Montmort gives the general form of the 
player’s expectation under randomized strategies and that Waldegrave 
solves the problem numerically arriving at  what today is called the 
minimax solution. Misled by Todhunter’s account, Fisher (1934) solved 
the “old enigma of card play” by randomization and reached the same 
solution as Waldegrave did 221 years before. 

Todhunter gives unsatisfactory accounts of James Bernoulli’s and 
Montmort’s probabilistic discussion of the game of tennis, of the problem 
of points in a game of bowls, of Montmort’s discussion of the occupancy 
problem, of Simpson’s solution of the theory of runs, and of several other 
problems mentioned in the following chapters. 

Kendall’s characterization that “it is just as dull as any book on probability 
could be” applies equally well to several sections of the present book. 
Detailed proofs of elementary theorems illustrating the historical 
development are necessarily dull for us, even if they were exciting for them. 
Pascal, Fermat, Huygens, Hudde, James Bernoulli, Montmort, Nicholas 
Bernoulli, de Moivre, and Struyck were all intensely interested in solving 
the problem of the Gambler’s Ruin, which today is considered elementary. 
For statisticians who find examples of games of chance rather dull, it must 
be a consolation to know that dicing and card playing have their 
equivalents in sampling from infinite and finite populations, respectively. 
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1.4 WORKS OF REFERENCE 

Gouraud’s Histoire (1848, 148pp.) gives a nonmathematical and rather 
uncritical exposition of probability theory and insurance mathematics 
beginning with Pascal and Fermat and ending with Poisson and Quetelet. 
It contains many references and was therefore useful for Todhunter when 
he wrote his History (1865, 624pp.). 

The first two chapters of Czuber’s Entwicklung der Wahrscheinlichkeits- 
theorie (1899, 279pp.) covers nearly the same period as the present book 
but in less detail. Czuber indicates some methods of proof without giving 
complete proofs. 

The books by Edwards (1987, 174pp.), Pascal’s Arithmetical Triangle, and 
Hacking (1975, 209pp.), The Emergence of Probability, may be read as an 
introduction to the present one; they give a more detailed treatment of 
certain aspects of the history up to the time of Newton and Leibniz. 

David (1962, 275pp.) gives a popular history of probability and statistics 
from antiquity through the time of de Moivre, stressing basic ideas and 
providing background material for the lives of the great probabilists. 

Jordan’s book (1972,619pp.) contains a mathematical account of classical 
probability theory organized according to topics, with some references to 
the historical development. 

The first 81 pages of Maistrov’s book (1974, 281pp.) gives a sketch of the 
history of probability theory before 1750. 

Daston’s Classical Probability in the Enlightenment (1988, 423pp.) gives a 
comprehensive, nonmathematical study of the basic ideas in classical 
probability theory in their relation to games of chance, insurance, 
jurisprudence, economics, associationist psychology, religion, induction, 
and the moral sciences, with references to a wealth of background material. 
Daston’s discussion of the history of probabilistic ideas is an excellent 
complement to our discussion of mathematical techniques and results. 

Turning to books on the history of statistics, we mention first Karl 
Pearson’s The History ofstatistics in the 17th and 18th Centuries, Lectures 
given at University College, London, 1921-1933, edited by E. S .  Pearson 
(1978, 744pp.). This is a fascinating book with an unusual freshness that 
conveys Pearson’s enthusiasm and last-minute endeavors in preparing his 
lectures. It describes “the changing background of intellectual, scientific 
and religious thought,” and gives lively biographies with digressions into 
the fields of mathematics and history of science. Pearson does not discuss 
statistics in the natural sciences but is mainly concerned with political 
arithmetic, demography, and the use of statistics for theological purposes. 
Pearson does not conceal his strong opinions on the subjects treated and 
the persons involved, which occasionally lead to biased evaluations. 
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Stigler’s The History of Statistics (1 986,410pp.) is the first comprehensive 
history of statistics from 1750 to 1900, it also contains a discussion of 
Bernoulli’s law of large numbers and de Moivre’s normal approximation 
to the binomial. 

Westergaard’s Contributions to the History ofStatistics (1932,280pp.) gives 
the history of political arithmetic, population statistics, economic statistics, 
and official statistics before 1900, as well as a short survey of statistical 
theory. It  is a nonmathematical, well-balanced, and scholarly work, with 
valuable references to the vast literature on descriptive and official 
statistics. 

John’s Geschichte der Statistik (1884, 376pp.) contains a description of the 
development of German political science, at that time called statistics, and 
of political arithmetic and population statistics before 1835. 

Meitzen’s Geschichte, Theorie und Technik der Statistik (1  886, 240pp.) 
discusses the history of official statistics with the main emphasis on its 
development in Germany. 

Following the pioneering work by M. G. Kendall and F. N. David in the 
1950s and 1960s, there has been growing interest in the history of 
probability and statistics, and a great number of papers have been 
published; the most important, relating to the period before 1750, are 
listed in the References at the end of this book. Several important papers 
have been reprinted in Studies in the History of Statistics and Probability, 
Vol. 1 edited by E. S. Pearson and M. G. Kendall (1970) and Vol. 2 edited 
by M. G. Kendall and R. L. Plackett (1977). A Bibliography of Statistical 
Literature Pre-1940 has been compiled by Kendall and Doig (1968). 

A comprehensive account of the development of life insurance and its 
social, economic, and political backgrouiid before 19 14, with some remarks 
on mathematical results has been given by Braun in Geschichte der 
Lebensversicherung und der Lebensversicherungstechnik ( 1925, 433pp.). 

For the biographies we have of course used the Dictionary of ScientiJic 
Biography, edited by C .  C. Gillispie (1970-1980) and the individual 
biographies available. 

As reference books for the history of mathematics we have used Cantor 
(1880-1908) and Kline (1972). 

For long periods of time there existed a considerable backlog of 
publications of the Academies at London, Paris, Turin, etc., so that papers 
were read some years before they were published. Referring to such papers 
we have used the date of publication; in the list of references, however, we 
have usually added the date of communication to the Academy. 



CHAPTER 2 

A Sketch of the Background 
in Mathematics and Natural 
Philosophy 

2.1 INTRODUCTJON 

The first mathematical analyses of games of chance were undertaken by 
Italian mathematicians in the 16th century. The main results, which remained 
unpublished for nearly a century, were obtained by Cardano about 1565. 

It was almost 100 years after Cardano before probability theory was taken 
up again, this time in France by Pascal and Fermat (1654). Their work was 
continued by Huygens (1657) in the Netherlands. He wrote the first published 
treatise on probability theory and its application to games of chance. 

About the same time a statistical analysis of data on the population of 
London was carried out by Graunt (1662). He did not have any knowledge 
of probability theory. 

The first contributions to life insurance mathematics were made by de 
Witt (1671) in the Netherlands and by Halley (1694) in England. They 
combined Huygens’ probability theory with Graunt’s life table. 

Error theory and the fitting of equations to data were developed in 
astronomy and navigation. Outstanding contributions are due to the Danish 
astronomer Tycho Brahe in the late 16th century, the German astronomer 
and mathematician Kepler in the beginning of the 17th century, and the 
Italian natural philosopher Galileo. 

The problems taken up were of great current interest scientifically, socially, 
and economically. Their solutions depended on the mathematical 
background and sometimes required the development of new mathematical 
tools. 

13 
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All these activities were well under way just before the Newtonian 
revolution, which was of decisive importance both mathematically and 
philosophically to further development. 

For historical background we shall sketch the principal progress in 
mathematics and natural philosophy of importance for our subject before 
1650. However, these fields only constitute a small part of the cultural 
background at the time. Most natural philosophers had a very broad 
education, worked in many different areas, and entertained ideas which today 
would be called superstitious. Belief in astrology, alchemy, and magic was 
widespread. Cardano and Tycho Brahe are outstanding examples of the 
versatile men of the Renaissance. Besides being a great mathematician, 
physician, and scientist, Cardano believed in and practiced divination, 
occultism, and healing by magic. The astronomer Tycho Brahe worked also 
in astrology and alchemy and produced many medicaments, for example, an 
elixir against the then common and dangerous epidemic diseases. Both men 
also made important technical inventions and thus bear witness to the close 
relationship between science and technology. 

The purpose of the present chapter is to refresh the reader’s memory on 
some of the salient historical facts before 1650. It is, however, not possible to 
point to a simple causal explanation of the development of probability and 
statistics in terms of these facts, but the record should make it easier for the 
reader to review and to grasp the spirit of the time. 

The exposition is necessarily very brief; it is also biased in the sense that 
it concentrates on the most conspicuous events in the development of 
mathematics and natural philosophy, and it emphasizes those events that 
are of particular interest for the history of probability and statistics. 

2.2 ON MATHEMATICS BEFORE 1650 

Classical Greek mathematics had been nearly forgotten in Western Europe 
in the early Middle Ages. The Crusades and increasing trade and travel in 
the Mediterranean countries from about I 100 brought the Europeans into 
contact with the Arabs and the Byzantines who had preserved the Greek 
works. During the later Middle Ages and the Renaissance, the classical works 
were translated, commented upon by European mathematicians, and put to 
good use in connection with many practical applications, such as navigation, 
surveying, architecture, and commercial arithmetic. A survey of the existing 
mathematical knowledge with a view to applications was given by Luca 
Pacioli (c. 1445-c. 15 17) in 1494. 

In the 16th century considerable progress was made in arithmetic, algebra, 
and trigonometry. Zero was accepted as a number, and negative and irrational 
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numbers came gradually into use. Complex numbers occurred in the solution 
of quadratic equations, but they were considered “useless.” The decimal 
system of notation was introduced for fractions, replacing the ratio of two 
integers. 

Two prominent Italian mathematicians, Niccolo Tartaglia (c. 1499-1 557) 
and Girolamo Cardano (1501-1576), wrote textbooks containing new results 
in arithmetic and algebra. For example, they gave methods for the solution 
of equations of the third and fourth degrees, and Cardano noted that the 
number of roots equaled the degree of the equation. 

The French mathematician Franvois Vieta (1 540-1603) published several 
works on plane and spherical trigonometry in which he systematized and 
extended the formulae for right and oblique plane triangles and for spherical 
right triangles. He also found many trigonometric identities, for example, 
the important expression for sin nx in terms of sin x. Vieta’s trigonometric 
research was mainly inspired by problems in astronomy and surveying; 
however, he also showed how to use trigonometric formulae for the solution 
of certain algebraic equations. 

Progress in algebra was hampered by the tradition that geometry was the 
only real mathematics, and algebraic results had therefore to be given a 
geometrical interpretation. For example, algebraic equations had to be 
written in homogenous form of at  most the third degree. Vieta realized, 
however, that algebra could be used to prove geometrical results and to 
handle quantities whether or not they could be given a geometrical 
interpretation. Thus algebra gradually became a separate mathematical 
discipline independent of geometry. 

The increasing use of mathematics in practice resulted in the computation 
and publication of many tables, particularly tables of trigonometric functions. 

Texts on arithmetic and algebra in the Renaissance were written in a 
verbal style with abbreviations for special words: for example p for plus, m 
for minus and R for square root. According to Kline (1972, p. 260), the 
expression (5 + - ) (5  - G) = 25 - (- 15) = 40 was written by 
Cardano as 

5p: Rm: 15 

5m: Rm: 15 

25m:m: 15 qd est 40. 

Gradually, symbols were introduced for the unknowns and exponents for 
powers. A decisive step was taken by Vieta, who used letters systematically 
also as coeficients in algebraic equations. The sign = for equality was 
proposed about the middle of the 16th century but was not universally 
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accepted. Descartes used w as a stylized ae (from aequalis), and this was still 
used by Bernoulli in his Ars Conjectandi in 1705. The symbol 00 for infinity 
was introduced by Wallis in 1655. The letter R was introduced in the beginning 
of the 18th century but de Moivre still used c (derived from circumference) 
as late as 1756 in his Doctrine of Chances. 

Essential steps in the free use of letters and special signs for mathematical 
symbols were first taken by Descartes, Newton, and Leibniz. 

The most important advance in arithmetic in the 17th century was the 
invention of logarithms. The German mathematician Michael Stifel 
(1486-1567) considered in 1544 the correspondence between terms of an 
arithmetic and a geometric series and stated the “four laws of exponents,” 
but he did not take the decisive step of introducing logarithms. This was 
done by John Napier (1550-1617), Laird of Merchiston in Scotland, a 
prominent politician and defender of the Protestant faith. He published two 
books on logarithms, the Descriptio (1614) and the Constructio (1619), the first 
giving the definitions and working rules of logarithms and a seven-figure 
table of logarithmic sines and tangents, the second containing theory and 
proofs. Napier considered the synchronized motion of two points, each 
moving on a straight line, the one with constant velocity, and the other with 
a decreasing velocity proportional to the distance remaining to a fixed point, 
the initial velocity being the same. In modern notation his model may be 
written as 

dxfdt = r, 

dyldt = - y, 

x(0) = 0, 

y(0) = r, 

with the solution x( t )  = rt, and 

It follows that the Naperian logarithm, log, y = x, is a linear function of the 
natural (or hyperbolic) logarithm 

r 
log,y=rlog,-. 

Y 

Napier constructed his table of logarithms by means of a detailed 
tabulation of the function g(x) = r(l - E)X, x = 0, 1,. . . , for r = lo7 and for 
small positive values of E. He carried out these calculations personally during 
a period of nearly 20 years. 
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Since log, r = 0, and 

Napier realized that his definition of logarithms was unpractical, and in 
cooperation with Henry Briggs (1  561-1630), professor of mathematics first 
in London and later in Oxford, he proposed the system of common (or 
Briggsian) logarithms with base 10. From 1615 Briggs devoted the main part 
of his time to the construction of logarithmic tables. In 1617 he published 
the first table of common logarithms of the natural numbers from 1 to 1000. 
This was followed by his Arithmetica Logarithmetica (1624) containing the 
logarithms of the natural numbers from 1 to 20,000 and from 90,000 to 
100,OOO to 14 decimal places, with an introduction on the construction of 
the table and examples of arithmetical and geometrical applications. 
Posthumously occurred his Trigonometria Brittanica (1 623) containing sines, 
tangents, and their logarithms to 14 decimal places. Many other tables were 
published about the same time so that 20 years after Napier’s book, a wealth 
of logarithmic tables was available, and for the next 300 years logarithmic 
tables were the most important tools for computational work. In Napier 
Tercentenary Memorial Volume (19 15) Glaisher writes, 

By his invention Napier introduced a new function into mathematics, and in his 
manner of conceiving a logarithm he applied a new principle; but even these 
striking anticipations of the mathematics of the future seem almost insignificant 
by comparison with the invention itself, which was to influence so profoundly the 
whole method of calculation and confer immense benefits upon science and the 
world. 

For more details on the history of logarithms, we refer to Naux (1966, 1971) 
and Goldstine (1977). 

The great progress in physics and astronomy in the beginning of the 17th 
century by Galileo and Kepler had a profound influence on the direction of 
mathematics. By fitting mathematical equations to data, they obtained simple 
descriptions of physical phenomena, and they thus demonstrated the 
usefulness of mathematics in science and technology. All the great 
contributions to  mathematics in the following centuries came from men who 
were as much scientists as mathematicians. 

As natural tools for his work in astronomy Johannes Kepler (1 571 - 1630) 
worked on interpolation; logarithms; tabulation of trigonometric functions 
and logarithms; the mathematics of conics, for example, the gradual change 
of one conic into another by a change of the parameters; the length of curves; 
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and the areas and volumes limited by curves and surfaces. He calculated 
such areas and volumes as the sum of a large number of small sections. 

In the 1630s and 1640s many mathematicians worked on the area 
(integration) problem. Cavalieri ( 1  598- 1647) invented a method of 
“indivisibles,” a geometrical method for finding areas and volumes by means 
of an infinite number of equidistant parallel linesegments and areas, 
respectively. Other mathematicians, such as Fermat, Roberval, Pascal, and 
Wallis, solved concrete problems either by Cavalieri’s method or by 
approximating the area under a curve by the sum of the areas of suitably 
chosen rectangles with bases of the same length, letting the number of 
rectangles increase indefinitely and keeping only the main term of the sum. 
Using the latter method, Fermat, for example, worked out the integral of x“ 
over a finite interval for all rational n except - 1. A general method of 
integration (and differentiation) had, however, to wait for the works of 
Newton and Leibniz in the latter part of the century. 

Practical problems in optics, perspective, and cartography led Girard 
Desargues (1591-1661) to use projection and section as a general method in 
geometry, and he thus founded modern projective geometry. He studied 
transformation and invariance for the purpose of deriving properties of the 
conics from those already proved for the circle. 

The most influential natural philosopher and mathematician in the first 
half of the 17th century was Rent Descartes (1596-1650). Here we shall only 
mention some mathematical results contained in his La GPomttrie (1637). 
Descartes continued Vieta’s attempts to introduce better symbolism. For 
example, he introduced the rule of using the first letters of the alphabet for 
constants and coefficients and the last for variables and unknowns. He also 
continued Cardano’s and Vieta’s algebraic works. He asserted that the 
number of roots in a polynomial equation f ’ (x )  = 0 equals the degree of f ( x )  
and, furthermore, that f ( x )  is divisible by x - a  if and only if f ( a )  = 0. He 
considered algebra to be an extension of logic and independent of geometry 
and used algebra to solve geometrical construction problems. He founded 
what today is called analytic or coordinate geometry by introducing (oblique) 
coordinate axes and defining a curve as any locus given by an algebraic 
equation. In particular, he studied the conics and the correspondence between 
their algebraic and geometrical expressions. He also began the study of curves 
of higher degrees. The important problem of finding the tangent of a curve 
was solved by a combination of geometrical and algebraic reasoning. 

About the same time, and independently, Fermat solved nearly the same 
problems in analytical geometry, but since his works were not published 
(they only circulated in manuscript), he did not have the same influence as 
Descartes. 

Frans van Schooten ( I  61 5-- 1660), professor of mathematics in Leiden, 
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translated La GPomktvie into Latin, which was still the international scientific 
language. He also added his own commentary and taught Cartesian geometry 
to his students. Because his translation was much in demand, he published 
a much enlarged second edition, which besides his own commentaries 
contained essential contributions by his students Huygens, de Witt, and 
Hudde, whom we shall meet later in their capacities as probabilists. 

The early history of combinatorics is rather obscure (see Biggs, 1979). 
From numerical examples given by the Indian mathematician Bhaskara 
about 1150, it seems that he knew the general formulae for the number of 
permutations of n objects and the number of combinations of r among n 
objects. From the Hindus this knowledge spread to the Europeans through 
the Arabs. 

The binomial expansion and the corresponding arithmetical triangle of 
coefficients originated also among Hindu and Arab mathematicians. The 
arithmetical triangle and its construction are explained by the Arab 
mathematician al-Tusi in 1265 but is not found in European works before 
the 16th century. 

The relationship between the combinatorial formula and the binomial 
coefficient was recognized by Marin Mersenne ( I  588- 1648) in 1636. Finally, 
a unified theory of the combinatorial numbers, the figurate numbers, and 
the binomial coefficients was developed by Pascal in 1654 and published in 
1665. 

The previous remark that the early history of combinatorics is rather 
obscure is no longer true after the publication of Pascal's Arithmetical 
Triangle by Edwards (1987). Here the history of the arithmetical triangle is 
traced back to Pythagorean arithmetic, Hindu combinatorics, Arabic 
algebra, and Chinese and Persian mathematics, and a meticulous study of 
the development in Europe is given, comprising contributions by Tartaglia, 
Cardano, Stifel, Mersenne, and Pascal and ending with the use of the binomial 
coefiicients in the works of Wallis, Newton, Leibniz, and Bernoulli. We shall 
return to this book in $94.3 and 5.2. 

The above sketch of the history of mathematics before 1650 is essentially 
based on the book by Kline (l972), where details and references may be found. 

2.3 ON NATURAL PHILOSOPHY BEFORE 1650 

The 12th century saw the rise ofthe European university with its four faculties: 
theology, law, medicine, and the arts. The curriculum of the arts embraced 
grammar, logic, rhetoric, arithmetic, music, geometry, and astronomy. Most 
teachers and scholars had a clerical education, and Latin, the official language 
of the Church, became the universal scholarly language. University teaching 
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and research were dominated by Christian theology and the heritage of the 
Greeks. The classical Greek works were read in Latin translation, often 
obtained by translating Arab editions. The most important works were by 
Aristotle in philosophy, ethics, and logic; Euclid in geometry; Ptolemy in 
astronomy; and Galen in medicine. 

In the 12th and 13th centuries many philosophers wrote commentaries 
on the Scriptures and the Greek classics for the purpose of developing a 
general philosophy uniting these two lines of thought. The attempts to 
reconcile Aristotelian ideas with Christian theology resulted in a firmly 
established philosophy which has been called Scholasticism. Among the 
scholastic philosophers the most famous was Thomas Aquinas (1 225- 1274) 
whose system of thought was later authorized by the Catholic Church as 
the only right one. It became the dominant philosophy for about 400years. 

Aristotle’s scientific results were considered authoritative, but his 
inductive-deductive method by which these results had been obtained was 
pushed into the background. Scholasticism took over Aristotelian logic with 
its laws of reasoning (the doctrine of syllogism) and used it to create a system 
of theological explanations of both natural and supernatural phenomena. It 
also adopted Aristotle’s natural philosophy with its teleological explanations, 
its distinction of sublunary matter into four elements (earth, water, air, and 
fire), and its conception of an immutable universe of celestial bodies set into 
motion by God. The natural motion of terrestrial elements was supposed 
to be linear, whereas the motion of the heavenly bodies was circular. The 
immutability of the universe was in agreement with the Scriptures and with 
the deterministic outlook of Christian theology, which supposed that 
everything was created by the will of an all-powerful God. 

The exegetic and speculative nature of scholasticism led to opposition, 
particularly among English philosophers, who advocated the importance of 
observation, experimentation, and induction in natural philosophy as a 
supplement to the revelations in the Scriptures. The most prominent 
spokesman of this school was William of Ockham (1285-1349), who is most 
known today for the maxim called “Ockham’s Razor”: “Entities are not to 
be multiplied without necessity.” This philosophical principle of economy of 
the number of concepts used in the construction of a theory had great 
importance for the development of logic, mathematics, and natural 
philosophy. 

A long period of gradual progress in wealth and knowledge was disrupted 
by the Black Death in 1348. In just a few years about one-third of the 
population of Europe died of the plague. It took about 100 years for Europe 
to recover from this catastrophy, which was further aggravated by the 
Hundred Years’ War (1 338- 1453) between England and France. 

The second half of the 15th century was a period with many inventions 
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made by practical men, such as artisans, architects, shipbuilders, and 
engineers. A considerable metal-working and mining industry was developed. 
For example, rails were used to further transport in mines, and suction pumps 
were constructed for drainage. Many inventions of importance for shipping 
and warfare were made. Charts and instruments for navigation, such as the 
magnetic compass, the quadrant, and the astrolabe, were developed, and 
ocean-going sailing ships were built. The effectiveness of gunpowder in 
warfare was greatly improved by the construction of cannons and handguns. 
These inventions were the necessary conditions for the great voyages of 
exploration about 1500 and the following conquests overseas with their 
wide-ranging consequences for daily life in Europe. 

About 1450 printing by movable type was invented, and Gutenberg set 
up his printing press in Mainz. The printing of illustrations from engraved 
metal plates also became common. The new techniques spread rapidly all 
over Europe. The transition from handwritten to printed books was a 
technological advance with revolutionary effects not only in the world of 
learning but in religion, politics, art, and technology as well. The next 50 
years saw the printing of thousands of books both in Latin and the vernacular 
such that the knowledge hitherto accumulated in libraries for the few suddenly 
became available for the many, particularly for the laity. Printed books helped 
to spread the culture of the Renaissance and to further the Reformation. 

The extraordinary growth of trade and industry in the Italian city-states 
in the 15th century created a new class of merchants and bankers who used 
their great wealth to support not only artists but artisans and scientists as 
well for the purpose of furthering the development of useful methods for the 
new competitive capitalist economy. The intellectual outlook gradually 
changed from the authoritative scholastic philosophy to a more independent 
way of thinking based on observations and experiments. 

Freedom of thought also spread to religious matters through the 
Reformation in the first half of the 16th century. Protestantism in its various 
forms (Lutherans, Calvinists, Huguenots, Puritans, Presbyterians) spread all 
over Europe (except for Italy and Spain, which remained Catholic). The 
bible was translated from Greek into the national languages, commentaries 
were issued, and the laity were encouraged to read and interpret the Scriptures 
themselves. The struggle between Protestantism and Catholicism, mixed with 
strong economical and political interests, led in many countries to civil war, 
with increased intolerance and orthodoxy on both sides. 

Among the measures taken by the Catholic Church to identify and 
suppress its opponents were the establishment of the Holy Office, the 
Inquisition in Rome in 1542, and the Index librorurn prohibitorurn (Index of 
prohibited books) in 1559. This list came to comprise the famous books by 
Copernicus, Galileo, Kepler, and Descartes. In due course, when the 
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Lutheran, Calvinian, and Anglican Churches acquired secular power, they 
also forced their dogmas on society, in particular on schools and universities. 
Protestantism, however, did not develop an all-embracing philosophy 
covering not only religious and moral but also scientific matters, and the 
conflict between the Reformed Churches and the ongoing scientific revolution 
therefore became less severe. 

The works of Pythagoras and Plato were studied with renewed interest 
during the Renaissance, and their idea of a rational and harmonious universe 
describable in mathematical terms was taken over. The Church accepted the 
idea that an omniscient God has created the universe according to simple 
mathematical laws, originally unknown to man. I t  therefore became a 
praiseworthy enterprise to study and disclose these laws to obtain a better 
understanding of God and his “original design.” 

The Catholic Church, however, considered the laws of nature found by 
the scientists as hypotheses or practical computational devices, which were 
accepted as true explanations of nature only if  they did not contradict the 
dogmas of the Church. This attitude gave rise to endless conflicts between 
scientists and the dogmatists of the Church, which seriously restricted the 
lives and modes of expression of such men as Copernicus, Cardano, Galileo, 
Kepler, and Descartes. 

The scientific revolution in the 16th and 17th centuries, which forms the 
foundation of modern mathematics and science, may summarily be 
considered to begin with the publication of Nicholas Copernicus’ De 
Reuolutionibus Orhiirm Coelestium (On the Revolutions of the Celestial 
Spheres) in 1543 and reaching its culmination by Isaac Newton’s Philosophiae 
Naturulis Principia Matheinatica (The Mathematical Principles of Natural 
Philosophy) in 1687. 

Among astronomers, Copernicus’ book was received as a great work in 
mathematical astronomy comparable only to Ptolemy’s Ahayest ,  which had 
been the basis for all astronomy since about A.D. 150. However, Copernicus’ 
heliocentric model gave no better predictions of phenomena than did 
Ptolemy’s geocentric model, and Copernicus did not provide any empirical 
evidence for his hypotheses. The strength of the Copernican model was its 
simple and harmonious explanations of planetary motions and the natural 
ordering of the earth and the planets in relation to the sun. A few astronomers 
accepted the Copernican ideas and published books with improved versions 
of Copernicus’ mathematics and tables, but general acceptance had to wait 
until  the beginning of the 17th century. 

Beyond the small circle of astronomers, Copernicus’ main ideas of the 
diurnal rotation of the earth and the earth’s yearly revolution around the 
sun just as another planet were generally rejected and ridiculed as being at  
variance with experience and with the Scriptures. Luther, Melanchthon, and 
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Calvin immediately rejected these ideas, and somewhat later the Catholic 
Church realized that the Copernican ideas might be destructive to the 
authority of the Church, and De Revolutionibus was therefore put on the 
Index in 1616. 

To decide between the two competing systems, more accurate observations 
were necessary. These were provided by Tycho Brahe (1546-1601) who 
redetermined the positions of the planets and the stars with considerably 
greater accuracy than before by regular observations throughout 25 years 
in the last part of the 16th century. 

Building upon the Copernican model and Tycho Brahe’s observations, 
and guided by his physical ideas on the functioning of the planetary system, 
Kepler derived his three fundamental laws for the motion of the planets. He 
published his results in Astronomia Nova (The New Astronomy) in 1609. The 
greater simplicity and accuracy of Kepler’s model soon became generally 
accepted. The final step in this development was Newton’s derivation of 
Kepler’s laws (and many other results) from the law of gravitation in 1687. 

The most spectacular part of the scientific revolution is the developments 
in astronomy; however, it should not be forgotten that great progress was 
also made in physics, technology, and medicine. 

The technological knowledge that had accumulated over many centuries 
now became exposited in books so that it became available not only to other 
artisans and engineers but also to scientists. Experiences in the mining 
industries in Germany were described by Agricola (Georg Bauer) in his De 
re Metallica (On Metallurgy) in 1556. In England books were published 
about techniques in agriculture, such as animal breeding, agricultural 
chemistry, rotation of crops, and land draining. To help navigators determine 
the longitude at sea, work on mechanical clocks was intensified. In the 
beginning of the 17th century, the telescope, the microscope, and the 
barometer were invented. 

The English philosopher and essayist Francis Bacon (1 561-1626) became 
known for his attacks on scholastic philosophy and on Aristotle, in particular 
in his Nouum Organum (The New Instrument [of Thought]) from 1620. He 
stressed the necessity of systematic collection and classification of 
observations and experiments to get a broad basis for induction, and he 
warned against rash generalizations because observed correlations might be 
spurious. He advocated the use of the inductive-deductive method and 
pointed out that the validity of the deductive phase depends on a broad 
inductive base. His opinions were really not so much a criticism of Aristotle 
as of scholastic misapprehensions. He did not rate mathematics highly as a 
scientific tool, and his ideas became of more importance in the natural and 
social sciences than in physics. His ideas on the importance of tabulation 
and classification of facts as a basis for analysis influenced John Graunt and 
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William Petty in their works on vital statistics and political arithmetic. Bacon 
argued for the cooperation of science and technology, collaborative research, 
and the social utility of research, ideas which first became accepted in the 
latter part of the century. His opinions also influenced John Locke, the 
founder of empiricism in the theory of knowledge. 

In 1600 William Gilbert (1544-1603) published his important book De 
Magnete, which contains his experiments and theories on magnetism. He 
described the attraction of magnets, explained the behavior of the magnetic 
compass, and generalized from the properties of small spherical magnets to 
the magnetic field of the earth. From this work Kepler constructed his theory 
on magnetic forces governing the planetary system. 

The Aristotelian dogma on the immutability of the heavens was first 
effectively challenged by Tycho Brahe’s observation of a new star in 1572 
and his publication and discussion of his observations the following year. 
The brilliancy of the star gradually diminished until i t  finally disappeared 
18 months after its first appearance. Tycho found that no parallax could be 
observed and that the position of the star was fixed in relation to neighboring 
stars in Cassiopeia and therefore concluded that the star belonged to the 
sphere of fixed stars. This conclusion was impugned by other astronomers 
who believed in the traditional explanation that comets and new stars were 
atmospheric phenomena and thus belonged to the sublunary changeable 
sphere. 

Information on the construction of a telescope in the Netherlands in 1608 
led Galileo Galilei (1564-1642) in 1609 to construct his own telescope with 
a thirtyfold magnifying power. He used his new instrument for astronomical 
observations and obtained a number of spectacular results which he published 
in 1610. Among his discoveries were that the moon was not a perfect sphere 
but a body similar to the earth with valleys and rather high mountains, that 
the Milky Way consisted of many faint stars, that many more stars existed 
than observable with the naked eye, and that Jupiter had four satellites 
revolving around Jupiter just as the moon revolved around the earth. In the 
next few years he also discovered the phases of Venus and the occurrence 
of sunspots. His telescopic observations thus supplemented traditional 
positional astronomy with information on the physical properties of the 
planets and the sun. These observations naturally shocked adherents of the 
Aristotelian and Ptolemaic doctrines, and Galileo used them as support for 
the Copernican system. Later he also tried to explain the tides in terms of 
motions of the earth. 

In 1616 the Inquisition decided against the heliocentric system and placed 
De Revolutionibus on the Index. When Galileo in 1632 published Dialogo 
sopra i due massimi sistemi del mondo (Dialogue on the Two Chief World 
Systems), in which he discussed the Ptolemaic and the Copernican systems 
without really concealing his arguments and sympathy for the latter, he was 
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called before the inquisition in 1633 and forced to recant his opinions. The 
Dialog0 was put on the Index, and Galileo was sentenced to lifelong house 
arrest under surveillance. 

Galileo was of a polemic nature and constantly at war with contemporary 
Aristotelian philosophers. He wrote all his books in Italian for the educated 
layman. He was not given to philosophical speculations but worked mainly 
on the solution of specific engineering and physical problems. He made a 
new delimitation of physical sciences by distinguishing between objective 
qualities of matter, such as shape, size, weight, position, and motion, and 
subjective qualities, such as color, taste, and smell. He restricted physics to 
the description of objective qualities of bodies and relations between them. 

Galileo’s use of physical astronomy as support for Copernicanism was, 
however, not his only great achievement. He realized that the Aristotelian 
laws of motion were at variance with the motions of the earth and that a 
new theory of motion had to be constructed. His greatest achievement was 
to establish a new method of scientific inquiry based on the method of 
abstraction. He realized that “natural laws” are valid only in an abstract 
world, and he thus laid the foundation for the axiomatization and 
mathematization of physics. Based on “extrapolation” of observations and 
experiments, he considered such abstract experiments as the motion of a 
perfect ball rolling on a frictionless horizontal plane, the free fall of a body 
in a vacuum, and the trajectory of a projectile moving without air resistance 
under influence of both horizontal and vertical forces. The three examples 
mentioned led him to a form of the law of inertia, to the theory of uniform 
acceleration for freely falling bodies, and to the parabolic form of the 
trajectory of a projectile. He also studied the motion of the pendulum and 
found the isochronism and the relation of period to length of the pendulum. 
He stressed the fundamental principle for application of the axiomatic method 
in science: that the validity of axioms has to be tested by comparing results 
of actual experiments with results deduced from the axioms. In 1636 he 
completed his manuscript of Discorsi e dimostrazioni mathematiche intorno a 
due nuoue scienze (Discourses and Mathematical Demonstrations Concerning 
Two New Sciences), which was published in the Netherlands in 1638. This 
book contains his discussion on the strength of materials and the results of 
his researches for more than 30 years on kinematics. 

Rent Descartes received his basic education at a Jesuit college in France 
and subsequently took a degree in law. He then spent more than ten years 
studying, soldiering, and traveling all over Europe before he settled in the 
Netherlands from 1628 to 1649 to write his great works on mathematics, 
physics, physiology, and philosophy. He died in Stockholm as philosopher 
at the court of Queen Christina. 

Descartes set himself the ambitious task of constructing a new 
all-embracing natural philosophy based on the rich development of the 
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natural sciences in the 16th century and the beginning of his own century. 
His purpose was to replace scholasticism with a mechanistic philosophy, to 
minimize the influence of God on cosmology and the natural sciences, and 
to leave the interpretation of the Scriptures to theologians. 

Descartes was a great mathematician, his greatest invention being 
analytical geometry. He took the methods of mathematics as a model for 
his work in other fields, beginning with simple and evident ideas, clearly and 
distinctly true, like the axioms of geometry. He perceived God to be a perfect 
being who had created the universe consisting of matter in motion once and 
for all. He had a dual conception of man consisting of both matter and mind, 
these “substances” being independent of each other. Even though he himself 
carried out a great many experiments, his philosophy was essentially 
deductive and resulted in a purely mechanistic (kinematic) view of nature, 
including the human body. 

Fundamental to his theory of matter and motion was the idea that the 
universe was filled with matter in the form of particles of three kinds: ( 1 )  fine, 
irregular particles able to fill out all space between other particles; (2) larger, 
globular particles able to move smoothly; and (3) coarser, irregular, and 
heavier particles. This composition of matter gave him sufficient freedom to 
construct models of many physical and physiological phenomena. Motion of 
one body (a collection of particles) resulted in the simultaneous motion of 
other bodies to avoid a vacuum. Motion was thus caused by collision or 
pressure. He postulated that God had created innumerable vortices of matter 
(particles in whirlpool motion) so that each of the heavenly bodies was at 
rest each in its own vortex. By means of this (peculiar) construction he kept 
the earth at rest and at the same time revolving around the sun by letting 
the vortex of the earth revolve around the vortex of the sun. From the idea 
that the amount of matter and motion was given once and for all, he derived 
the law of inertia and the law on the conservation of “quantity of motion,” 
the latter concept being defined as magnitude (size) times speed. 

Descartes also made essential contributions to optics (the law of refraction) 
and to physiology by elaborating on Harvey’s model of the heart. 

His main works are Discours de la mtthode from 1637 and Principia 
Philasophiue from 1644. 

Descartes’ mechanistic philosophy unavoidably brought him into conflict 
with the Catholic Church, and he therefore left France and lived in the more 
tolerant Calvinistic Holland. However, here also he was severely attacked 
by the Church. After his death his books were put on the Index. 

Weaknesses in Descartes’ philosophy and discrepancies between some of 
his specific results and those of Kepler, Galileo, and Harvey, say, had been 
pointed out in Descartes’ own lifetime. Nevertheless, his general ideas were 
accepted, dominating for more than ii century, even after Newton’s criticism 
of Descartes’ cosmology. I t  should be remembered that the only alternative 
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universal philosophy was scholasticism with its dependence on Aristotelian 
concepts and theological arguments. Descartes’ Principia thus became very 
popular also outside scientific circles. This was due to his excellent style, his 
rational thinking with emphasis on clear ideas, his easily understandable 
mechanistic view of causation, and the coherence and universality of his 
philosophy. His work led to the discarding of many obsolete ideas from 
previous times. He greatly influenced Pascal, Huygens, and Newton. 

Whatever religion they adhered to, the men who created the scientific 
revolution shared the belief in the Pythagorean idea that God had designed 
an orderly and rational world in accordance with simple numerical 
(mathematical) principles. Kepler, for example, called the book in which he 
derived his third law the Harmony of the World. The Pythagorean 
commitment prevailed also in the 18th century and influenced the basic 
outlook of statisticians and probabilists. 

A typical example from statistics is to be found in the paper by John 
Arbuthnott (1712) with the following opening sentences: 

Among innumerable Footsteps of Divine Providence to be found in the Works 
of Nature, there is a very remarkable one to be observed in the exact Ballance 
that is maintained, between the Numbers of Men and Women; for by this means 
it is provided, that the Species may never fail, nor perish, since every Male may 
have its Female, and of a proportionable Age. This Equality of Males and Females 
is not the Effect of Chance but Divine Providence, working for a good End. 

Another example, taken from the Doctrine of Chances (1756, p. 252) by the 
probabilist Abraham de Moivre, runs as follows: 

Again, as it is thus demonstrable that there are, in the constitution of things, 
certain Laws according to which Events happen, it is no less evident from 
Observation, that those Laws serve to wise, useful and beneficient purposes; to 
preserve the steadfast Order of the Universe, to propagate the several Species of 
Beings, and furnish to the sentient Kind such degrees of happiness as are suited 
to their State. But such Laws, as well as the original Design and Purpose of their 
Establishment, must all be from without; the Inertia of matter, and the nature of 
all created Beings, rendering it impossible that any thing should modify its own 
essence, or give to itself, or to anything else, an original determination or 
propensity. And hence, if we blind not ourselves with metaphysical dust, we shall 
be led, by a short and obvious way, to the acknowledgement of the great MAKER 
and GOVERNOUR of all; Himself all-wise, all-powerful and good. 

The above sketch of the history of natural philosophy before 1650 is 
greatly influenced by Hall (1983), who has given a description and analysis 
of the scientific revolution in all its complexity. 



C H A P T E R  3 

Early Concepts of Probability 
and Chance 

3.1 TWO CONCEPTS OF PROBABILITY 

The concept of probability is an ambiguous one. I t  has gradually changed 
content, and at present it  has many meanings, in particular in the 
philosophical literature. For our purpose it is suficient to distinguish between 
two kinds of probability, each characterized by one of several adjectives, 
depending on the context. 

Objective, statistical, or aleatory probabilities are used for describing 
properties of random mechanisms or experiments, such as games of chance, 
and for describing chance events in populations, such as the chance of a 
male birth or the chance of dying at a certain age. Such probabilities are 
derived from symmetry considerations or estimated from relative frequencies. 
Based on an idealized game ofchance with a finite number ofequally possible 
outcomes the classical probability or chance of a compound event is defined 
as the ratio of the number of favorable outcomes to the total number of 
outcomes. 

Subjective, personal, or epistemic probabilities are used for measuring the 
degree of belief in a proposition warranted by evidence which need not be 
of a statistical nature. Such probabilities refer to our imperfect knowledge 
and thus only indirectly to the things or events about which a statement is 
made. Some philosophers consider epistemic probability, which they call 
logical probability as a measure of the strength of a logical relation 
between two propositions, i.e., a weaker relation than that of logical con- 
sequence. 

A clear distinction between the two kinds of probability is due to James 
Bernoulli (1713) (see 515.7). Most of the present book is concerned with 
objective probability, also called chance in the older literature. The title of 
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de Moivre’s textbook on probability theory is the Doctrine o j  Chances: or, 
A Method of Calculating the Probability of Events in Play (1 71 8). 

Before the Renaissance, probability was nonmathematical. It was not until 
the beginning of the 16th century that Italian mathematicians began to 
discuss the odds of various outcomes of games of chance based on the 
fundamental idea that the possible outcomes of a single game are equally 
likely. This elementary calculus of chances was assumed to be part of 
arithmetic and algebra, and it is discussed in Chapter 4. 

In the present chapter we shall consider the development of concepts of 
probability before the mid-17th century. The two concepts defined above 
will serve as frame of reference. In recent years many papers have been 
written on this topic; however, opinions differ greatly about the interpretation 
of the classical texts, so we can do no better than give a brief survey of the 
most important papers, where references to the original sources may be found. 

3.2 PROBABILITY IN ANTIQUITY AND 
THE MIDDLE AGES 

Rudimentary concepts of probability, chance, and randomness occur since 
ancient times in connection with sortilege, fortune-telling, games of chance, 
philosophy, law, insurance, sampling inspection, and errors of prediction in 
the various sciences, for example, astronomy and medicine. 

In view of the achievements of the Greeks in mathematics and science, it 
is surprising that they did not use the symmetry of games of chance or the 
stability of relative frequencies to create an axiomatic theory of probability 
analogous to their geometry. However, the symmetry and stability which is 
obvious to us may not have been noticed in ancient times because of the 
imperfections of the randomizers used. David (1955, 1962) has pointed out 
that instead of regular dice, astragali (heel bones of hooved animals) were 
normally used, and Samburski (1956) remarks that in a popular game with 
four astragali, a certain throw was valued higher than all the others despite 
the fact that other outcomes have smaller probabilities, which indicates that 
the Greeks had not noticed the magnitudes of the corresponding relative 
frequencies. 

Hasover (1967) and Rabinovitch (1969; 1970a; 1973) have given examples 
of the uses of random mechanisms mentioned in Talmudic and rabbinic 
literature. Drawing of lots were used in religious ceremonies, for allocation 
of daily duties among priests in the temple, and for various legal purposes. 

As suggested by David, the use of astragali and the drawing of lots in 
divination may have prevented a scientific study of the outcomes of games 
of chance for religious reasons. Kendall (1956) points to other reasons too, 
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among them the absence of a notion of chance events, and concludes that 
“it is in the basic attitude towards the phenomenal world” that the lack of 
a probability theory should be sought. A similar conclusion is reached by 
Sambursky who holds that the philosophy of Plato and Aristotle limited the 
outlook of Greek scientists so that they looked for regularity only in 
mathematics and the heavens. 

This point of view leads to a study of the philosophical works of Aristotle. 
According to van Brake1 (1976) and Schneider (1980), Aristotle classified 
events into three types: ( I )  certain events that happen necessarily; (2) probable 
events that happen in most cases; and ( 3 )  unpredictable or unknowableevents 
that happen by pure chance. Furthermore, he considered the outcomes of 
games of chance to belong to the third category and therefore not accessible 
to scientific investigation, and he did not apply the term probability to games 
of chance. Aristotle’s concept of probability is epistemic and nonquantitative. 
His probable events are events that, on the given evidence, happen with a 
high degree of probability. 

Aristotle’s classification of events was adopted by Roman philosophers. 
Scholastic philosophers, however, had to reconcile Aristotle’s philosophy 
with the deterministic philosophy of the Church. Events unpredictable or 
unknowable to man were considered to be predetermined by God. In that 
way chance events in a deterministic world may be characterized by subjective 
probabilities describing the state of information of the individual. 

In discussing probability, Thomas Aquinas distinguishes among science 
or certain knowledge, opinion or probable knowledge, and the accidental or 
chance. Byrne (1968) has given a detailed discussion of the concept of 
probability in the writings of Aquinas. He holds that probability for Aquinas 
is a qualificative of an opinion or a proposition and thus a precursor of 
logical probability. However, Byrne also states that Aquinas measures the 
contingent in terms of the necessary by giving a weight to the contingent, in 
that way introducing a rudimentary frequency interpretation of the probable. 
One of Byrne‘s conclusions is the following: “There is a similarity (A) between 
Thomas’s theory of probability and the contemporary logical theory of 
probability and (€3) between Thomas’s theory of contingency and the 
contemporary frequency theory of probability.” Byrne emphasizes the 
continuity of the development of the concept of probability from the Middle 
Ages to modern times. 

3.3 PROBABILITY FROM THE RENAISSANCE 
TO THE MID-17TH CENTURY 

During the Renaissance, probability was still a nonnumerical epistemological 
concept, whereas chance was expressed as a ratio, and a calculus of chances 
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became part of algebra. However, from the beginning of the 18th century 
the terms probability and chance have been used synonymously, which means 
that probability had become numerical. Hacking (1975) is concerned with 
the problem of how and when this transformation took place. 

Hacking’s seminal book The Emergence of Probability (1975) is the first 
comprehensive and coherent exposition of the development of the modern 
dual concept of probability. The subtitle of the book is A Philosophical 
Study of Early Ideas about Probability, Induction and Statistical Inference. 
It is not a study of the history of probability and statistics; even if Hacking 
also gives a fascinating account of the breakthrough of these subjects in their 
many manifestations around 1660, it is as stated, a philosophical study of 
ideas and is therefore difficult to follow and evaluate for a statistician. 

Hacking bases his explanation on an investigation of three concepts: 
opinion, evidence, and signs. It is important to distinguish between two forms 
of evidence: the evidence of testimony, called external evidence, and the 
evidence of things, called internal evidence, a distinction formulated explicitly 
in Arnauld and Nicole’s La loyique, ou !’art de penser ( 1  662). 

Hacking holds that in the Renaissance a probable opinion was one “which 
was approved by authority, or by the testimony of respected judges,” and that 
until the end of the Renaissance there was no concept of inductive (internal) 
evidence. This is a narrower definition ofa probable opinion than that current 
in Aristotelian and scholastic philosophy, which also recognized the existence 
of internal evidence and its ability to confer probability on opinions. 

Hacking argues that a chief concept of the low sciences, such as alchemy 
and medicine, was that of a sign, which came to be Considered as the testimony 
of nature. On the one hand, a sign considered as testimony made an opinion 
probable; on the other, the predictive value of a sign could be measured by 
the frequency with which the prediction holds. “This transformation from 
sign into evidence is the key to the emergence of a concept of probability 
that is dual.” However, many authors challenge this postulate and hold that 
both interpretations of signs have existed since ancient times. 

The first examples of numerical probabiiities are given by Arnauld and 
Nicole (1662). From then on the calculus of chances was applied also to 
probability. The doctrine of chances developed into a theory of probability 
with applications in many different fields but without much concern about 
the interpretation of the probability in question, the only exception being 
James Bernoulli. 

Hacking’s explanation of the emergence of the modern concept of 
probability has led to a great deal of discussion and a critical examination 
of his basic concepts. As indicated above most critics argue for the 
simultaneous existence of probability and chance in rudimentary forms from 
ancient times and for a gradual development to the modern form. This point 
of view, based on philosophical, theological, and linguistic arguments, has 
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been advanced by Shafer (1976, 1978), Schneider (1976, 1980), Garber and 
Zabell (1979), and Bellhouse (1988). For example, Garber and Zabell write 

Cicero, QuinClian, John of Salisbury, Nicole Oresme, writers of diverse 
backgrounds writing in different centuries, all but Oresme well before the 
Renaissance. Yeit the concepts of probability they use bear striking resemblances 
to the modern concept of probability, the concept that Hacking claims originated 
only in the 17th century. In each case, there is a connection between probability 
and rational belief on the one hand, and probability, for-the-most part truth, and 
frequency of occurrence on the other. And while probability is not yet fully 
mathematical, it has degrees, in Oresme closely identified with relative frequencies. 

Hacking (1980) defends himself by writing that “what is important is not 
the occurrence of a few probability ideas in antique texts but a use for them, 
a use that spans morals, politics, economics and social affairs, and which 
engenders a new era of conjecturing on the one hand and a new mode of 
representing reality on the other.” He adds that the transformation which 
took place about 1660 amounts to a new way of thinking-the emergence 
of a new (statistical) style in reasoning. 

Turning from philosophy to law we note that different types of testimony 
and evidence have often been weighted relative to full proof and that the 
court’s verdict depended on an “accumulation” of such weighting. 

Coumet ( I  970), Daston ( 1  980), and Schneider (1  980b) have also discussed 
the theological and legal aspects of risk-tasking for the development of the 
concept of expectation in probability theory. The Church condemned 
gambling and usury as morally wrong, but it was impossible to disregard 
the existence of risks in commercial life, analogous to gambling risks, and 
these risks had to be accepted as legal. Hence, a new class of contracts, called 
aleatory contracts, came into existence embracing marine insurance, life 
contingencies, inheritance expectations, lotteries, and risky investments in 
business. The basis of such contracts became the specification of conditions 
for the equity of the parties involved, which required assessment of risks 
combined with the possible gains and losses. An aleatory contract thus 
corresponded to a fair game, that is, a game in which the participants have 
equal expectations. 

A survey of the occurrence of probability concepts in scientific literature 
from Aristotle to Bernoulli, with many quotations from original works, has 
been given by Sheynin (1974). 



C H A P T E R  4 

Cardano and Liber de 
Ludo Aleae, c. 1565 

The most fundamental principle of all in gambling is simply 
equal conditions, e.g. of opponents, of bystanders, of money, 
of situation, o f t h e  dice box, and of the die itself: To the extent 
to which you depart j rom that equality, if i t  is in your 
opponentsfavour, you are a fool, and f i n  your own. YOU are unjust. 

-CARDANO. C. 1565. 

4.1 ON GAMES OF CHANCE 

There is no evidence of a calculus of chances in the Middle Ages. Some early 
instances of analyses of plays with three dice have been reported by Kendall 
(1956). About 960, Bishop Wibold of Cambrai correctly enumerated the 56 
different outcomes (without permutations) of playing with three dice. The 
216 ways in which three dice can fall, ordered according to the number of 
points scored, were listed in a Latin poem, De Vetula, with a section on 
sports and games, presumably from the 13th century. 

In the 14th century dice games, which had been popular since antiquity, 
were supplemented by card games. According to Kendall(1957), no reference 
to playing cards has been found in Europe before 1350. Whether the Italian 
playing cards were invented independently of playing cards from the East is 
unknown. By the 14th century, paper making and block printing, the technical 
background for the manufacture of playing cards, had been established in 
Europe. In the beginning, cards were rather expensive and mostly used by 
wealthy people playing for high stakes. The Church preached against card 
playing, and in some states card playing was forbidden. The use of cards 

33 



34 C A R D A N O  AND LIBER D E  L U D O  ALEAE, C. 1565 

therefore spread slowly, and i t  was several hundred years before card games 
became more popular than dicing. 

Lotteries had been used by the Roman emperors. In the Middle Ages and 
the Renaissance, lotteries became important as a means of financing 
Government expenditures. Private lotteries also flourished, but because of 
unreasonable conditions they were suppressed or declared illegal, although 
private lotteries were later authorized to assist charities and the fine arts. In 
his Treatise of Tuxes and Contributions (l662), the English economist William 
Petty writes this about lotteries: 

Now in the way of Lottery men do also tax themselves in the general, though out 
of hope of Advantage in particular: A Lottery therefore is properly a Tax upon 
unfortunate self-conceited fools; . . . Now because the world abounds with this 
kinde of fools, it is not fit that every man that will, may cheat every man that 
would be cheated; but i t  is rather ordained, that the Sovereign should have the 
Guardianship of these fools, or that some Favourite should beg the Sovereigns 
right of taking advantage of such mens folly, even as in the case of Lunaticks 
and Idiots.. . . This way of Lottery is used but for some Leavies, and rather upon 
privato-publick accompts, (then for maintaining Armies or Equipping Fleets), such 
as are Aque-Ducts, Bridges and perhaps Highways, etc. 

Such realistic evaluations did not, however, restrain people from participating 
in lotteries then or in later times. 

In view of the recreational and economic importance of gaming, it is no 
wonder that mathematicians sought to analyze games of chance to determine 
the odds of winning and thus the stakes in a fair game. The development 
sketched above is reflected in the mathematical literature on games of chance. 
The 16th and 17th century works are mainly occupied with problems of 
dicing, ball games, table games, and lotteries, whereas problems of card games 
abound in the beginning of the 18th century. 

The terminology employed was naturally closely dependent on the 
problem studied. The fundamental concepts were the number of chances, from 
which the odds were derived; and, taking the stakes or the prizes into account, 
the oalue or expectation of a throw or  a drawing, from which the fairness of 
a game could be judged. The term “probability” was not used regularly in 
the context of games of chance before the beginning of the 18th century, but 
it is of course easy today to interpret the writings in terms of probability. 
The arguments used were purely mathematical, without any recourse to 
observations of relative frequencies. 

From about 1500 leading Italian mathematicians tried to solve the division 
problem, that is, the problem of an equitable division of the stakes in a 
prematurely stopped game. Since combinatorial theory did not exist at the 
time, the problem presented a real challenge, and they did not succeed. 
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Cardano took up the study of a theory of gambling and derived some 
elementary results about 1565. The division problem was first solved by 
Pascal and Fermat in 1654, and the birth of probability theory is usually 
associated with that date. 

4.2 
OF POINTS 

EARLY ATTEMPTS TO SOLVE THE PROBLEM 

Two players, A and B, agree to play a series of fair games until  one of them 
has won a specified number of games, s, say. For some accidental reason, 
the play is stopped when A has won s1 and B s2 games, s1 and s2 being 
smaller than s. How should the stakes be divided? 

This is the formulation of the division problem in abstract form. The 
problem is also known as the problem of points because we may give the 
winner of each game a certain number of points and count the number of 
points instead of the number of games. 

The division problem is presumably very old. It is first found in print by 
Pacioli (1494) for s = 6, sl = 5, and s2 = 2. Pacioli considers i t  as a problem 
in proportion and proposes to divide the stakes as sl to s2.  

The duration of the play originally agreed upon is at least s games and 
at most 2(s - 1) + 1 = 2s - 1 games. Without any reason, Pacioli introduces 
the maximum number of games and argues that the division should be as 
s,/(2s- 1) to s,/(2s- I ) ,  or as mentioned above as s1 to s2. There is no 
probability theory or combinatorics involved in Pacioli’s reasoning. 

The next attempt to solve the problem is by Cardano (1539). He shows 
by example that Pacioli’s proposal is ridiculous and proceeds to give a deeper 
analysis of the problem. We shall return to this after a discussion of some 
other, more primitive, proposals. 

Tartaglia (1556) criticizes Pacioli and is sceptical of the possibility of 
finding a mathematical solution. He thinks that the problem is a juridical 
one. Nevertheless, he proposes that if sl is larger than s2, A should have his 
own stake plus the fraction (sl - s2)/s of B’s stake. Assuming that the stakes 
are equal, the division will be as s + s1 - s2 to s - sl  + s2.  

Forestani (1603) formulates the following rule: First A and B should each 
get a portion of the total stake determined by the number of games they 
have won in relation to the maximum duration of the play, i.e., the proportions 
s1/(2s- I )  and s2/(2s- I), as also proposed by Pacioli. But then Forestani 
adds that the remainder should be divided equally between them, because 
Fortune in the next play may reverse the results. Hence the division will be 
as 2s - 1 + s1 - s2 to 2s - 1 - s1 + s2.  Comparison with Tartaglia’s rule will 
show that s has been replaced by 2s - 1. 
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Cardano (1539) is the first to realize that the division rule should not 
depend on (s,s1,s2) but only on the number of games each player lacks in 
winning, a = s - s1 and b = s - s2, say. He introduces a new play where A, 
starting from scratch, is the winner ifhe wins a games before B wins b games, 
and he asks what the stakes should be for the play to be fair. He then takes 
for a fair division rule in the stopped play the ratio of the stakes in this new 
play and concludes that the division should be as b(b + 1) to a(a + I ) .  

His reasons for this result are rather obscure. Considering an example 
for a = 1 and b = 3. he writes 

He who shall win 3 games stakes 2 crowns; how much should the other stake. I 
say that he should stake 12 crowns for the following reasons. If he shall win only 
one game it would suflice that he stakes 2 crowns; and if he shall win 2 games he 
should stake three times as much because by winning two games he would win 
4 crowns but he has had the risk of losing the second game after having won the 
first and therefore he ought to have a threefold compensation. And if he shall win 
three games his compensation should be sixfold because the difficulty is doubled, 
hence he should stake 12 crowns. 

It will be seen that Cardano uses an inductive argument. Setting B’s stake 
equal to 1, A’s stake becomes successively equal to 1, 1 + 2 = 3 ,  and 
1 + 2 + 3 = 6. Cardano then concludes that in general A’s stake should be 
1 + 2 + ... + b = h(b + 1)/2. He does not discuss how to go from the special 
case (1 ,  b) to the general case (a, b), but presumably he has just used the 
symmetry between the players. 

There are of course traces of probability arguments in Cardano’s reasoning, 
but his arguments are unclear and do  not lead to the correct division rule. 

Without reference to Cardano, Peverone (1  558) published a translation in 
Italian of Cardano’s examples, and so Cardano’s division rule has sometimes 
been ascribed to Peverone (see Kendall, 1956 and David, 1962). 

The survey given above is based on the exposition by Cantor (Vol. 2, 
1900) and the comprehensive discussion by Coumet (1965), who gives more 
details and references (see also Schneider, 1985). 

4.3 CARDANO AND LlBER D E  LUDO ALEAE 

In view of the passion for gambling and the development of mathematics in 
Italy in the 16th century, i t  is not surprising that one of the prominent 
mathematicians, Girolamo Cardano, or  Jerome Cardan (1501-1576), took 
up the study of a theory of gambling. Cardano also had the special 
qualification that he was an inveterate gambler and was, furthermore, 
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possessed of an indomitable urge to transmit any knowledge he had to the 
public in writing. 

Cardano was an illegitimate son of a Milanese lawyer, who also lectured 
on mathematics. Cardano studied medicine in Padua and received his degree 
as Doctor of Medicine about 1526. He applied for admission to the College 
of Physicians in Milan but was refused, formally because of his illegitimate 
birth but presumably more because of his strange character. He had a sharp 
tongue and was known as an eccentric and a gambler. From 1526 he practiced 
as a country doctor, but returned to Milan in 1532 and was appointed 
lecturer in mathematics. In 1539 he published his first two mathematical 
books. His repeated requests for admission to the College of Physicians were 
without avail, so he fought back by publishing a book in 1536 entitled On 
the bad practices of medicine in common use. Finally, in 1539 he was elected 
a member of the College, and within a few years he became rector of the 
guild and the most prominent physician in Milan. His services were much 
in demand all over Europe. He also lectured on mathematics at the university 
in Pavia. He wrote many books on medicine, mathematics, astronomy, 
physics, games of chance, chess, death, the immortality of the soul, wisdom, 
and many other topics. In 1562 he moved to Bologna as professor of medicine. 
Accused of being a heretic in 1570, he was arrested, dismissed, and denied 
the rights to lecture publicly and to have his books printed. He continued 
to write and wrote his autobiography De Vita Propria Liber (The Book of 
My Life) before he died in Rome. 

In 1545 Cardano published a textbook on algebra which for the first time 
contained a method for finding the roots of a cubic equation. This result has 
become known as Cardano’s formula, even though he stated that the method 
was due to Scipione del Ferro around 1500 and, independently, to Niccolo 
Tartaglia in 1535. The publication gave rise to a heated dispute with Tartaglia 
who had disclosed his method to Cardano about 1539 for his promise to 
keep it secret. Cardano’s name has also been connected with several 
mechanical inventions, namely, Cardan’s suspension, the Cardan joint, the 
Cardan shaft. 

Several books have been written about Cardano. For a statistician, the 
most interesting is by Ore (1953) on which the short biography given above 
is based. 

Among Cardano’s many unpublished manuscripts was Liber de Ludo Aleae 
(The Book on Games of Chance), which was published for the first time in 
the ten-volume edition of his works in 1663. An English translation by 
S. H. Gould may be found in the book by Ore (1953); a reprint of the 
translation was published separately in 1961. It consists of 32 short chapters. 
From a remark in Chap. 20 it follows that Cardano was writing that chapter 
in 1564; it  is not known when the manuscript was completed. In Chap. 5 
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(Why I have dealt with gambling), he writes, “Even if gambling were altogether 
an evil, still, on account of the very large number of people who play, it 
would seem to be a natural evil. For that very reason it ought to be discussed 
by a medical doctor like one of the incurable diseases.” 

De Ludo Aleae is a treatise on the moral, practical, and theoretical aspects 
of gambling, written in colorful language and containing some anecdotes on 
Cardano’s own experiences. In his autobiography Cardano admits to “an 
immoderate devotion to table games and dice. During many years-for more 
than forty years at the chess boards and twenty-five years of gambling-I 
have played not off and on but, as I am ashamed to say, every day.” In De 
Ludo Aleae the experienced gambler gives practical advice to the reader, as 
indicated by the following chapter headings: On conditions of play; Who 
should play and when; The utility of play, and losses; The fundamental 
principle of gambling; The hanging dice box and dishonest dice; Conditions 
under which one should play; On frauds in games of this kind; On luck in 
play; On timidity in the throw; Do those who teach also play well; On the 
character of players. These chapters are very entertaining reading, in 
particular because the author feels obliged to recommend prudence and to 
preach morality at  the same time recounting some of his own adventures of 
a very different nature. 

Most of the theory in the book is given in the form of examples from 
which general principles are or may be inferred. In some cases Cardano 
arrives at the solution of a problem through trial and error, and the book 
contains both the false and the correct solutions. He also tackles some 
problems that he cannot solve and then tries to give approximate solutions. 
We shall only refer to the most important correct results and disregard the 
many unclear statements and confusing numerical examples regarding 
various games. A more detailed commentary has been given by Ore (1953). 

The main results about dicing are found in Chap. 9-15 and 31-32. He 
clearly states that the six sides of a die are equally likely, if the die is honest, 
and introduces chance as the ratio between the number of favorable cases 
and the number of equally possible cases. As a gambler, he naturally often 
uses odds instead of chance. In Chap. 14, he defines the concept of a fair 
games in the following terms: 

So there is one general rule, namely, that we should consider the whole circuit 
[the total number of equally possible cases], and the number of those casts which 
represents in how many ways the favorable result can occur, and compare that 
number to the remainder of the circuit, and according to that proportion should 
the mutual wagers be laid so that one may contend on equal terms. 

For pedagogical reasons, he introduces “dice” with three, four, and live 
equally likely sides. 
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The enumeration of the equally possible cases is carried out as follows. 
First the number of different types of outcomes are found, for example, for 
three dice he gives the number of triplets as 6, the number of doublets and 
one different face as 30, and the number of cases with all faces different as 
20. Next he finds the number of permutations for each type, in the present 
example 1, 3 and 6, and the final result is given as 6 x 1 + 30 x 3 + 20 x 6 = 
216. He carries out this analysis in detail for two and three ordinary dice 
and for four 4-sided dice. Based on these enumerations, he gives several 
examples of the chance of different types of outcomes. 

By addition of a number of equally possible cases, he derives the chance 
of compound events. First he tabulates the distribution of the sum of the 
points in games by two dice and three dice, respectively. Next he finds the 
chance of various combinations of points for two dice. Let I denote the 
occurrence of at least one ace, let 2 denote the occurrence of at least one ace 
or a deuce, and so on. Counting only disjoint cases, Cardano gives the result 
as shown in the following table: 

Favorable Cases for Combination of Points 

TWO DICE THREE DICE 

Cases for 1 point 1 1  
Additional for: 2 9 

3 7 
4 5 
5 3 
6 1 

91 
61 
37 
19 
7 
1 

Total: 36 216 

Besides application of the addition rule in connection with the 
enumerations mentioned above, Cardano’s most advanced result is the 
“multiplication rule” for finding the odds for and against the recurrence of 
an event every time in a given number of repetitions of a game. Let the 
number of equally possible cases in the game be t ,  and let r be the number 
of favorable cases, so that the odds are r / ( t  - r). By trial and error and by 
analyzing games with dice having three, four, five, and six faces, he obtains 
the important result that in n repetitions the odds will be r“/(t“ - r”). Setting 
p = r / t ,  the result becomes p”/(l - p”), which is the form used today. We shall 
encounter this problem and its solution many times in the further 
development of the calculus of chances. Cardano gives several examples of 
applications, the most complicated being the following. In a game with three 
dice there are 91 favorable cases of 216 equally possible cases for getting at 
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least one ace. The odds for this result turning up every time in three games 
are91 3/(2163 - 913) = 753,571/9,324, 125, which isa little less than 1 to 12. 

He also gives examples of the computation of the average number of 
points in various games with dice. 

Cardano writes several chapters on card games, in particular on Primero, 
the medieval version of poker. He demonstrates how to find the chance of 
certain simple outcomes by drawing cards from a deck. 

According to Edwards (1987), several current textbooks on mathematics 
in the 16th century contain discussions of the arithmetical triangle and the 
figurate numbers. Tartaglia ( 1  556) gives the binomial coefficients up to n = 12 
obtained by means of the addition rule and arranged in an arithmetical 
triangle. Without proof he also gives a rule for finding the number of ways 
n dice can fall exhibited as a table of figurate numbers, i.e., as the repeated 
sums of ( I ,  1 ,  I , .  . . , l ) ,  giving ( I ,  2,3,. . . ,6); ( I ,  3,6,. . . ,21); and so on. Cardano 
(1539) derived the formula 2" - n - 1 for the number of combinations of n 
things taken two or more at a time, and in 1570 he pointed out the 
correspondence between the figurate numbers and the combinatorial 
numbers C;, the number of combinations of n things taken k at a time, which 
he tabulated up to n = 1 1 .  Furthermore, he showed that 

from which he derived the multiplicative form 

n(n - l ) - - . ( n  - k + 1) c; = 
1.2 .. 9 k 

However, Cardano does not refer to or use these results or those of Tartaglia 
in De Ludo Aleae. 

I t  is strange that Cardano, who was a practical man as well as a 
mathematician, does not give any empirical data in De Ludo Aleae; not even 
a single relative frequency is recorded from his extensive experience of 
gambling. In this he is in accord with the great probabilists Pascal, Huygens, 
Bernoulli, Montmort, and de Moivre and modern writers of textbooks on 
probability, who consider probability theory to be a mathematical discipline 
based on a set of axioms. 

On the other hand, Cardano's book contains many important practical 
observations. We have chosen the epigraph of this chapter to demonstrate 
the remarkable fact that Cardano clearly formulated the fundamental 
condition for application of probability theory in practice, which is that the 
observations should be taken under essentially the same conditions. 

Because of the late publication of De Ludo Aleae (1663) it did not influence 
further development directly, but it seems reasonable to assume that 
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Cardano’s results were known by the mathematical community in the late 
16th century. At the time of Pascal (1654), Cardano’s formula p”/( 1 - p”) was 
considered elementary. 

4.4 
POINTS OF THREE DICE, c. 1620 

GALILEO AND THE DISTRIBUTION OF THE SUM OF 

The next paper on probability, Sopra le Scoperte dei Dadi (On a discovery 
concerning dice), is due to Galileo Galilei. An English translation 
by E. H. Thorne may be found in the book by David (1962). According to 
David, the paper is presumably written between 1613 and 1623; it was first 
published in Galileo’s collected works in 1718. 

Galileo’s paper is written in reply to the following question. Playing with 
three dice, 9 and 10 points may each be obtained in six ways. How is this 
fact compatible with the experience “that long observation has made 
dice-players consider 10 to be more advantageous than 9”? In his answer 
Galileo lists all three-partitions of the numbers from 3 to 10, finds the number 
of permutations for each partition, and tabulates the distribution of the sum 
of points. In that way he proves “that the sum of points 10 can be made up 
by 27 different dice-throws, but the sum of points 9 by 25 only.” His method 
and result are the same as Cardano’s; he takes for granted that the solution 
should be obtained by enumerating all the equally possible outcomes and 
counting the number of favorable ones. This indicates that this method was 
generally accepted among mathematicians at the time. Cardano and Galileo 
did not go further than three dice. The problem for n dice was taken up and 
solved by de Moivre (17 12), James Bernoulli (1 71 3), and Montmort ( 17 13) 
(see 514.3). 

The incident is remarkable not only because of the recorded observation 
(10 occurs more often than 9) but also because somebody (“he who has 
ordered me to produce whatever occurs to me about such a problem”) asked 
for and actually got an explanation in terms of a probabilistic model. Recently 
there has been some discussion on the problem of whether such small 
differences between probabilities as 271216 and 251216 or 27/52 and 25/52 
could be detected in practice. The important point is, however, that somebody 
observed a difference between relative frequencies, whether significant or not, 
and asked for an explanation. 

The reader who knows some statistical theory may solve the following 
problems: How many throws with three dice will be necessary to conclude 
with reasonable confidence that the probability of 10 points is larger than 
that of 9? Discuss various experimental designs to test the hypothesis that 
the odds are 1: 1 against the alternative that they are 27:25. 



CHAPTER 5 

The Foundation of Probability 
Theory by Pascal and Fermat 
in 1654 

Thus, joining the rigour of’demonstratioris in mathematics with 
the uncertainty of‘ chance, und conciliating these apparently 
contradictory matters, it can, taking its name ,from both of them, 
with justice arrogate the stupefying name: The  Mathematics of 
Chance (Aleae Geometria). 
- PASCAL,  in on address l o  the Acd in t i r  Parisienne de MathPmariques. 1654 

5.1 PASCAL AND FERMAT 

The direct cause of the new contributions to probability theory was some 
questions on games of chance from Antoine Gombaud, Chevalier de Mkre, 
to Blaise Pascal in 1654. Pascal communicated his solutions to Pierre de 
Fermat for approval, and a correspondence ensued. At that time scientific 
journals did not exist, so it was a widespread habit to communicate new 
results by letters to colleagues. 

Like Cardano and Galileo, Pascal and Fermat used the basic principle 
of enumeration of the equally possible cases and among them the cases 
favorable to each player, but they now had a combinatorial theory at 
their disposal. They thus laid the foundation of what has later been called 
comhinatorial chance. They wrote about the number of chances (“hasards”) 
and did not use the term probability. They took the addition and niultiplication 
rules for probabilities for granted. They introduced the value of a game as 

42 
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the probability of winning times the total stake, the fundamental quantity 
which Huygens three years later called the expectation. Psacal also introduced 
recursion or difSerence equations as a new method for solving probability 
problems. They solved the division problem by means of the binomial and 
the negative binomial distributions, and they also discussed the problem of 
the Gambler’s Ruin. 

Pierre de Fermat (1601-1665) came of a family of wealthy merchants. He 
studied law at the universities of Toulouse and Orleans, and he also studied 
mathematics at Bordeaux, where he was much influenced by the works of 
Vieta. He made his living as a lawyer and a jurist and had mathematics as 
a lifelong hobby. In 163 1 he became Counsellor of the Parlement of Toulouse 
and was gradually promoted to higher offices at the same place where he 
was to stay for the rest of his life. As a man of wide-ranging learning, not 
only in mathematics and the sciences but also in the humanities, he 
corresponded with many colleagues, those outside France as well. He 
communicated his many important mathematical results, often without proof 
or with incomplete proof, in letters or in manuscripts to his friends, in that 
way guarding his freedom and status as an “amateur” without obligation to 
publish and at the same time getting the recognition that he nevertheless 
desired. This attitude naturally led to priority disputes with other prominent 
contemporary mathematicians, such as Descartes and Wallis. Rather late in 
his career, 9 August 1654, he wrote to Carcavi and proposed that Carcavi 
and Pascal should undertake to amend, edit, and publish his treatises without 
disclosing the author’s name; however, Pascal was not interested in that kind 
of work so nothing came of the proposal. An incomplete edition of Fermat’s 
works was first published posthumously in 1679. 

The basis of Fermat’s mathematics was the classical Greek treatises 
combined with Vieta’s new algebraic methods. Independently of Descartes, 
yet simultaneously, he laid the foundations of analytic geometry, but whereas 
Descartes’ GComttrie (1637) assumed great importance, Fermat’s contribution 
only circulated in manuscript form. Fermat discussed the polynomial 
equation of the second order in two variables and derived the relations 
between the coefficients and the curves known as conic sections. He 
contributed to the beginnings of the calculus by devising methods for finding 
the tangent of a curve and for determining maxima and minima. He gave 
without proof a recursion formula for finding sums of powers of integers 
which he used for calculating areas under polynomial curves by summing 
the areas of a large number of inscribed and circumscribed rectangles and 
deriving the common limiting value. Today the fame of Fermat rests mainly 
on his contributions to the theory of numbers in which he stated many 
theorems without proof, although indicating a general method of proof, the 
method of infinite descent. Many mathematicians have since labored to prove 
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his theorems. His “last theorem,” which says that no integral solutions of 
the equation ?I” + y” = a“ are possible for n > 2, is still unproved. He made 
a lasting contribution to the sciences as well. Fermat’s Principle of Least 
Time states that light traveling from one point to another always takes the 
path requiring least time. A biography of Fermat, with a discussion of his 
mathematical works, their background, and their importance for his 
contemporaries, has been written by Mahoney (1973). 

Blaise Pascal (1623-1662) was an infant prodigy. His mother died when 
he was three and his father, a civil servant, took care of his education and 
brought him at an early age to the meetings of Mersenne’s Academy, one of 
the many private gatherings of scientists, which developed into the Academie 
Royale des Sciences in 1666. Influenced by the work of Desargues, Pascal, 
16 years old, wrote a small paper Essai pour les coriiques (1640) in which he 
presented a theory of conic sections considered to be projections of a circle, 
giving a number of definitions and theorems without proof, and indicating 
his intention to continue this research. For many years he worked on a 
treatise on projective geometry and conic sections, but i t  was never published, 
and only the introductory section is extant. 

To lighten his father’s accounting work as a tax official, Pascal invented 
a calculating machine for addition and subtraction and took care of its 
construction and sale. 

Inspired by works of Galileo and Torricelli disproving the Aristotelian 
doctrine that nature abhors a vacuum, Pascal in 1646 began a series of 
barometric experiments to support and extend Torricelli’s results. His reports 
and his conclusion on the existence of the vacuum and the influence of 
altitude on the weight of the air caused many disputes before they were 
accepted. 

Together with Fermat he laid the foundation of probability theory in 
1654, and at the same time he wrote the important treatise on the arithmetic 
triangle. From 1658 to 1659 he wrote a series of papers on the properties of 
the cycloid in which he used summation of approximating rectangles to find 
the area of the segments of the cycloid, and he likewise computed the volumes 
of solids generated by the rotation of such segments. 

In the 1640s he suffered the first attacks of the illness which intermittently 
disabled him for the rest of his life. After the death of his father in 1651, he 
lived on his inherited fortune. In 1646 the Pascal family converted to 
Jansenism, and late in 1654 Pascal had his “second conversion,” and from 
that time on he was mostly concerned with religious problems. For a time 
he retreated to a group of Jansenists at Port Royal. Attacks of the Jesuits on 
the Jansenists, in particular on Antoine Arnauld, professor of theology at 
the Sorbonne, caused him to take part in polemic by writing his Letrres 
prooinciales in 1656. In his last years he worked on a treatise on religious 
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philosophy, an Apology for the Christian Religion. Fragments found after his 
death were published in 1670 as the PensPes. 

Pascal was a controversial and paradoxical man, a great writer with an 
unusual talent for polemic. He was deeply split between his commitment to 
mathematics and natural science and his religious commitment. The literature 
on Pascal is enormous. The sketch above is mainly based on the biography 
by Taton (1974), where further details and references may be found. 

The famous correspondence of Pascal and Fermat consists of seven letters 
exchanged between July and October 1654. Three letters from Pascal to 
Fermat were published in the 1679 edition of Fermat’s works; these letters 
were reprinted together with four letters from Fermat to Pascal, one of them 
addressed to Carcavi, in the 1779 edition of Pascal’s works. The whole 
correspondence may be found in Oeuvres de Fermat, Vol. 2, 1894, or in any 
of the many editions of Oeuvres de Pascal. English translations may be found 
in the books by Smith (1929) and David (1962). 

Ore (1960) has given a vivid account of the relation between de Mtrt and 
Pascal. Short biographies of Pascal and Fermat have been given by David 
(1962) along with a critical analysis of their correspondence. 

Besides the letters, Pascal’s contributions to probability theory are given 
in his Traitk du triangle arithmktique, avec quelques autres petits traitks sur la 
mame matizre. printed in 1654 but only released to the public in 1665. From one 
of Fermat’s letters it is clear that Fermat has a copy in 1654, and the Trait6 
should therefore be considered an integral part of the correspondence. An 
English translation of the first part of the TraitP may be found in Smith ( I  929). 

5.2 PASCAL’S ARITHMETIC TRIANGLE AND SOME OF ITS USES 

The arithmetic triangle is an array of numbers, beginning with unity, such 
that for each triangular set of numbers, the sum of the first two on a diagonal 
equals the third on the next diagonal, as shown in the following table: 

Pascal’s arithmetic triangle 
1 1 1  

1 4 10 20 

1 5 15 

1 6  

I 
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The fundamental properties of these numbers had been known for some 
time before Pascal wrote his treatise. The importance of Pascal’s work lies 
in its clear and systematic exposition, his rigorous proofs, and his application 
of the arithmetic triangle to the solution of many related problems concerning 
the figurate numbers, the number of combinations, the binomial expansion, 
sums of powers of equidistant integers, and the problem of points. In the 
following we shall give a summary of the contents of Pascal’s treatise apart 
from his discussion of the problem of points, which is discussed in $5.3. 

As indicated above, Pascal defines the numbers in the arithmetic triangle 
by recursion. Consider a two-way table, and let the number in the ( m  + l)st 
row and the ( n  + 1)st column, t,,, say, be defined by the recursionformula 

the boundary conditions 

f m , -  I = t -  = 0, ( m , n )  = l , 2 , .  . . , 

and the generator too = 1 .  Pascal gives the values of t,,,, up to nz = n = 9; an 
abridged version has been shown above. Besides the numbers Pascal also 
labels the cells by different letters for use in the proofs. The many latin and 
Greek letters make his proofs rather awkward. We have therefore introduced 
the notation t,,, as shown in the following table, and we have transcribed 
his proofs accordingly. 

Pascal’s arithmetic triangle 

/ I ‘ 3 0  t 3 1  ‘ 3 2  t 3 3  
/ 

Pascal points out  that one may use a generator different from 1 ,  and in 

Pascal proves 20 propositions about t,,,, ending with the multiplicative 
several places he indicates the effects of such a change. 
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form 

(m + n)(m + n - l ) , . . (m + 1) 

n(n - l ) . . .  1 
t m n  = 

All his results are given in verbal form, making use of row sums, column 
sums, and diagonal sums, which we shall write as 

n rn 

R m n =  C tmj, C m n =  C t i n ,  
j =  0 i = 0  

as indicated in the table above. The notation corresponds closely to Pascal's 
verbal formulation; compared with other notations it  has the advantage that 
symmetry properties are easily exhibited. 

Most of the propositions are fairly simple, and Pascal proves them by 
repeated application of the recursion formula. We shall list the first 1 1  
propositions without comment and leave the proof and interpretation to the 
reader: 

ton = t," = roo = 1. 

Properties of row and column sums: 

tmn = R m  - 1 .n = C m , n  - 1 9  

m -  1 n -  1 

i = O  j = O  
t,, - 1 = C R i , n - l  = C C,,-l ,j .  

Properties of symmetry: 

t m n = t , , ;  {tmj, j = O , l ,  . . .  } = ( t j m , j = O , l  ,... } 

Properties of diagonal sums: 

Dk+ 1 = 20,; D k  = 2k, 

k 

C D i  = D k +  I - 
i = O  

' k , n  = Dk - 1 , n  + Dk - 1 . n -  1 9  
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Pascal points out that Proposition (12) about the ratio 

is of particular importance. The proof is by induction. Incomplete induction 
had been used since Euclid, but the formulation given by Pascal is explicit 
and complete. He writes 

Since this proposition covers an infinity of cases, I shall give a short proof based 
on two lemmas. The first lemma, which is evident, says that the proposition holds 
for rn + n = 1, because it is clear that the ratio is as 1 to 2. The second lemma 
says, that if the proposition holds for a given base [i.e. for a given value of rn + n], 
then it necessarily holds also for the following base. 

Combining the two lemmas, he concludes that the proposition holds for 
m + n = 2, and then by Lemma 2 for m + n = 3, and so on to infinity. 

Pascal’s proof is as follows. Setting m + n = k, say, the proposition may 
be written as 

r + l  
, r = 0 , 1 ,  ..., k -  1. __ ‘ k - r . r  - 

‘ k - r -  I . r +  1 k - r  

Considering the ratio for k + 1 and using the recursion formula, he obtains 

‘k+ I - r , r  - t k - r . r  + l k +  1 - r , r -  1 

‘ k - r , r + l  ‘ k - r - l . r + l  “ k - r , ,  

-___ - __-------, 

Dividing both numerator and denominator by tk - l , r  and using the hypothesis, 
the ratio becomes 

1 + r / ( k - r +  1 )  
1 + ( k  - r) / (r  + 1)’ 

which equals (r + l)/(k + 1 - r ) ,  as was to be proved. 
By means of( 12) i t  is easy to prove the following properties of the ratios: 
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Combining these results with ( 2 )  and (3), i t  follows that 

R , , - m + n +  1 .  Rm, - i n  + 2 - -- , (15) and (16) - - 

t,, m + I ' R m + l . n - l  n 

R,, n +  1 
(17) and (18) ~ = -__ R m n -  n +  1 .  _ _  - __ 

C,, m +  I '  R,, m +  1 '  

From (1 1) and (14), it follows that 

Finally, since 

repeated applications of ( 1  2) give 

which is the multiplicative form of r,,. 
The recursion formula may be looked upon as a partial difference equation, 

and Pascal has thus given one of the first examples of an explicit solution 
of such an equation and a discussion of the properties of the solution. 

Today these results are included in textbooks on combinatorics and 
probability but usually starting with the definition of the binomial coefficients 
as 

I. .=( m + n  )=--, ( m + n ) !  

m!n! 

so that we start with Pascal's result (20) .  Obviously, the recursion formula 
becomes 
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and (2) may be written as 

( i + m - I ) = ( m m + n )  
j = ~  m -  I 

In Traitt des ordres numtriques and De numericis ordinibus tractatus, Pascal 
applies his results to a discussion of the figurate numbers, which he defines 
as the repeated sums of 1. These numbers had been studied before Pascal, 
partly because they enumerate the number of (equidistant) points contained 
within certain figures (hence the name) and partly because of their simple 
additive structure. He arranges these numbers in a two-way table as shown 
below: 

Pascal's Table of Figurate Numbers 

ROOT 

ORDER I 2 3 4 5 

1 1 1  I I 1 
2 1 2  3 4 5 
3 1 3  6 10 15 
4 I 4 10 20 35 

Any number, 10, say, at row 4 and column 3 is obtained as the sum of 
the numbers in the row above ending at the given column 10 = 1 + 3 + 6. 
This property is, however, exactly that proved as Proposition (2) above. The 
figurate numbers are therefore in a one-to-one correspondence to the numbers 
in the arithmetic triangle, which is also obvious by looking at the numbers 
in the diagonals, and the properties of the figurate numbers therefore follow 
from the results above. 

Pascal shows how to solve the equation 

t r n - l , "  c < t,,, 
for given n and c by a simple numerical procedure. He further discusses the 
properties of the product m(m + l ) . . . ( m  + n - 1 )  and shows how the largest 
integral root of the equation m" = c may be found. 

In Usage du Triangle Aritlimktique pour trouver les Puissances des Bindines 
et Apotomes, Pascal shows by example the connection between the binomial 
coefficients and the numbers in the arithmetic triangle, i.e., 

k 

(a  + b)k = 1 t k - i , i ak - ih i ,  k = 1,2, . .  .. (24) 
i = O  
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He refrains from giving a general proof, partly because it is somewhat obvious, 
and partly because i t  has been given by Herigone and others. 

In Usage du Triangle Arithmktique pour les Combinaisons and 
Combinationes, Pascal first defines the different combinations of k elements 
from a set of n elements, say, as all the different sets of k elements without 
regard to order. Pascal does not introduce a notation for the number of 
combinations; we shall use here the notation C;,  which later became popular. 

Pascal begins by proving four lemmas on C;. The first three, 

C : = O  for k > n ;  C : =  1; and Cl = n ;  

follow directly from the definition. Lemma 4, 

is demonstrated by various examples. Pascal's reasoning is as follows. The 
n + 1 elements may be regarded as n elements plus a specific element, A,  say, 
and C;+I consists of all the combinations without A and those containing 
A .  The first equals Ci, and the second equals C;- because only k - 1 elements 
should be selected besides A. 

Next follows the basic proposition on the relation between the row sum 
in the arithmetic triangle and the number of combinations, 

R n - k , k = C i + l ,  k=0,1,  ..., n. 

The proof is by induction. Suppose that R n -  I - k , k  = C;. Then, 

R n - k . k =  R n - k , k - l  + t n - k , k  

- - R n -  1 - ( k -  1 ) , k -  1 + R n -  1 - k , k  Cfrom (2)1 
= Ct- + C; (from the hypothesis) 

= C;+'  [from (25) ] .  

Since the proposition obviously holds for n = 0, the proof is complete. 
I t  then follows immediately that 

which establishes the relation between.the number of combinations and the 
numbers in the arithmetic triangle. 
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In the Combinationes Pascal gives a rather trivial discussion of the 
properties of C ;  derived from the properties of t n - k . k .  The most important 
part of the paper is the section on Sommation des Puissances Numdriques in 
which Pascal solves the problem of summation of powers of the terms of an 
arithmetic series by recursion. Pascal points out that this result may be used 
to find the area under a parabolic curve of any order. Pascal's proof is as 
follows. Let 

a , = a + i d ,  i = O , 1 ,  ..., 

where u and d are positive integers, and set 

n -  1 

s, = C a:, m = O ,  I ,  
i = O  

The problem is to find s, in terms of so, sl, . , . , s, - I .  By means of the binomial 
theorem, Pascal finds 

Summation from i = O  to i =  n -  I gives 

Solving for s,, t n  3 1,  Pascal finds 

" ' + I  m + I 

x = 2  x 
( m +  I)ds,=u;+l - - , , + I  0 - c ( )smtl-xdx.  

For a = d = 1, Pascal's formula becomes a recursion formula for the sums 
of powers of the first n integers, 

( r n + I ) s m = ( n + 1 ) " + ' - 1 -  c WI = 1,2,. . . . (27) 
X = 2  

Beginning with so = n ,  i t  follows that s, may be written as a polynomial in 
n of degree m + I ,  the main term being nm+'/(m + 1). It would thus have 
been easy to tabulate the first of these polynomials. However, Pascal does 
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not mention this problem; it was left to J.  Bernoulli (1713) to give an explicit 
formula for s, (see $ 1  5.4). 

The history of the formula for sums of powers of integers has been studied 
by Edwards (1982a) and Schneider (1983a, b). I t  turns out that the German 
mathematician Johannes Faulhaber (1580-1635) between 1614 and 1631 
published the polynomial expressions for sums of powers of integers up to 
the 17th power. Faulhaber had found that 

where 

and f m - l  and g,-l denote polynomials of degree m - 1 with undetermined 
coefficients, which he found from the m linear equations involving the power 
sums of the first m natural numbers. 

Edwards’ (1987) history of Pascal’s arithmetic triangle was published after 
the completion of the present chapter. I t  contains many important new 
observations on developments before Pascal, both in the East and in Europe; 
we shall, however, confine ourselves to a few remarks on developments in 
Europe. Edwards writes, “Pascal was, as we shall see, a little forgetful about 
his sources. Practically everything in the Troitk except the solution to the 
important ‘Problem of Points’ will have been known to Mersenne’s circle 
by 1637.” 

Edwards devotes separate chapters to the early history of the figurate 
numbers, the combinatorial numbers, and the binomial numbers. The figurate 
and the binomial numbers are defined by their additive properties and are 
mainly used in pure mathematical contexts, whereas the combinatorial 
numbers are the outgrowth of many practical problems on the composition 
of letters, syllables, musical notes, ingredients of a mixture, prime numbers, 
and so on. Essential problems have been to establish the correspondence 
between the three kinds of numbers and to derive the multiplicative form 
from the additive property. 

We shall give a chronological list of important results without mentioning 
the original works; references may be found in Edwards’ book. 

The first general results on combinatorics in Europe are due to Levi ben 
Gerson (1321), who lived in France. He derived the formulae n!, 
n‘‘) = n(n - l)...(n - r + !), and C: = n“)/r! for the number of permutations 
of n different things, the number of permutations of n things taken r at a 
time, and the number of combinations of n things taken r at a time, 
respectively. His proofs are by complete induction, and he is now credited 



54 THE FOUNDATION OF PROBABILITY THEORY BY PASCAL AND FERMAT 

with being the first to have used this method correctly (see Rabinovitch, 
1970b). Previously, first Bernoulli and then Pascal got the credit. 

Stifel (1544, 1545) and Scheubelius (1549, both from Germany, used the 
figurate and binomial numbers in connection with the extraction of roots. 

Tartaglia (1556) found that the number of ways n dice can fall is given 
by a figurate number. Cardano (1570) found the multiplicative form of the 
figurate numbers and pointed out the correspondence between the 
combinatorial and the figurate numbers. 

Vieta (1591) found that the coefficients in his formula for sin nx in terms 
of sin x were ligurate numbers. 

Briggs (1633) used the figurate and binomial numbers in binomial 
expansions, in trigonometric calculations like Vieta, and in interpolation 
formulae. 

In  1636 Fermat found the multiplicative form of the figurate numbers and 
used these numbers in his formula for the summation of power of integers; 
he communicated his results to Mersenne. 

Mersenne (1636, 1637) extended Cardano’s table of C: up to n = 36 and 
discussed the three formulae given by Levi ben Gerson. He also gave the 
formula 

n !  

a !  b! c !  

for the number of permutations of n things of which n things are of one kind, 
b of another, and so on. Mersenne used these results in connection with 
the arrangement of musical notes. 

No doubt Pascal knew Mersenne’s books; Pascal’s contributions are thus 
essentially his proofs and the clear demonstration of the relations between 
the figurate, binomial, and combinatorial numbers. 

5.3 THE CORRESPONDENCE OF PASCAL AND FERMAT 
AND PASCAL’S TREATISE ON THE PROBLEM OF 
POINTS 

Besides the problem of points, Pascal and Fermat also discussed two rather 
simple dice games, which we shall discuss first. 

In his letter of 29 July 1654, Pascal writes to Fermat on the simplest of 
de MerC‘s problems: 

If one undertakes to throw a six with one die, the advantage of undertaking it in 
4 throws i s  as 671 to 625. If one undertakes to throw a double-six with two dice, 
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there is a disadvantage of undertaking it in 24 throws. And nevertheless 24 is to 
36 (which is the number of faces of two dice) as 4 to 6 (which is the number of 
faces of one die). 

Pascal writes that he does not have time to give the solution and that Fermat 
will easily find it  himself. The method for solving this problem had been 
given earlier by Cardano. I t  amounts to finding the smallest number of trials, 
n, say, such that 

1 - 4 "  

4" 
21 or 4 " ~ ; .  

For p = 116, one finds n = 4 and the odds 671/625 as given by Pascal, and 
for p = 1/36, one gets n = 25 and the approximate odds 5061494, whereas 
n = 24 gives 4911509. 

Obviously, de MerC's reasoning presupposes that n is proportional to 6k, 
k =  1,2, ... . Since p = 6 - ' a n d  ( 1  - p ) n = e - " p ,  the equation ( 1  - p ) " = +  has 
the approximate solution 

n=(In2)6'=0.6931 x 6k, k =  1,2 ,..., 

which gives n = 4. I6 for k = I and n = 24.95 for k = 2. Since n must be an 
integer, the strict proportionality is destroyed. The approximate solution is 
due to de Moivre (1712), see $14.4. 

In an undated letter from Fermat to Pascal, presumably the earliest one 
of those preserved, they discuss the value of a throw in a dice game in which 
the player undertakes to throw a 6 (i.e. at least one 6) in eight throws. Fermat 
says that after the stakes have been made, the player should have 1/6 of the 
total stake in compensation for not making the first throw. If, after this has 
been settled, they further agree that the player should not make the second 
throw, he should have 1/6 of the remaining stake as compensation, i.e. 5/36, 
of the total stake, and so on. Fermat calls this the value of the throw and 
remarks that this result is in agreement with the one communicated to him 
by Pascal. The value of the kth throw is thus (1/6)(5/6)k-*, k = 1,2, ..., 8, 
times the total stake, and by summation the value of the eight throws becomes 
1 - (5/6)' = 0.767 times the total stake, which is the compensation the player 
should have for giving up the play altogether. (This last result is not given 
by Fermat.) I t  will be seen that Fermat's value equals the probability of 
winning times the total stake. Suppose now that the player has made three 
throws without success. What is then the value of the fourth throw'? I t  seems 
that Pascal in a previous letter, not longer extant, has given this value as 
125/1296, whereas Fermat states that according to his principle, the value is 
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1/6 of the remaining stake, i.e., 1/6 of the total stake. Fermat stresses that 
this principle holds no matter the number of unsuccessful throws. Presumably 
he means that the value of the remaining five throws should be found as for 
the eight original throws, i.e., as (1/6)(5/6)’‘-’, k = 1,2,. . . , 5 ,  so that the value 
of the five remaining throws becomes 1 - (5/6)’ = 0.598 times the total stake. 
Hence if the play is interrupted after m unsuccessful throws, the player should 
have I - (5/6)’-”,  m = 0,1,. . . ,7, times the total stake in compensation for 
giving up the play. Expressed in modern terminology i t  will be seen that 
Fermat’s reasoning is based on the geometric distribution p( 1 - p ) k -  ’, 
k =  1,2 ,..., for p =  1/6. 

Before discussing the correspondence further, we shall give an account of 
Pascal’s Usaye dic Triangle ArithmPtique pour dtterminer les partis qu’on doit 

faire entre deux joueurs qui jouent en plusieurs parties in which he solves the 
division problem, first by recursion on the expectations and next by use of 
the arithmetic triangle. He always assumes that the two players have an 
equal chance of winning in a single game. 

He begins by stating two obvious division principles (axioms): ( I )  If a 
player gets a certain sum, whatever the outcome of the game this sum should 
be allotted to him; (2) if the total stake falls to the winner with probability 
1/2 and the game is not played, the stake should be divided equally between 
the two players. Formulated in another way we may say that the value of 
the game or the player’s expectation equals t/2 if the total stake equals t .  

From these principles he proves Corollary I :  If a player gets the amount 
s, when he loses, and the amount s + t  when he wins, and the game is not 
played, then he should have the amount s + t/2. In the proof he first uses 
principle ( I ) ,  which says that the player should first have the amount s, which 
belongs to him independently of the outcome of the game, and furthermore 
he should have t / 2  accordingly to principle (2). In Corollary 2 he simply 
remarks that the same result may be obtained by adding the two amounts 
and dividing by 2. I t  will be seen that Pascal in these corollaries derives the 
player’s expectation for the case where the two outcomes of the game 
correspond to different prizes, which need not be limited to the total stake 
and zero as in principle (2). 

Like Cardano (see cj4.2), Pascal explains that the division rule should 
depend only on the number of games each player lacks in winning. We shall 
let e(a,b) denote A’s share of the total stake, or A’s expectation, if the play 
is interrupted when A lacks a games and B lacks 6 games in winning. Pascal 
begins by discussing six examples for a total stake equal to 8; later he changes 
to the stake 1, which means that the expectation equals A’s probability of 
winning. Since Pascal keeps strictly to the division problem, he always speaks 
of the,fracfion of the stake going to A; he does not use the term probability 
or chance in this context. For convenience we shall usually set the total stake 
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Table 5.3.1. Pascal’s recursive calculation of e(a, b) 

e(a - I ,  b) 
a 6 e(a,b - 1) e(a,b) 

(1) 0 n > O  1 
(2) n n 1 /2 
(3) 1 2 

314 
(3a) A wins 0 2 1 
(3b) A loses 1 1 1 i 2  

(4a) A wins 0 3 1 
(4b) A loses 1 2 3i4 

(5) 1 4 
(5a) A wins 0 4 

(6) 2 3 
(6a) A wins 1 3 
(6b) A loses 2 2 1 I 2  

(4) 1 3 

7i8 

15/16 
(5b) A loses 1 3 718 

7’8 11/16 

equal to unity so that e(a,b) represents both A’s expectation and his 
probability of winning; the interpretation will be clear from the context. 
Pascal usually sets the stake equal to a power of 2 to avoid fractions in e(a, b). 
Table 5.3.1 gives Pascal’s results divided by 8, i.e., A’s probability of winning. 

The results stated in the first two examples are obvious. In the third and 
the following examples Pascal considers the two possible outcomes of the 
next game: Either A wins, or he loses. For each of these cases the expectation 
is known from. the previous calculations, and the final expectation is then 
found as the average of the two intermediate ones according to Corollary 2. 
Pascal concludes that the method may be used in general. It will be seen 
that he uses a conditional argument corresponding to the formula 

E { X }  = { E ( X J A ) f E ( X I A ) } / 2 .  

Using modern notation, Pascal’s procedure may be written as 

e(0,n) = 1 and e (n ,n )  = L, n = 1,2,.. . , 

e(a, b) = :[e(a - 1, b) + e(a, b - I)], 
( 1 )  2 

(a, b)  = 1,2, .  . . . 

This is a simple example of a partial difference equation. I t  also provides a 
good illustration of the interdependence of mathematics and probability 
theory. To obtain an explicit expression for e(a, b) the difference equation 
has to be solved, which Pascal did by means of his results for the arithmetic 
triangle. In the 18th century Pascal’s recursive method became very popular 
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and helped to solve more difficult problems, which induced by Moivre, 
Lagrange, and Laplace to develop general methods for the solution of 
difference equations, as discussed in Chap. 23. 

For large values of (a, b), numerical recursion as shown in Table 5.3.1 is 
cumbersome. Possibly for this reason Pascal looked for a more expedient 
solution, which he found by comparing the recursion formula for the 
expectations with that for the numbers in the arithmetic triangle, noting that 
they differ only by a factor of 1/2 and by the boundary conditions. He 
therefore proposes that 

1 a + b - I  

e(a, b) = ___ 1 ‘ o f b - I - j . j ’  a + b = 2,3, .  . . , ( 2 )  
o c b - 1  j = a  

D 

the numerator being equal to the last 6 terms of the diagonal sum and the 
denominator being equal to 2 a + b - 1 .  Because of symmetry the last b terms 
equal the first 6 so that 

D 
(3) e(a,b) = a + b -  1 . b -  1 

a + b -  1 
D 

Pascal proves this formula by induction. Since it  obviously holds for a + b = 2, 
he assumes that i t  holds for a + 6 =  k and proves that i t  holds for 
a + b = k + 1 .  To find e(a, k + 1 - a), he uses the recursion formula 

e(a - 1, k + 1 - a )  + e(a, k - a)  

2 
e(u, k + 1 - a )  = ______--- 

Dk - 1.k - a  + Dk - 1 . k  -a - - -  

2 D k -  I 

which follows from (2.7) and (2.10). This concludes the proof. 
It will be seen that ( 2 )  and ( 3 )  may be written as 

o t b - 1  

i = a  i = O  

Pascal goes on to investigate some special cases. For a < 6 he finds the 
fraction of B’s stake gohy to A ,  assuming that both stake the same amount. 
Obviously, this fraction equals 2[e(a ,b) -  1/21. By means of (3) and the 
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properties of the triangular numbers, he finds 

b -  1 

2 e(1,b)-- = l--=l-(;) 1 , [ :I Db-1 

e(b-1,b)-- =-- ‘ b - 1 , b - 1  - ( 2 b - 2 ) ( ~ ) ’ b - 2 ,  :] D 2 , - ,  b-1  

and he remarks that the last result is two times the last but one, or that A’s 
gain by winning the first point is the same as the gain by winning the second. 
This means that he is considering the fraction of B’s stake going to A when 
A is winning a single game or point. He does not, however, derive the general 
result 

2[e(a,  b) - e(a + 1, b)] = t a b - l  - ( a + ~ - l ) ( ~ ~ + b - l ,  - (8) 
D o + b - l  

which is easily proved by means of the recursion formula and (3). This result 
shows that the value of winning a point measured in terms of the opponent’s 
stake equals the binomial probability (8). 

Pascal’s paper is purely mathematical, and he does not attempt any 
combinatorial interpretation of his results even though he mentions that the 
division rule may be found also by combinatorial methods. This topic is 
discussed in the correspondence with Fermat. 

Several letters of the correspondence are missing, among them Pascal’s 
first letter with the formulation of the problem and his solution and Fermat’s 
answer in which he proposes to solve the problem by combinatorics. However, 
in Pascal’s letter of 24 August 1654, he describes in detail Fermat’s procedure. 
Fermat says that if the players lack a and b games, respectively, in winning 
then the play will be over after at most a + b - 1 further games. Imagining 
that these games are actually played, there will be 20ib-’ equally possible 
outcomes and the cases favorable to A in relation to 2 a + b - 1  will give his 
fraction of the stake. For (a,  b )  = (2 ,3 )  there will be 24 = 16 outcomes, which 
may be listed as AAAA, AAAB, AABA, AABB, ..., BBBB, the letters 
indicating the winner of each game. Since there are 1 1  cases favorable to A, 
Fermat’s rule gives e(2 ,3)  = 11/16. In Pascal’s letter of 29 July he makes the 
following comment on this procedure: “Your method is very safe and is the 
one which first came to my mind in this research; but because the trouble 
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of the combinations is excessive I have found an abridgement and indeed 
another method that is much shorter and more neat, which I would like to 
tell you here in a few words.” Pascal then proceeds to give an exposition of 
his recursive method by means of three examples like those we have already 
discussed. 

By example he also proves ( 5 )  and (6). Presumably he was working on 
his treatise when he wrote the letter because a month later, Fermat in a letter 
of 29 August acknowledges receipt of a copy of the Traitt. Pascal’s letter is 
not as clear, systematic, and comprehensive as the Usage de Triangle 
ArithrnCtique, but i t  contains the main ideas and a complete table for the 
case b = 6, a = 1,2,. . . , 6  and a stake of 5 12. Presumably Pascal has first 
calculated e(a,b) by recursion; he gives a table of e(a,b)- 1/2, and by 
differencing he gets a table of e(a, h )  - e(a + I ,  h), i.e., A’s share of 9’s stake 
for each game won. He does not understand certain features of this table, 
which indicates that he does not know the general result expressed by 
Equation (8). 

Returning to the discussion of the combinatorial method, Pascal writes 
that he has communicated Fermat’s solution to some colleagues in Paris 
and that Roberval, professor of mathematics, has objected to it because the 
division rule depends on games which possibly will not be played. Pascal 
replies that this is immaterial because the two procedures, the actual and 
the hypothetical play, will always give the same result for the two players, 
since the cases in which A wins or loses in the actual play will also be the 
cases in which he wins or loses in the hypothetical play. This is easily seen 
from the example above, since in each combination of four letters only one 
of the players can win, and the same winner comes out whether ail four 
games are played or the play is stopped after the winning score. 

In his reply of 25 September, Fermat approves of Pascal’s explanation 
and adds two important remarks to convince Roberval. First he says that 
it does not affect the division how far the fictitious play is extended over 
a + b - 1 games. If in the example the play is extended to five instead of four 
games, the effect will be that.each of the 16 combinations will be changed 
to two by adding an A or a B, and this does not change the relative number 
of cases in which A wins. 

Although Fermat illustrates his second remark by an example with three 
players, we shall use i t  here in connection with the example above for 
(a,b)=(2,3).  It is clear that A may win in two, three, or four games, 
corresponding to the arrangements AA, ABA and BAA, and ABBA, BABA, 
BBAA, which each contains two A’s with an A at the last place. For two 
games there are 22 equally possible outcomes with one favorable to A; for 
three games there are 23 outcomes with two favorable ones; and for four 
games, 24 outcomes with three favorable ones. The chances for A to win 
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may thus be found as the sum 

1 2 3 1 1  
e ( 2 , 3 )  = -- + - + -- = - z2 23 Z4 16’ 

in agreement with the result previously found. For the case (a, b) i t  is clear 
that A may win at either the ath, the (a + !)st,. . . , or the (a + b - 1)st game. 
The number of different arrangements of a A’s and i B’s with an A at the 
last place equals the number ofcombinations ofa - 1 A’s and i B’s, so that 

Fermat does not give this general result explicitly, but he writes 

And this rule is good and general for all cases, so that without recourse to ficti- 
tious games, the actual combinations in each number of games give the solution 
and show what I said at the outset, that the extension to a certain number of 
games is nothing else than the reduction of various fractions to the same 
denominator. 

Hence, Pascal and Fermat both solved the problem of points by 
combinatorial methods; Pascal also solved i t  by recursion and showed that 
the explicit solution of the difference equation is identical to the combinatorial 
solution; finally Fermat used what is called today a waiting-time argument 
to find the solution (9), which erroneously has been called Pascal’s 
distribution. 

I t  is thus clear that Pascal solved the problem of points by means of the 
binomial distribution for p = 4. Possibly there will not be general agreement 
about the statement above that Fermat solved the problem by means of the 
negatioe binomial distribution (9), as i t  is called today. This result is usually 
ascribed to Montmort (see 514.1). The reader should check that (4) and (9) 
give identical results. 

To summarize and clarify the relations between the important concepts 
and results of the correspondence, we have shown the arithmetic triangle in 
a random walk diagram in Fig. 5.3.1. 

The random walk starts at (0,O). If A wins a point the path goes one step 
to the right, and if B wins i t  goes one step up, the two paths being equally 
likely. It  follows that only the states lying on a diagonal are equally likely 
and that the triangular numbers (binomial coefficients, number of 
combinations) give the number of paths from (0,O) to the state in question, 
as shown on the kth diagonal. Player A wins the stake i f  he gets a points 
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b 

b-1 

k 

1 

0 

atb-1 atb 

Fig. 5.3.1. Random walk diagram for the problem of points. The number of paths 

from (0,O) to (a, b )  equals ( a  1: ”>: A wins if he gets a points before B gets b. 

before player B gets b, which means that A wins if the random walk ends 
at the vertical line from (a ,O) to (a ,  b - 1). These states are, however, not 
equally likely, and the number of paths can therefore not be added to find 
the number of chances for A. Consider now a fictitious continuation of the 
play from the b winning states on the vertical until a + b - 1 games have 
been played; i.e., until the random walk ends at the (a + h - 1)st diagonal. 
I t  is easy to see that the paths going through the winning states and the 
paths ending at  the (a + b - 1)st diagonal for the abscissas a to a + b - I are 
the same. The number of chances for A may therefore be found by adding 
the number of paths ending at this diagonal, which leads to Pascal’s result 
(2). The dashed part of the path represents the fictitious games, and Fermat’s 
argument about the continuation of the fictitious play has been illustrated 
by the (a + b)th diagonal. Fermat’s result (9) corresponds to the number of 
paths ending at the vertical from ( a -  1,O) to ( a -  1,b-  1) and continuing 
horizontically to the vertical through (a, 0). The result (8) may also be derived 
immediately from the diagram by comparing the (a + b - 1)st and the 
(a + b)th diagonals. 

The problem of the division rule for rhree players, A, B, and C ,  lacking 1, 
2, and 2 games, respectively, is discussed in Pascal’s letter of 24 August, 
presumably after some preliminary remarks by Fermat in a letter no longer 
extant. Pascal writes, “When there are only two players, your combinatorial 
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method is very sure, but when there are three I think I can demonstrate that 
i t  is incorrect unless you proceed in some other manner which I do not 
understand.” He then gives an analysis of the play analogous to the one he 
has just given for two players by listing the 27 different arrangements of 
three letters: AAA, AAB, AAC, ABA,. . . , CCC, since the play will be 
completed in at most three games. The problem is now how these 
arrangements should be allotted to the three players. First he counts all the 
arrangements containing one A, two B’s, and two C‘s, respectively, which 
gives the distribution 19:7:7. He then says that this method is erroneous 
because some of the arrangements are included two times as favorable to 
two players, such as ABB. Next he amends this procedure by allotting $ to 
each of the two players, which leads to the distribution 16:5$:5$. Finally, 
he says that this solution is also wrong, because his general method (recursion) 
gives the result 17:5:5. In his reply of the 25 September, Fermat points out 
that the order of the letters has to be taken into account because what 
happens after one of the players has won is of no importance. If that is done, 
the combinatorial method and the recursive method will give the same result. 
The fictitious games only serve to make all the arrangements equally likely. 

The methods developed by Pascal and Fermat were used by John 
Bernoulli, Montmort, and de Moivre to solve the problem of points for 
players with different probabilities of winning a single game (see 514.1). 

Afier Montmort in his Essay( 1713) gave a short history of the development 
of probability theory from 1654 to 1713, many authors have commented on 
the correspondence of Pascal and Fermat and Pascal’s Trait&. We shall 
limit ourselves to mention some of the more recent contributions in 
chronological order: David (1962), Coumet (1970), Jordan (1972), Dupont 
(1975-1976 and 1979), Seneta (1979), and Edwards (1982b, 1987). 

The correspondence of Pascal and Fermat was resumed in 1656 when 
Pascal posed Fermat a problem which today is known as the problem of 
the Gambler’s Ruin. Through Carcavi the problem was passed on to Huygens 
who included it in his treatise as thefifth probIern to be solved by the reader. 
Pascal, Fermat, and Huygens all solved the problem numerically without 
disclosing their methods (see Edwards, 1983). We shall discuss this problem 
in 16.3 and $14.2. 

5.4 PASCAL’S WAGER 

After his conversion in November 1654, Pascal for a time retreated to the 
religious community at Port Royal where he worked together with the 
theologians Pierre Nicole and Antoine Arnauld for the Jansenist cause. For 
use in the upper classes of the school attached to the community, Nicole and 
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Arnauld wrote La logique on l’art de penser (1662), also called the Logique 
de Port Royal. The final chapters of this book contain elements of a 
probability calculus and its applications to aspects of life other than games 
of chance and with a frequency interpretation of some of the probabilities 
involved. Possibly, these chapters were written under Pascal’s influence. The 
book ends with an indication of Pascal’s probability arguments for leading 
a pious life. 

Pascal’s PensPes contains a short section “Infini-rien: Le pari,” usually 
called Pascal’s wager, which has been the subject of much exegesis. For a 
statistician the methodological analysis given by Hacking (1975) in terms of 
decision theory is the most interesting. Briefly told, Pascal imagines two 
states of the world: God is or he is not; two possible actions: a pious life or 
a worldly one; a probability distribution over the states with .finite probability 
for the existence of God, and “utilities” of the four combinations of states 
and actions such that the three utilities are finite, but the fourth corresponding 
to the pious life when God exists is infinite because i t  leads to an infinite life 
of infinite happiness. Hence, the expected utility of a pious life will be infinite 
for any admissible probability distribution and therefore larger than the 
expected utility of a worldly life. As pointed out by Hacking, this curious 
incident is interesting because Pascal’s formulation, even if rather obscure, 
contains the basic notions of modern decision theory. 

The present section is based on Hacking (1975, Chap. 8 and 9) and Heyde 
and Seneta (1977, 05.8). 



CHAPTER 6 

Huygens and De 
Ludo Aleae, 1657 

Ratiociniis in 

Though I would like to believe, that ifsomeone studies these 
things a little more closely, then he will almost certainly come 
to the conclusion that it  is not just a game which has been treated 
here, but that the principles and theJoundations are laid of a 
very nice and very deep speculation. 

- H U Y G E N S .  1657 

6.1 HUYGENS AND THE GENESIS OF HIS TREATISE 

Christiaan Huygens( 1629-1695) was born into a wealthy Dutch family whose 
members held high posts in the civil and diplomatic services of the 
Netherlands. Under the supervision of their father, Christiaan and his 
brothers received a comprehensive education both in the humanities and the 
sciences. From 1645 to 1649 he studied law and mathematics at the 
universities of Leiden and Breda. He was much influenced by his mathematics 
teacher Frans van Schooten, who introduced him to Cartesian mathematics; 
he also studied the newly published Cartesian philosophy intensely. During 
the years from 1650 to 1666, he lived mostly at home, supported economically 
by his father, and concentrated on research in mathematics, optics, 
astronomy, and physics with results that established him as the foremost 
scientist in Europe. He visited Paris and London several times and was 
elected a member of the newly established Royal Society at London in 1663. 
When the Acadtmie Royale des Sciences was founded in 1666, Huygens was 
offered and accepted membership and moved to Paris where he stayed until 
1681, supported by Louis XIV. The small group of salaried academicians 
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worked not only on theoretical problems but also carried out technological 
work of importance for the government. Because of illness he returned to 
Holland in 1681, and he did not go back to Paris, perhaps because his 
position as a Protestant and a foreigner was becoming less pleasant. At that 
time he had completed his most important scientific work. He spent his last 
years in The Hague. 

In mathematics Huygens continued the works of Descartes, Fermat, and 
Pascal by solving problems derived from mechanics and physics. For many 
special functions he found areas and volumes corresponding to certain 
sections, centers of gravity, and centers and radii of curvature. He was a 
master, able to invent the tricks required to iolve each specific problem, but 
he did not develop a general method. 

in astronomy he continued the three lines of research begun by Galileo. 
He constructed better telescopes; he used these to observe new planets and 
stars, and he constructed a pendulum clock for more accurate measurement 
of time. In 1655 he improved the methods of grinding and polishing lenses 
and built a telescope of much greater power than previously known. By 
observation of Saturn he detected an unknown satellite and gave the correct 
description and explanation of Saturn’s ring. His invention of the pendulum 
clock in 1656 made regular and more accurate time measurements possible, 
one of the consequences being that the angular distance between stars could 
be found easily and accurately. The clocks were also important for 
determining longitude at sea, but since the pendulum was not sufficiently 
stable at sea, he later used springs instead. 

In the Horologium oscillatorium (The Pendulum Clock, 1673) Huygens 
continued the work of Galileo on the theory of the motion of bodies and 
demonstrated a wealth of new results. We shall only mention a few. For the 
mathematical pendulum he found the relation between the time of oscillation, 
the length of the pendulum, and the acceleration due to gravity, a formula 
that today (for small deviations from the vertical) is written as 
T = 2 n f l g .  A curve with the property that a body oscillating on it  has a 
time of oscillation independent of the magnitude of oscillation is called a 
tautochrone. Huygens proved that the cycloid is tautochronic, so that in 
principle he was able to construct a clock, the cycloidal pendulum, with time 
of oscillation independent of the amplitude. In this connection he developed 
the thory of evolutes and proved that the evolute of a cycloid is again a 
cycloid. For a compound pendulum he defined the center of oscillation and 
showed how to compute the length of a simple pendulum oscillating 
isochronously with the compound. Using the result T = 2rrJ l / y ,  he made 
a rather accurate experimental determination of the gravitational constant. 
His studies of circular motion led him to the fundamental formula for 
centrifugal force f K i i2 / r .  
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Another main achievement was his wave theory of light, completed in 
1678 but not published until 1690 as the Traitk de  la lumiere. In accordance 
with his mechanistic philosophy, inherited from Descartes, he considered 
light to be the effect of waves in an ether consisting of very small particles, 
and he derived the laws of refraction and reflection from this hypothesis. In 
his works on the collision of bodies and on light, he realized that the ideas 
of Descartes were too vague and in many cases also at variance with 
experimental results. He therefore refined the Cartesian ideas by introducing 
more classes of elementary particles, by allowing a vacuum between particles, 
and by studying the laws of impact. In this way he was able to defend the 
mechanistic explanation of natural phenomena, for example, gravity. 

Huygens carried on a vast correspondence which has been published as 
the first ten volumes of his collected works. Like Fermat and Newton, he 
was reluctant to publish his works, and some of his books were printed only 
many years after they had been written. I t  is presumably only due to the 
efforts of van Schooten that Huygens’ treatise on probability theory was 
published shortly after its completion. 

Huygens’ collected works with many notes and commentaries have been 
published in 22 volumes by the Holland Society of Science. A comprehensive 
biography has been written Vollgraff (1950); shorter ones are due to 
Dijksterhuis (1953), David (1962), and Bos (1972). 

In 1656 Huygens wrote a small treatise, 16 pages, with the title Van 
Rekeningh in Speelen oan Geluck (On Reckoning at Games of Chance). 
Anyone interested in the detailed history of Huygens’ work on probability 
theory should consult Huygens’ collected works, Vol. 14, pp. 1-179 (1920), 
which contains a reprint of his treatise, a translation into French, nine 
appendices with Huygens’ later work on related problems, and an 
introduction and many notes by Korteweg based on Huygens’ correspon- 
dence. The letters by Huygens on these matters have been printed in 
volumes 1 and 5; precise references have been given by Korteweg. 

Huygens visited Paris for the first time in the autumn of 1655. He met 
Roberval and Mylon, a friend of Carcavi, but did not meet Carcavi and 
Pascal. According to himself he heard about the probability problems 
discussed the year before but was not informed about the methods used and 
the solutions obtained. This sounds odd in view of the fact that Roberval 
was fully informed about the Pascal-Fermat correspondence; however, 
Roberval does not seem to have been much interested in probability theory. 
On his return to Holland Huygens solved the problems, and in April 1656 
he sent van Schooten his manuscript of the treatise. At the same time he 
wrote to Roberval and asked for his solution of the most difficult problem 
(Proposition 14) in the treatise for comparison with his own. 

Van Schooten proposed that Huygens’ treatise would be published at the 
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end of his Exercitationum Mathematicarum, which he was preparing for 
publication. This would require a translation of the treatise into Latin, and 
after some discussion van Schooten offered to do  this himself. 

In the meantime, since Roberval did not answer his letter, Huygens wrote 
to Mylon who, through Carcavi, sent the problem on to Fermat. In a letter 
from Fermat to Carcavi and from him to Huygens (22 June 1656), Fermat 
gave the solution without proof, a solution which to Huygens’ satisfaction 
agreed with his own. Furthermore, Fermat posed five problems to Huygens, 
which Huygens immediately solved. He sent the solutions to Carcavi on 6 
July and asked him to inform Mylon, Pascal, and Fermat to determine 
whether their solutions agreed with his. Huygens later used two of Fermat’s 
problems as problems 1 and 3 at  the end of his treatise. Carcavi’s answer of 
28 September convinced Huygens that the methods employed by Pascal and 
himself were in agreement. Further, this letter contained a problem posed by 
Pascal to Fermat, which Huygens solved and included as the fifth problem 
in his treatise. Carcavi’s letter contained the solutions given by Fermat and 
Pascal without the proofs. Huygens’ solution, also without proof, is stated 
in his letter to Carcavi on 12 October. 

In March 1657 van Schooten sent Huygens the Latin version for final 
additions and corrections. Huygens then added Proposition 9 and five 
problems for the reader, among them the three by Fermat and Pascal 
mentioned above. In a letter to van Schooten, which was used as Huygens’ 
preface, Huygens stressed the importance of this new topic and stated that 
“for some time some of the best mathematicians of France have occupied 
themselves with this kind of calculus so that no one should attribute to me 
the honour of the first invention.” The De Ratiociniis in Ludo Aleae was 
published in September 1657; the Dutch version was not published until 1660. 

Huygens’ treatise is the first published work on probability theory; all the 
previously mentioned works were published after 1657. It won immediate 
recognition and became the standard text on probability theory for the next 
50 years. This is surprising in view of the fact that Pascal’s treatise, published 
in 1665, is more comprehensive. The reason may be that Huygens’ treatise 
was available in Latin and easily accessible as part of the widely circulated 
text by van Schooten. 

6.2 DE RATIOCINIIS IN LUDO ALEAE 

The De Ludo Aleae is composed as a modern paper on probability theory. 
From an axiom on the value of a fair game Huygens derives three theorems 
on expectations. He uses the theorems to solve a number of problems of 
current interest on games of chance by recursion. Finally, he poses five 
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problems, gives the answers to three of them, and leaves the proofs to the 
reader. 

The three theorems and the eleven problems are usually called Huygens’ 
14 propositions. David (1962, pp. 116-1 17) has translated the propositions 
from the De Ludo Aleae into English. We shall present a translation of the 
Dutch version; there is no difference in meaning, merely slight differences in 
wording. In the Dutch version Huygens does not use the word “expectation” 
but writes about the value of a game. 

In a short introduction Huygens makes the following (somewhat obscure) 
statement: “I take as fundamental for such games that the chance to gain 
something is worth so much that, if one had it, one could again get the same 
chance in a fair game, that is, a game in which nobody stands to lose.” He 
illustrates this axiom by the following example: 

Suppose that somebody has 3 shillings in his one hand and 7 in the other and 
that I am asked to chose between them; this is so much worth to me as if I had 
5 shillings for certain. Because if I have 5 shillings I can establish a fair game in 
which I have an even chance of getting 3 or 7 shillings, as will be shown below. 

The first three propositions are as follows: 

1. “If I have equal chances of getting a or 6, this is so much worth for 
me as (a  + b)/2.” 

2. “If I have equal chances of getting a, b or c, this is so much worth for 
me as if I had (a + 6 + c)/3.” 

3. “If the number of chances of getting a is p ,  and the number of chances 
of getting 6 is q,  assuming always that any chance occurs equally easy, 
then this is worth (pa  + q 6 ) / ( p  + q )  to me.” 

Today we consider this the definition of mathematical expectation. For 
Huygens, however, these propositions required proof. As mentioned above, 
his basic notion is a lottery with as many tickets and players as there are 
chances in the given game, each player having the same chance of winning 
and therefore staking the same amount, x, say. To make the lottery equivalent 
to the given game, the winner of the total stake agrees to pay certain amounts 
to the losers. The value o l the  game or the expectation oj”a player is defined 
as the stake per participant in the equivalent lottery. 

To prove Proposition 1, Huygens introduces a lottery with two players 
who agree that the winner shall pay the amount a to the loser so that the 
winner gets 2x - a. Setting 2x - a  = b, the lottery becomes equivalent to the 
given game, and x = (a  + 6)/2. 

The proof of Proposition 2 is analogous. Huygens remarks that this result 
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may be extended to any number of players so that the value of a game with 
a finite number of equal chances equals the arithmetic mean of the prizes. 

To prove Proposition 3 about the weighted mean, Huygens reasons as 
follows. Consider a lottery with p + q players including myself. With q of the 
players I make the agreement that each should pay me the amount b if he 
wins and receive b from me if I win, and with each of the remaining p - 1 
players I agree that he should pay me the amount a if he wins and receive 
a from me if I win. Hence, I have one chance in p + q of getting the amount 
( p  + q)x - qb - ( p  - I)a, q chances of getting b, and p - 1 chances of getting 
a.,This lottery isequivalent to theoriginal gamefor(p+q)x-qb-(p- l)a=a, 
so that x = (pa  + q b ) / ( p  + 4).  

Huygens does not state the generalization ( p a  + qb + rc) / (p  + q + r),  say, 
explicitly, but in Proposition 13 he considers an example with three outcomes, 
which he solves by using Proposition 3 two times in succession, first finding 
the weighted average of a and b and then the weighted average of this 
intermediate result and c. 

Huygens solves the first nine problems by the same method, the method 
of recursion. Considering a given state of the play, he imagines one inore game 
carried out, lists all the possible outcomes and the corresponding number of 
chances, and uses Proposition 1 , 2 ,  or 3 t o j n d  the (marginal) expectation. The 
resulting difference equation is used recursively to find the numerical solution 
of the problem based on the expectation in the first (or the last) game which 
is known or easy to find. Huygens only discusses the problem numerically, 
he does not give the difference equation formally and does not attempt an 
explicit solution. It  will be seen that Huygens employs the same method 
as Pascal. In the following exposition we shall use the notation from 
95.3 to write the recursion formula corresponding to Huygens’ numerical 
examples. 

In Propositions 4-7 Huygens discusses the problem of points for two 
players. 

Proposition 4. “Suppose that I play against another person about three 
games, and that I have already won two games and he one. I want to know 
what my proportion of the stakes should be, in case we decide not to continue 
the play and divide the stakes equitably between us.” 

This is the problem of points for (a, b)  = (1,2). Propositions 5-7 correspond 
to (a, b )  = (1,3),(2,3), and (2,4). Using Proposition 1 ,  Huygens solves these 
problems by recursion exactly like Pascal, see (5.3.1), and finds the same 
results as those given in Table 5.3.1. 

In Proposition 8 Huygens discusses the problem of points for three players, 
and in Proposition 9 he generalizes to any number of players. 
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Proposition 8. “Let us suppose that three persons play together, and that 
the first lacks one game, the second one game and the third two games.” 

Proposition 9. “To calculate the proportion due to each of a given number 
of players, who each lacks a given number of games, i t  is necessary to find 
out what the player, whose proportion we want to know, would get, if he 
or any of the other players wins the following game. Adding these parts and 
dividing by the number of players give us the proportion sought.” 

Using Proposition 2, his solution may be written 

(1 )  
1 

3 
e(a, b, c) = - [e(a - 1,6, c)  + e(a, b - 1, c) + e(a, b, c - I)]. 

He tabulates 17 values of e(a, b, c) for small values of (a, b,c). His result for 
( I ,  2,2) agrees with Pascal’s result. 

In Propositions 10 and 1 1  Huygens considers de Mtrt’s problem. 

Proposition 10. “To find how many turns one should take to throw a six 
with one die.” 

Proposition 11. “To find how many turns one should take to throw two 
sixes with two dice.” 

Using Proposition 3, these problems are solved by recursion. Huygens 
first considers a game in which A wagers the amount t ,  say, that he will get 
at least one 6 in n throws. Let A’s expectation be en. It follows that e l  = t/6 
and that e n + ,  =(1/6)t+(5/6)e,. This leads to e 2 =  llt/36, e3=91t/216, 
e4 = 671t/1296, and so on. Hence, for n = 4, the odds are 671 :625, as also 
found by Pascal and Fermat. 

Proposition 1 1  is solved by the same method, with the chances I and 5 
replaced by 1 and 35, which gives e, = t/36 and e2 = 71 t/1296. To speed up 
the recursion, Huygens goes directly from e2 to e4 by the formula 

71t + 1225e2 - 178,991t e4 = - 
I296 1679,616‘ 

He derives this formula by interpreting 71 and 1225 as the number ofchances 
for getting a double 6 in two throws. He then states that he has used this 
method to find e8,eI6,  and e24 and that n = 24 gives odds slightly less than 
1: 1, whereas n = 25 gives odds larger than 1 : 1. 
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Huygens does not indicate the explicit solution of the equation 

which is easily found to be e, = (1  - q”)t .  

Proposition 12. “To find how many dice one should take to throw two 
sixes at the first throw.” 

This is obviously a generalization of Propositions 10 and 11. Huygens 
reformulates the problem as follows: To find how many throws of a die are 
necessary to have at least an even chance of getting two sixes. Let en be A’s 
expectation when he wagers the amount t that he will get at least two 6‘s in 
n throws. In Proposition 10 it was shown that A’s expectation when he 
wagers to get at least one 6 in two throws equals 1 1 t/36. Using Proposition 3, 
Huygens then finds 

e n + ,  = - ( - ) + ( ; ) e n .  1 I l l  

6 36 

Beginning with e,  =t/36, he gets e,  = 161/216, and so on. He writes that 
n = 10 will give odds slightly larger than 1 : I .  

Obviously, Huygens’ recursion formula may be written as 

Proposition 13. “Suppose that I play one single throw with two dice 
against another person on the condition, that if the outcome is 7 points I 
win, if the outcome is 10 points he wins, and otherwise the stakes should be 
divided equally between us. To find what proportion each of us should have.” 

As mentioned before, Huygens solves this problem by successive 
applications of Proposition 3. First he notes that the number of chances for 
the three outcomes are 6,3, and 27, respectively. He then disregards the last 
outcome and finds the expectation (6/9)t + (3/9) x 0 = 2t/3. The final 
expectation then becomes (9/36)(2t/3) + (27/36)(t/2) = 13t/24. 

Proposition 14. “Suppose that I and another player take turns in throwing 
with two dice on the condition, that I win if I throw 7 points, and he wins 
if he throws 6 points, and I let him have the first throw. To find the ratio 
of my chance to his.” 
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This is a case of the problem of points different from the previous ones 
in that there is no upper limit to the number of games. Since the usual 
recursive method is not directly applicable, Huygens invents a new method 
which was used later to solve other problems of the same nature. James 
Bernoulli called this method Huygens’ analytical method. Huygens proves 
Propositions 4-13 numerically by recursion, but in Proposition 14 he uses 
two algebraic equations (analysis) for the solution. 

Denoting the players by A and B, it follows that A’s probability of winning 
a single game is 6/36 and B’s 5/36. Let the total stake be t ,  and let A’s 
expectation before the play begins be x so that B’s expectation becomes 
t - x. Each time it is Bs turn to throw, A’s expectation is x, but when it is 
A’s turn, his (conditional) expectation will have a larger value, y ,  say. When 
it is B’s turn to throw, it follows from Proposition 3 that A’s expectation is 
(5/36) x 0 + (31/36)y = x. When it  is A’s turn to throw, we have, similarly, 
(6/36)t + (30/36)x = y. Solving for x we get x = 31 t/61, so that the ratio of x 
to t - x becomes 3 1 :30. 

It will be seen that the solution is obtained by means of two linear equations 
bet ween the two (conditional) expectations 

Huygens does not comment further on the solution. To see the connection 
with the method of recursion, let en denote A’s expectation when n games 
have been played without anybody winning. Let the order of the players be 
BA BA BA.. . , and let the probability of winning a single game be p 1  for A 
and p 2  for B,pl + q 1  = p 2  + q2 = 1. Huygens’ usual way of reasoning leads 
to the equations 

Presumably, Huygens has noticed that the periodicity of the play and the 
independence of the infinitely many games mean that eZn = eo and eZn+ = e l .  
Huygens writes that “it is obvious that each time B is going to throw the 
expectation of A must again be equal to x.” This means that there are really 
only two equations, 

which have the solution e, = ~ ~ 4 ~ t / ( l  - q , q t ) .  In his comments to Huygens’ 
treatise, James Bernoulli (1713) points out the periodicity and the 
independence. 

Neither Huygens nor Bernoulli notices the fact that the recursion (4) leads 
to an infinite geometric series for e ,  with the sum given above. 

Huygens’ treatise ends with five problems for the reader which are 
discussed in 96.3. 
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It will be seen that Huygens, directly or indirectly, derives all his results 
by recursion. His method is very clear and easily understandable. 
Numerically it  is, however, very cumbersome. It is remarkable that he does 
not use combinatorial methods. 

There exist three comprehensive, annotated editions of Huygens’ treatise: 
( I )  the first part of Ars Conjectandi by James Bernoulli ( I  71 3); (2) Korteweg’s 
edition (1920) in Huygens collected works, Vol 14; and (3) the edition by 
Dupont and Roero (1984). 

According to Todhunter, De Ludo Aleae was translated into English by 
Arbuthnott (1692) and Browne (1714). A translation into German was done 
by Haussner (1899), into French by Korteweg (1920), and into Italian by 
Dupont and Roero (1984). Besides the papers already mentioned we refer to 
von der Waerden (l975), Hacking (1979, Sheynin (1977), Schneider (l980), 
and Holgate (1984). 

6.3 HUYGENS’ FIVE PROBLEMS AND HIS SOLUTIONS 

The solutions given by Huygens are as usual only numerical. We shall, 
however, give the formulae corresponding to his reasoning. 

Problem 1. A and B play against each other with two dice on the condition 
that A wins if he throws six points and B wins if he throws seven points. A 
has the first throw, B the following two, then A the following two, and so 
on, until  one or the other wins. The question is, What is the ratio of A’s 
chances to B’s? Answer: 10,355 to 12,276. 

This is the problem posed by Fermat in his letter to Huygens in June 
1656. Obviously, i t  is a generalization of Proposition 14. It is solved by 
Huygens in his letter to Carcavi of 6 July 1656. 

The order of the players is ABBA ABBA.. . . Let en be A’s expectation just 
before game number n, given that the previous games have been unsuccessful. 
Because of the periodicity and the independence, it is only necessary to 
consider e l , .  . . , e4. Huygens’ reasoning may be expressed by the four 
equations 

Solving for e l ,  one find 
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For p1 = 5/36 and pz = 6/36, one gets e , / t  = 10,355/22,631, in agreement with 
Huygens’ answer. 

Problem 2. Three players, A, B, and C, having 12 chips of which four are 
white and eight black, play on the condition that the first blindfolded player 
to draw a white chip wins, and that A draws first, B next, and then C, then 
A again, and so on. The question is, What are the ratios of their chances to 
each other? 

Huygens’ solution is given in a note from 1665 (see Oeuvres, Vol. 14, p. 96). 
He assumes that the drawings are with replacement, since he uses 
p = 4/12 = 1/3 as the probability of winning in each drawing. The order of 
the players is A B C  ABC..  . . Let x, y ,  and z denote the expectations of the 
three players before the play begins. I f  A wins at the first drawing, he gets 
the stake, and if he loses he becomes number three in the following series of 
drawings with an expectation equal to z .  Hence, x = pr + qz. If A loses, which 
happens with probability q,  then B moves to the first place in the following 
series of drawings and thus gets the expectation x, so that y = qx. Similarly, 
z = qy .  The solution of the three equations is 

with the ratios I : 9 : q 2 ,  which become 9:6:4 for p = 113, as found by Huygens. 

Problem 3. A wagers with B that out of 40 cards, there being 10 of each 
color, he will draw four cards, so that he gets one of each colour. The chances 
of A to those of B are found to be 1000 to 8139. 

This problem was posed by Fermat in his letter of June 1656; the answer 
without proof is given in Huygens’ letter to Carcavi of 6 July. Presumably, 
Huygens has reasoned as shown below. 

Suppose that n cards have been drawn and that they are ofdifferent colors. 
Let the total stake be unity, and let A’s expectation be en. The condition for 
A to win the next drawing is that he draws a card among the lO(4 - n) cards 
of colors different from those already drawn. Hence, en = 10(4 - n)e, + , /  
(40 - n). Since e4 = 1, i t  follows by recursion that e ,  = (10/37)(20/38)(30/39) 
(40140) = 1000/9139, in agreement with Huygens’ result. 

Problem 4. As before, the players have twelve chips, four white and eight 
black; A wagers with B that by drawing seven chips blindfolded, he will get 
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three white chips. The question is, What is the ratio of A’s chances to Bs? 

Huygens’ solution is given in a note from 1665 (see Oeuvres, Vol. 14, 

Let e(a, b) be A’s expectation when a white and b black chips have been 
drawn. Among the remaining 12 - a - b chips there are 4 - a white and 8 - b 
black. Hence, 

pp. 97-99). 

(4 - a)e(a + 1, b) + (8 - b)e(a, b + 1) 
e(a b) = , O < a < 4 ,  O < a + b < 7 ,  

1 2 - a - h  

with the boundary conditions e(3,4) = t ,e(a,  7 - a) = 0 otherwise, e(a, 6 - a) = 
0 for a = 0, 1 ,  and e(O,5)  = 0. 

Starting from e(3,4) = t ,  Huygens gets e(3,3) = 5t/6, and so on, until after 
19 iterations, he reaches e(0,O) = 35t/99. He notes that this result may also 
be found as solution to the “complementary problem,” where five chips are 
drawn and the composition sought is (1,4). He carries out this iteration, 
which only has nine steps. 

Huygens also considers the modification proposed by Hudde, that the 
outcome should be three or more white chips, that is, (3,4) or (4,3), and by 
iteration he gets the result 42t/99 (see Oeuvres, Vol. 14, pp. 100-101). 

Problem 5. A and B each having 12 counters play with three dice on the 
condition that if I 1  points are thrown, A gives a counter to B and if 14 
points are thrown, B gives a counter to A and that he wins the play who 
first has all the counters. Here it is found that the number of chances of A 
to that of B is 244,140,625 to 282,429,536,481. 

This is the problem posed by Pascal to Fermat and through Carcavi to 
Huygens in a letter of 28 September 1656 that contains the answers given 
by Pascal and Fermat. Huygens’ answer is in his letter to Carcavi of 12 
October 1656. His proof is given in a note from 1676 (see Oeuvres, Vol. 14, 
pp. 15 I - 155). The problem is known as the Gambler’s Ruin problem. 

In Pascal’s formulation the players start with the score (O,O), and the 
winner is the one who first leads with 12 points. This is also the form that 
Huygens uses in his proof. 

The number of chances to win a point is 15 for A and 27 for B; we shall 
set p = 15/42 = 5/14 and q = 27/42 = 9/14. Let e(a, b)  denote A’s expectation 
when A has a points and B has b points. The problem is to find e(0,O). 

Huygens begins by analyzing the simple case where the play ends when 
one of the players leads with two points. He lists all the possible outcomes 
and their probabilities in a diagram, as shown in Fig. 6.3.1. 
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Fig. 6.3.1. Huygens’ graph of the Gambler’s Ruin  Problem. 

I t  follows immediately from Fig. 6.3.1 that the following equations hold: 

with the solution e(0,O) = p 2 / ( p 2  + 4’). 
Huygens next turns to the case where the winner has to be four points 

ahead. Using the result above he takes two steps at a time; that is, he goes 
from (0,O) through (2,O) to (4,0), say, with probabilities proportional to p 2 .  
This gives three equations with the solution e(0,O) = p 4 / ( p 4  + q4). He finally 
remarks that if a lead of eight points is necessary for winning, then 
e ( 0 , O )  = p 8 / ( p 8  + q*),  and so on. 

If a lead of three points is required to win, he goes from (0,O) to ( 1 , O )  
with probability p and then to (3,O) with probability p 2  and similarly for the 
other paths in the diagram, which leads to the equations 
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with the solution e(0,O) = p3/(p3 + q 3 ) .  He generalizes to p 6 / ( p 6  + q6) .  
The cases considered so far only require the solution of three equations. 

If a lead of n = 5 points is needed to win, the number of equations becomes 
considerably larger, and Huygens remarks that a similar solution may be 
obtained as for n = 3 but that it takes a longer time. Finally, he states that 
in general the ratio of A’s and B’s expectations is p” :q” .  

The answer given at the end of Problem 5 will be seen to be 5l2:9l2.  
No indications exist as to the methods used by Pascal and Fermat to 

solve the Gambler’s Ruin problem. Edwards ( 1  983) has suggested that Pascal 
solved the difference equation and that Fermat used a combinatorial 
argument, see Problem 7 in $6.5. 

Huygens’ five problems became a challenge to mathematicians at the time 
and their solutions, interpretations (drawings with or without replacement), 
and generalizations were discussed by Huygens himself and by Hudde, 
Spinoza, Bernoulli, Montmort, de Moivre, and Struyck, see Q 14.2. 

6.4 OTHER CONTRIBUTIONS BY HUYGENS 

After 1657, Huygens intermittently returned to probability problems, but he 
did not publish his results. 

His most important contribution is the probabilistic interpretation of 
Graunt’s life table, given in correspondence with his brother Lodewijk in 
1669, which we shall discuss in 58.1. 

In 1665 he had a lengthy correspondence with Hudde on the solution of 
Problems 2 and 4 and some more difficult problems. They solved these 
problems by recursion; a summary has been given by Korteweg (1920). 

In 1679 and 1688 he solved problems on popular card games. 

6.5 PROBLEMS 

1. Show that the difference equation from Proposition 12, 

=p(1 - q ” ) + q e , ,  e 2 = p 2 ,  n = 2 , 3  ,..., 

has the solution 

e, = 1 - npq”-I  - q”. 

Give an interpretation of this result. Compare with Huygens’ solution. 

2. Generalization of Problem I .  Let A win if he gets at least m successes in 
n trials, and let B win otherwise. Let em, be B’s expectation (probability 
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of winning) and show that 

em,, = pe,- + qem,n- 1 3  m = 0,1,. . . , n - 1, 

eon = 0 and en” = 1 - p”. Prove that the solution of this difference equation 
equals the sum of the first m terms of the binomial distribution. 

3. From the discussion of Proposition 14, it  follows that 

Show that this leads to an infinite series for e, with a sum in agreement 
with Huygens’ result. Give an interpretation of the terms of the series. 

4. In Huygens’ Problem 1, let en be A’s expectation when n games have been 
played without anybody winning. Derive the recursions for e4n, .  . , , e4,,+ 
and find the infinite series for e ,  and its sum. 

5. Modify Huygens’ Problem 1 by letting A and B take turns, A having two 
throws and B three. Show by Huygens’ method that the solution is 

6. Solve Huygens’ Problems 3 and 4 by the combinatorial method and 
compare with Huygens’ method. 

7 .  The Gambler’s Ruin Problem. (a) Solve the Gambler’s Ruin problem for 
n = 5 by Huygens’ method. (b) Edwards (1983) suggests that Pascal solved 
the Gambler’s Ruin problem by solving the difference equation e(m) = 
pe(m + 1)  + 4e(m - l), where e(m) denotes A’s expectation when he leads 
by m points, m =  - 12, - 1 1  ,..., 12, e ( -  12)=0, and e(12)= 1. Find e(0) 
and show that the corresponding odds are p ’ 2 : q ’ 2 .  (c) A wins the play if 
it ends with the points (12,0), (13, l), (14,2),. . ., and, similarly, B wins for 
(0,12), (1,13), (2,14),. . . . Edwards (1983) suggests that Fermat based his 
reasoning on the odds for the successive symmetric pairs of these series. 
Show that for each pair the odds are p 1 2 : q i 2 .  

8. A and B take turns at a play in which the players for each lost game have 
to increase the stake by unity. The first time a player wins he gets the 



80 HUYGENS AND DE RATIOCINIIS IN LUDO ALEAE, 1657 

whole stake. Let the probabilities of A and B of winning a single game 
be p ,  and p 2 ,  respectively. Find their expectations. For a given value of 
p i ,  find the value of pz that makes the expectations equal. 

This problem is formulated and solved by Huygens in his correspondence 
with Hudde, see Korteweg (1920). 



CHAPTER 7 

John Graunt and the 
Observations Made upon 
the Bills of Mortality, 1662 

Now having ( I  know not by what accident) engaged my 
thoughts upon the Bills of Mortality, and so far succeeded 
therein, as to have reduced several great confused Volumes 
into a few perspicuous Tables, and abridged such Observations 
as naturally Jlowed from them, into a few succinct Paragraphs, 
without any long series of multiloquious Deductions,. . . 

-JOHN G R A U N T  1662 

7.1 ON THE ORIGIN OF THE WORD “STATISTICS” 

Surveys of people and property have been carried out from ancient times 
for fiscal and military purposes. In Republican Rome the members and 
property of every family ’ were recorded quinquennially, and Augustus 
extended the census to cover the whole Roman empire. With the fall of the 
Roman empire the census disappeared, and regular censuses covering a whole 
national state were not taken up again until the beginning of the 18th 
century. In the Middle Ages and the Renaissance, surveys were carried out 
intermittently, mainly for fiscal reasons, such as the Domesday Book of 1086 
in England and the comprehensive survey in Florence in 1427. I t  is, however, 
only recently that a statistical analysis of these data was begun after they were 
transferred to electronic computers. 

The word “statistics” is of Italian origin. It is derived from stato (state), 
and a statista is a man who deals with affairs of the state. The original 

81 



82 JOHN GRAUNT AND HIS OBSERVATIONS 

meaning of statistics is thus a collection of facts of interest to a states- 
man. 

Statistics was used in this sense in Italy in the 16th century, and from 
there i t  spread to France, Holland, and Germany, where it was taught at 
the universities in the 17th and 18th centuries. It  embraced the political con- 
stitutions of states and mainly verbal descriptions of the important charac- 
teristics of states, such as population, economy, and geography. The use of 
the word “statistics” in this sense died out in the beginning of the 19th 
century. 

A systematic collection of numerical data on population and economy 
began again in the Italian city-states, notably Venice and Florence, during 
the Renaissance. A descriptive statistical analysis of such data occurred first 
in 1662 when John Graunt analyzed the weekly reports on vital statistics 
for London, which had been published regularly since 1604. Graunt’s methods 
of analysis, extended also to economic data, were continued by Petty, Gregory 
King, and others and called Political Arithmetic. About 1800 this line of in- 
vestigation began to be called statistics. According to K. Pearson, i t  was 
J .  Sinclair who  first used the word “statistics” in this modern sense in his The 
Statistical Account of Scotland drawn up ,from the communications of the 
ministers of the different purishes [ I79 1 - 1799, 2 I volumes; see Plackett 
( 1  986)]. 

More information on this matter may be found in Westergaard (1932, 
Chap. 2), K. Pearson (1978, Chap. I ) ,  M. G. Kendall(1960), and Cullen (1975, 
pp. 10-1 1). 

7.2 
MORTALITY 

GRAUNT’S DISCUSSION OF THE PLAGUE 

The high mortality in Europe before the 19th century was due to epidemic 
diseases, wars, and famine, which often interacted to produce terrible results. 
Among the epidemic diseases the plague was the worst. After the Black Death 
in 1348-1 350, the plague recurred frequently for nearly 400 years. 

The plague is an infectious disease transmitted by fleas carried mainly by 
rats, gerbils, and squirrels. This was unknown at the time, and i t  was generally 
believed that contagion depended upon corrupt air. Quarantine or isolation 
was used as a measure to reduce contagion. 

In London in the 1530s a warning system was established by requesting 
the parish clerks to submit weekly reports on the number of plague deaths 
and all other deaths in case of a beginning epidemic. These weekly bills of 
mortality served to tell the authorities when measures should be taken against 
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the epidemic, and they were also used by the wealthy part of the population 
as an indication of when to leave the city for the fresh air of the 
country. 

In 1538 parish registers were instituted for the purpose of recording all 
weddings, christenings, and burials within the Church of England. People of 
dissenting faiths were not recorded. Hull (1899, p. XCI) estimates that the 
number of burials recorded should be increased by about 15% to get a 
correct picture of the mortality in London for the period investigated by 
Graunt. 

Starting in 1604, weekly bills of mortality for the parishes of London were 
published by the Company of Parish Clerks, and a bill for the whole year 
was published at the end of each year. The ages of the deceased were not 
recorded before 1728. The great interest in the weekly bills is shown by the 
fact that they were printed from 1625, and a subscription arrangement was 
established for the general public. The weekly bills were published regularly 
until 1842 when they were superseded by the publication from the Registrar 
General. 

This large amount of data had not been analyzed statistically before John 
Graunt published his book in 1662. 

Graunt states that the continued weekly bills for London begin the 29th 
of December 1603 and that there were bills published before in times of great 
mortality, for example, in the years 1592-1 594. He gives examples of the 
yearly bills for 1624, a year with nearly no plague, and for 1625, a great 
plague year. From 1629 the burials and christenings are given separately for 
males and females. He gives detailed information on how London covers an 
increasing number of parishes during his period of investigation from 1604 
to 1661. Finally, he describes how the deaths are classified according to cause 
of death by two “Searchers, who are ancient Matrons, sworn to their Office.” 
They are called to the place where the deceased lies and “by view of the 
same, and by other enquiries,” they decide upon the cause of death and 
report to the parish clerk. The bill for 1632 contains 63 diseases and casualties 
ordered alphabetically. The weekly bill was published every Thursday “and 
dispersed to the several Families who  will pay four shillings per Annum for 
them.” The original information in the Hall books is more detailed than in 
the printed bills, and Graunt has presumably used these books, since his 
fundamental table embraces 81 causes of death. 

After having described the history and provenance of the data, Graunt, 
a true statistician, turns to a discussion of the trustworthiness of the data. 
We shall return to that problem in general in 87.3. Here we shall concentrate 
on Graunt’s discussion on the mortality of the plague. His data are shown 
in the following table. 
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1592 25,886 11,503 44 
1593 17,844 10,662 60 
1603 37,294 30,561 82 
1625 51,758 35,417 68 
1636 23,359 10,400 45 

Number of Burials, Plague Deaths, and Christenings in London 

26,490 4,277 16 
17,844 4,02 1 23 
38,244 4,784 13 
54,265 6,983 13 
23,359 9,522 41 

I PLAGUE 
YEAR BURIALS DEATHS % BURIALS CHRISTENINGS % 

Graunt does not express the mortality in percent but as a fraction such 
as 2 to 5, 7 to 10, and so on. 

From the first part of the table, Graunt concludes that the year 1603 is 
the greatest plague year. He then asks what year has the greatest total 
mortality. Since the size of the population is unknown, he uses the number 
of christenings as a measure of the population size and concludes from the 
second part of the table that the total mortality is largest and about equal 
for the years 1603 and 1625. How can this be reconciled with the first con- 
clusion? Graunt proposes to show that the number of plague deaths recorded 
in 1625 is too small. He notes that in the years before and after 1625, which 
were years without plague, the number of burials is between 7000 and 8OO0, 
whereas the number of nonplague deaths in 1625 is recorded as 54,265 - 
35,417 = 18,848, from which he concludes that about 18,000 - 7000 = 11,000 
of the ordinary deaths in 1625 ought to have been recorded as plague deaths. 
[Since a plague death might lead to the isolation of an infected house, Hull 
(1899, p.365) suggests that the Searchers may have been bribed to report 
other causes of death.] With this correction the number of plague deaths in 
1625 becomes about 46,000, which is 85% of the number of deaths for the 
whole year, that is, about the same plague mortality as in 1603. This is just 
one example of Graunt’s critical appraisal of the data. 

In the fifth edition of his book Graunt gives the total number of burials 
and the plague deaths in 1665 as 97,306 and 68,596, respectively. From his 
table of burials for the preceding years it follows that there was nearly no 
plague in the four years 1661-1664 and that the average number of burials 
was about 15,000. Using Graunt’s line of reasoning, we see that the number 
of plague deaths should be increased by about 14,000, which means that the 
plague mortality becomes about 85% of the total, just as in 1603 and 1625. 
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Graunt himself has not made this analysis, perhaps for the reason which he 
in another context tells the reader concerning the analysis of the bills: 
“conceiving it will be more pleasure and satisfaction [for the readers] to do 
i t  themselves, than to receive i t  from another hand.” 

In the third edition of his book (1665, p. 106), Graunt estimates the 
population of London in 1661 at 403,000. ( In  the first edition he had found 
460,000 by cruder methods.) With a yearly increase of about 2%, the 
population size in 1665 wzs about 430,000, which gives an uncorrected plague 
mortality in 1665 of 16% and, adding the 14,000 unrecorded plague deaths, 
a corrected plague mortality of 19%. The total mortality is 23%. Graunt 
writes that “about one fifth part of the whole people died in the great 
Plague-years” and that two-fifths fled to the country. This statement may 
be found as No. 36 in the Index to all editions of his book; he has obviously 
spared the reader the “multiloquious deductions.” 

In the third edition Graunt gave a table of the weekly deaths and plague 
deaths for the six great plague years. It is odd that he did not give this table 
in the first edition, since the bills were instituted with the specific purpose 
to be able to follow (and predict) the course of a plague epidemic. Perhaps 
he thought that this was the best known and most discussed information in 
the bills, and he therefore omitted it. He notes that the maximum of the 
epidemic curve appears in the fall (August-October), that the duration of 
the maximum varies, and that the ratio of the increasing to the decreasing 
period is about 3 to 2. Finally, he observes that only five times has there 
been a doubling of the plague deaths from one week to the next. 

From the fact that the number of christenings before and two years after 
the great plague years are about equal, he concludes that London is fully 
repeopled within two years, essentially by migration from the country. 

The year 1665 was the last great plague year in London. During the latter 
part of the century, the plague disappeared from England and a little later 
from the Continent as well. 

7.3 JOHN GRAUNT AND HIS OBSERVATIONS M A D E  
UPON THE BILLS OF MORTALITY 

John Graunt (1620-1674) was the son of a London draper, and after serving 
an apprenticeship he joined in his father’s business, which he eventually took 
over. He received an ordinary education in English learning and studied 
Latin and French on his own in the morning before business hours. He soon 
became a respected London citizen and held a number of important offices 
in the Draper’s Company, in the Ward offices, and in the Council of the 
City. He was a captain and later became a major of the trained band of the 
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City. He also had many acquaintances in cultural and scientific circles. About 
1650 his influence was great enough to procure a professorship of music at 
Gresham College for his friend William Petty, assistant professor of anatomy 
at Oxford. 

The publication of his Natural arid Political Observations Made upon the 
Bills of Mortality in 1662 resulted in his election to the newly established 
Royal Society. His book was a success, and a second edition appeared before 
the end of the year. The great plague in 1665 renewed the interest in the 
book, and a third edition with new data added was published and reprinted 
in 1665. A fifth edition was published in 1676 after Graunt’s death with 
“Some further Observations of Major John Graunt.” 

The great fire in 1666 destroyed his property in London, and he seems 
to have been in increasing economic troubles for the rest of his life. His 
difficulties were also enhanced by his change of religion in his later years. 
Originally a Puritan, he became for many years a Socinian (Unitarian), and 
finally a Roman Catholic, which forced him to give up  his civil and military 
offices. 

There has been much discussion of whether Petty wrote the whole or part 
of the Observations. Glass (1964) has summarized the discussion as follows: 
“neither direct testimony nor internal evidence furnishes much support for 
the contention that Petty contributed in any substantial measure to Graunt’s 
Observations.” However, Cullen (1975, p. 5) argues that “Graunt may have 
written the body of the work but the general framework and the whole 
conception were Petty’s.’’ 

A full account of the little that is known about Graunt’s life has been 
given by Glass ( 1964). 

Graunt’s book is a small volume of 85 pages plus two dedications and 
an index, “the whole Pamphlet, not two hours reading,” as Graunt writes 
in his dedication to Lord Roberts. This is true if one reads the book as an 
entertainment, mainly to learn about the many new factual results in 
demography and vital statistics which Graunt deduces from the bills. 
However, if one is interested in learning the new ideas about statistical 
analysis embodied in the book, the reading will take much longer. His 
statistical methods are seldom pronounced directly but are to be found in 
his examples. 

His program for descriptive statistical analysis is announced in the 
paragraph we have chosen as epigraph. First he stresses the reductiori of data 
from “several great confused Volumes into a few perspicuous Tables,” and 
next his statistical arialysis of the tables is presented in “a few succinct 
Paragraphs, without any long Series of multiloquious Deductions.” This 
admirable program has ever since been a goal for any statistical office. 
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Graunt’s fascinating book should be read by anyone interested in the history 
of statistics. 

Graunt’s book begins with a very useful Index containing 106 propositions 
proved or discussed in the text. Next follow two dedications and a preface. 
The 12 chapter headings are as follows: 

1. Of the Bills of Mortality, their beginning, and progress. 
2. General Observations upon the Casualties. 
3. Of Particular Casualities. 
4. Of the Plague. 
5. Other Observations upon the Plague, and Casualties. 
6. Of the Sickliness, Healthfulness, and Fruitfulness of Seasons. 
7. Of the difference between Burials, and Christnings. 
8. Of the difference between the numbers of Males, and Females. 
9. Of the growth of the City. 

10. Of the Inequality of Parishes. 
11. Of the number of Inhabitants. 
12. Of the Country Bills. 
The Conclusion. 

It  will be seen that besides the London bills he had access to the bills of 

A t  the end of the book he gives eight tables on which all his results depend. 
a country parish, namely, Romsey in  Hampshire. 

The contents of the tables may be described as follows. 

1. Number of burials in London for each year from 1629 to 1636 and 
from 1647 to 1660 classified according to 81 causes of death. Subtotals 
are given for five groups of four years each, namely, 1629-1632, 
1633-1 636, 1647.- 1650, 165 I - 1654, I655 - 1658, and totals are given 
for the corresponding 20 years. The total number of burials for the 
20 years is 229, 250. This is a large table to which Graunt adds the 
following note: “That the 10 years between 1636 and 1647 are omitted 
as containing nothing Extraordinary, and as not consistent with the 
Incapacity of a Sheet.” 

2a. Number of burials and christenings in London for each year from 
1604 to 1664. Burials are divided into plague deaths and other deaths, 
the latter being divided among three groups of parishes. Totals are 
given for every eight years. 
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2b. Number of burials and christenings in seven out-parishes for each 
year from 1636 to 1659, with information on plague deaths from 1636 
to 1648. 

3. Number of burials and christenings in London for each year from 
1629 to 1664 for males and females. Totals for every eight years. 

4. Number of weddings, christenings, and burials in Romsey for each 
year from 1569 to 1658 for males and females. Totals for every ten years. 

5. A similar table for Tiverton from 1560 to 1664. 
6. A similar table for Cranbrooke from 1560 to 1649. 
7. Total number of deaths and number of plague deaths in London for 

8. Weddings, christenings, and burials in Paris for each month of the 
each week in 1592, 1603, 1625, 1630, 1636, and 1665. 

years 1670- 1672. 

Tables 5 6 ,  and 7 were added in the third edition, and Table 8 in the fifth 
edition. 

On the title page Graunt calls himself “Citizen of London,” and in several 
places of the book he hints at his lack of academic education and his use of 
shop arithmetic instead of mathematics. There is no doubt, however, that 
he was perfectly aware of the originality of his approach and his results. He 
writes to Lord Roberts that “to offer any thing like what is already in other 
Books, were but to derogate from your Lordship’s learning.” In the preface 
he writes, “Moreover finding some Truths, and not-commonly-believed 
Opinions, to arise from my Meditations upon these neglected Papers, I 
proceeded further, to consider what benefit the knowledge of the same would 
bring to the World.” In the conclusion he states, “And there is pleasure in 
doing something new, though never so little, without pestering the World 
with voluminous Transcriptions.” 

In accordance with the title of his book, Natural and Political Observations, 
Graunt wrote two dedications. The first is addressed to John Lord Roberts, 
also called Robartes, Lord Privy Seal and, later, the first Earl of Radnor. 
Graunt gives a summary of the results in his book concerning “Government, 
Religion, Trade and Growth” most interesting and useful for a politician. 
He intimates that his Lordship may know some of these results already, but 
that the new thing is that they are now deduced from the bills of mortality. 

The second dedication is to Sir Robert Moray, President of the Royal 
Society, and to the rest of that Honourable Society. Referring to a work of 
Francis Bacon, Graunt points out that his work is on natural history, since 
it concerns “the Air, Countries, Seasons, Fruitfulness, Health, Diseases, 
Longevity, and the proportion between the Sex and Ages of Mankind.” As 
such i t  naturally falls under the sphere of interest of the Society. 
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The data given in the bills are unreliable, incomplete, and often inadequate 
as a basis for answering the questions raised by Graunt. For example, there 
is no information on the size of the population and on the age distribution 
of the dead and the living. Nevertheless, Graunt succeeds in answering a 
great many questions in demography and vital statistics by shrewd 
argumentation. He has a remarkable ability to support his conclusions by 
several independent arguments based on various aspects of the data. 

His reasoning is often based on the idea of the stability of statistical ratios; 
sometimes he demonstrates the stability from the data, in other cases, he 
uses i t  as a reasonable hypothesis. 

The main impression of his book is one of strong logical consistency of 
arguments and results. I t  is no wonder, however, that certain shortcomings 
occur; we shall comment later on those of a methodological character. I t  is 
also easy to find discrepancies between the numbers given in the text and 
the tables and to find small errors in his arithmetic. We shall not dwell on 
these blemishes, which are of minor importance compared to the sound 
statistical principles embodied in his work. 

His data are given as a number of time series. Nobody would analyze 
such data today without plotting them. In Graunt’s time, however, the 
graphical analysis of statistical data had not been invented, so Graunt 
analyzed his data by looking carefully at the variation of the series of numbers. 
To help in his evaluation of trends, he computed totals for periods of four, 
eight, or ten years in the different series. 

We have already pointed out that he begins with the history and 
provenance of the data. We shall next give some comments and examples 
of his main methods and results. 

7.4 GRAUNT’S APPRAISAL OF THE DATA 

Graunt begins by a discussion of the reliability of the classification according 
to cause of death. He says that even if the Searchers may be ignorant and 
careless, their reports are sufficiently accurate for many purposes, particularly 
if certain corrections are carried out. We have already seen in 57.2 how by 
studying the course of the series of burials, Graunt reaches the conclusion 
that the number of burials are not to be trusted in plague years and that “a 
fourth part more die of the plague than are set down.” For many deaths, 
however, the cause of death is obvious, and in case of doubt the Searchers 
usually report the opinion of the physician who treated the patient. 
Nevertheless, misclassifications occur but “it matters not to many of our 
purposes, whether the Disease were exactly the same, as Physicians define 
it in their Books.” As an example of underrecording, Graunt mentions the 
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number of deaths from French pox (syphilis). Comparing the reports from 
several parishes, Graunt concludes that in most parishes syphilis is 
misclassified as consumption, ulcers, or sores, because the family of the 
deceased has bribed the Searchers. He concludes that it is important to 
report the deaths from many causes and many districts so as to be able to 
check the accuracy by making comparisons. 

In his comparisons of the mortality of various causes of death over the 
period of investigation from 1604 to 1661, Graunt sometimes uses the yearly 
number of burials (exclusive of the plague deaths) and sometimes the yearly 
number of christenings as a measure of the population at risk. He thus tacitly 
assumes constant death and birth rates. How suitable are the recorded 
numbers of burials and christenings for this purpose? Studying the table of 
burials and christenings in nonplague years, Graunt observes that the ratio 
of christenings to burials has decreased from about 1 to 1 before 1642, to 
about 2 to 3 in 1648 and to about 1 to 2 in 1659, the reason being a change 
of religious opinion on baptizing infants after the Civil Wars and the change 
of government. Thus, the number of christenings after 1642 does not 
adequately represent the number of births. As further evidence of this 
conclusion, Graunt presents the comparisons shown in the following table: 

/ 
Number of Deaths and Christenings in London 

ABORTIONS AND WOMEN DYING ORDINARY 

YEAR STILLBIRTHS IN CHILDBED BURIALS CHRISTENINGS 

1631 410 112 8288 8524 
1659 42 1 226 14,720 5670 

Source: Graunt, 1662, Chap. 3. 

Graunt takes the larger ratio of stillbirths to christenings in 1659 than in 
1631 as an indication of a decrease in the number of christenings in relation to 
the number of births; he thus tacitly assumes that the stillbirth rate has not 
increased. However, he remarks that the numbers of abortions and stillbirths 
are rather unreliable, so he turns to the numbers of women dying in childbed, 
which he considers to be more accurately recorded. Assuming a constant 
maternal mortality rate, he concludes “that the true number of the 
Christnings Anno 1659 is above double to the 5,670 set down in our Bills, 
that is about 11,500, and then the Christnings will come near the same 
proportion to the Burials, as has been observed in former times.” This is 
typical of Graunt’s line of reasoning; he supports his conclusion in three 
different ways, all based on numerical data. His general conclusion is that 
the christenings may be considered proportional to the population size before 
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1642, whereas thereafter the burials should be used. In principle he prefers 
the christenings to the burials because some people die in London without 
living there permanently. 

7.5 PROPORTIONAL MORTALITY BY CAUSE OF DEATH 

From his basic table of burials, classified according to causes of death, Graunt 
derives the following summary in Chap. 2: 

CAUSE OF DEATH NUMBER OF BURIALS 

Plague 16,000 
Children’s diseases 77,000 
Aged 16,000 
“Chronical” diseases 70,000 
“Epidemical” diseases 50,000 

Total 229.000 

He defines the “chronical” (endemic) diseases as those which bear a 
constant proportion to the whole number of burials, whereas the proportion 
of deaths due to “epidemical” diseases varies from year to year. 

He gives a list of 30 diseases and casualties with very low proportional 
mortality, for most of them less than 1/200 of the total mortality. He writes 
that many persons live in great fear and apprehension of these diseases and 
that his table may make them better understand the (small) hazard they are in. 

For a great number of diseases he gives in Chap. 3 a detailed analysis of 
the trend in mortality taking the increasing population into account. As an 
example, consider the number of deaths due to “Stone,” as shown in the 
following table: 

YEAR STONE BURIALS 

1631 -1635 254 41,151 
1656- 1650 250 68,7 12 

To make life easy for the reader, he has obviously selected two 5-year periods 
with nearly the same numbers of deaths from Stone. He then remarks that 
because of the increasing population, the mortality has really decreased. 

Graunt faces the same difficulties as we do today in medical statistics: 
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Diagnoses are improved, and new diseases appear so that the classification 
changes. For example, in the beginning of the observational period, 
Livergrown, Spleen, and Rickets are in one group, whereas from 1634, Rickets 
and, from 1647, Spleen are classified separately. A new disease, Stopping of 
the Stomach, occurs in 1636. To illustrate Graunt’s discussion of these 
problems we shall give the number of burials for the five 4-year periods from 
his basic table for several diseases. In his own discussion he uses the yearly 
numbers. 

Number of Burials for Various Diseases Excerpted from Graunt’s 
Basic Table 

DISEASF 1629.1632 1633-1636 1647-1650 1651 1654 1655-1658 

Livergrown, etc. 392 3 56 213 269 191 
Rickets 0 113 780 I I90 I598 
Stomach 0 6 121 295 247 
Rising of the 

Lights 309 220 177 585 809 
Scurvy 33 34 94 132 300 
Gout 14 24 35 25 36 

Graunt begins by asking whether Rickets actually first appeared about 
1634 or whether a disease which had long been in existence did then first 
become named. Comparing the first two lines of the table, he concludes that 
Rickets is a new disease with an increasing mortality, since the rate of increase 
in the number of burials far exceeds the rate of increase in the total number 
of burials. (During the period of observation, the total number of burials 
increased about 50%.) A similar conclusion holds for Stopping of the 
Stomach. He surmises that the increase in Rising of the Lights may be 
connected with the two other diseases just mentioned. 

He also concludes that the mortality of Scurvy is increasing, whereas 
Gout does not increase. He also discusses the mortality of several other 
diseases. 

7.6 THE STABILITY OF STATISTICAL RATIOS 

The stability of the ratio of the numbers of male and female births and deaths 
is investigated both for London and for Romsey. Graunt refers the reader. 
to the tables, from which the stability is obvious, and he calculates the ratios 
only for the whole period of observation. We have calculated the ratios of 
the totals given in his tables, as shown in the table below. 
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Ratio of Number of Males to Number of Females 

CHRISTENINGS 

LONDON 

BURIALS 

PERIOD CHRISTENINGS BURIALS 

1629- 1636 1.072 1.113 
1637- I640 1.073 1.149 
1641-1648 1.063 1.093 
1649-1656 1.095 1.065 
1657- I660 1.069 1.093 

~~ ~ ~ 

Total 1.074 1.098 

ROMSEY 

PERIOD 

1569-1 578 
1579-1588 
1589-1 598 
1599-1608 
I 609- 1 6 1 8 
1619- 1628 
1629-1638 
1639- 1648 
1649-1658 

CHRISTENINGS 

1.03 
1.06 
1.25 
0.97 
1.16 
0.99 
1.01 
0.98 
1 . 1  t 

BURIALS 

0.97 
0.95 
1.19 
1.14 
0.88 
1 .oo 
0.99 
0.98 
0.99 

~~ 

Total 1.06 1 .oo 

MALES FEMALES I MALES FEMALES 

London per 8 years 33,758 31,430 I 49,:;; 45,297 
Romsey per 10 years 362 343 293 

Graunt concludes that in Romsey there were born 15 females for 16 males, 
whereas in London there were 13 for 14, which shows “that London is 
somewhat more apt to produce Males than the Country.” Perhaps he feels 
a little unsure of this conclusion, since he adds that “it is possible, that in 
some other places there are more Females born than Males; which, upon 
this variation of proportion, I again recommend to the examination of the 
curious.” 

This is the first time that the near equality of the numbers of males and 
females and the stability of the sex ratio at birth have been statistically 
demonstrated. 

Graunt speculates on the reasons for this phenomenon, and he vacilates 
between religious and practical explanations. He remarks that the higher 
death rate of adult men and the greater emigration reduce the surplus of 
men and “bringeth the business but to such a pass, that every Woman may 
have an Husband, without the allowance of Polygamy.” It follows “that the 
Christian Religion, prohibiting Polygamy, is more agreeable to the Law of 
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BURIALS‘ 

DECADE MAXIMUM MINIMUM RATIO 

Nature” than Islam. Furthermore, “It  is a Blessing to Mankind, that by this 
overplus of Males there is this natural Bar to Polygamy; for in such a state 
Women could not live in that parity and equality of expense with their 
Husbands, as now, and here they do.” 

Graunt expresses the wish “that Travellers would enquire whether it be 
the same in other Countries.” This wish has certainly been fulfilled. The 
number of investigations on this problem since the time of Graunt is 
overwhelming. 

It is remarkable that Graunt also investigates the stability of the 
fluctuations in the time series of christenings and burials. For Romsey he 
has grouped his data in decades, and in Chap. 12 he tabulates the greatest 
and least numbers within each of the nine decades, as shown in the following 
table: 

CHRISTENINGS* 

MAXIMUM MINIMUM RATIO 

Greatest and Least Yearly Numbers of Burials and Christenings in Romsey 

1609- 16 I8 9596 6716 1.43 
1619-1628 12,199 740 1 I .65 
1629- 1638 13,26 1 8288 1.60 
1639-1648 12,216 9283 1.32 
1 649- 1 65 8 14,979 8749 1.71 

BURIALS 

7985 6388 1.25 
8564 6701 1.28 

10,311 8524 1.21 
- - - 
7050 5612 1.26 

DECADE 

1569- I578 
1579-1588 
1589- 1598 
1599- 1608 
1609- 161 8 
1619-1628 
1629- I638 
1639- I648 
1649- 1 658 

MAXIMUM MINIMUM RATIO 

66 34 1.9 
87 39 2.2 

117 38 3.1 
53 30 1.8 

1 I6 51 2.3 
89 50 1.8 

I56 35 4.5 
137 46 3.0 
80 28 2.9 

CHRISTENINGS 

MAXIMUM MINIMUM RATIO 

70 
90 
71 
93 
87 
85 

103 
87 
86 

50 
45 
52 
60 
61 
63 
66 
62 
52 

1.4 
2.0 
1.4 
I .6 
1.4 
I .4 
1.6 
I .4 
1.7 

Graunt does not tabulates the ratios but uses some of them in the 

For comparison we have constructed a similar table for London: 
discussion in the text. 
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Graunt states “that the proportion between the greatest and the least 
Mortalities in the Country are far greater then at London.” He gives some 
examples of this fact and concludes that at Romsey the ratio is generally 
above 2, whereas in London it  is below 2. Graunt is naturally puzzled by 
this result and tries to explain it in terms of the fresh air in the country 
compared to the polluted air of London, in accordance with the epidemic 
theory of the time. 

Graunt remarks that the ratios are smaller for the births than for the 
deaths, but still far greater in Romsey than in London. He does not comment 
further. 

It is clear that this problem is too difficult for Graunt. He understands 
that trends are more easily discernable from totals than from individual 
years, but he has no clear conception of the relation between the size of the 
random variation and the size of the sample. Let us comment on Graunt’s 
numbers. In Romsey the population is nearly constant, and the average 
yearly numbers of burials and christenings are 58 and 70, respectively. 
Considering these numbers as the means of two Poisson processes, the 
coefficients of variation become 13% and 12%, respectively. It follows that 
the variation of the ratios for the christenings is not much larger than for a 
Poisson process, whereas the ratios for the burials vary considerably more. 
This is easy to explain, since the occurrence of epidemics creates a larger 
variation in the deaths than in the births. In London the population is 
increasing at a rate of about 18% per decade, which explains a factor of 1.18 
in the ratios. The average yearly number of burials and christenings is 10,058 
and 7768, respectively, with corresponding coefficients of variation of 1 .OO% 
and 1.13%. The 18% increase within a decade, combined with the coeficient 
of variation, may explain the variation of the ratios for the christenings but 
not for the burials. It is, however, clear that the larger random variation of 
the yearly numbers in Romsey plays a large role in explaining that the ratios 
in Romsey are larger than in London. 

7.7 A TEST OF THE HYPOTHESIS “THAT THE MORE SICKLY 
THE YEAR IS, THE LESS FERTILE OF BIRTHS” 

The London bills show that the number of christenings is small in plague 
years, since many pregnant women die or flee to the country. In continuation 
of this observation Graunt formulates the refined hypothesis that “sickly” 
years are less fertile than healthy years. To prove this proposition from the 
London bills he first excludes the plague years, which he defines as years 
with more than 200 deaths from plague. This reduces his data from 58 to 
34 years. He then makes the shrewd remark that “we may not call that a 
more sickly year, wherein more die, because such excess of Burials may 
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proceed from increase and access of People to the City onely.” [If he had 
also applied this observation to his definition of a plague year, he would 
have allowed the limit of 200 deaths to increase over time (population), but 
this weakness in his definition is not significant.] He defines a “sickly” year 
as a year wherein the burials exceed those of both the preceding and the 
subsequent year; that is, he uses the local maxima of the time series of burials 
for his definition. Implicitly healthy years are defined by means of the local 
minima. Similarly, he uses local maxima and minima in the time series of 
christenings to define fertile and less fertile years. His idea is to prove the 
hypothesis by means of the coincidence (correlation) between the local 
maxima of the series of burials and the local minima of the series of 
christenings. He does not give this analysis in detail but writes “that upon 
view of the Table, [the hypothesis] will be found true, except in a very few 
cases, where sometimes the precedent, and sometimes the subsequent years 
vary a little, but never both together.” The proposed test is ingenious, but 
his conclusion doubtful. 

His method of analysis of the data from Romsey is simpler because the 
population size is nearly constant. He therefore compares the deviations from 
the average number of burials, 58 per year, with the corresponding deviations 
from the average number of christenings, 70 per year, and pronounces that 
“you shall finde, that where fewer than 58 died, more than 70 were born. 
Having given you a few instances thereof, I shall remit you to the Tables for 
the general proof of this Assertion.” His idea of a negative correlation is 
perfectly clear, but for once his common sense fails him in the execution of 
the test. He fools himself and the reader by selecting as examples some years 
where the data support his hypothesis, namely, four years with a high number 
of christenings and a low number of burials, and four years with a high 
number of burials and a low number of christenings. In the first group of 
four years the average number of burials is 41, that is, considerably lower 
than the total average of 58. However, if we include all the years with a large 
number of christenings (larger than 86, say), the average number of burials 
becomes 60. Similarly, we find for the group offour years with a large number 
of burials an average number of christenings of 58, that is, lower than the 
total average of 70; but if we include all the years with a large number of 
burials (larger than 87, say), the average becomes 68. Hence, the data do not 
support Graunt’s hypothesis. This was to be expected in view of the 
conclusion reached in the previous section that the variation of the 
christenings is nearly a random binomial variation. 

7.8 

Since the death and birth rates play an important role in Graunt’s discussion 
of the population size and of migrations, we shall summarize his results here. 

ON THE NUMBER OF INHABITANTS 
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In London “I find by telling the number of families in some parishes 
within the walls, that 3 [persons] out of I I families per annum have died.” 
He assumes that the average family size is eight, namely, “the Man, and his 
Wife, three Children, and three Servants, or Lodgers.” The death rate then 
becomes 3/88 or 34 per 1000. (Instead of 1/29.3, he sometimes uses 1/30 or 
1/32 without any explanation.) In most other cases Graunt carefully presents 
the data on which his estimates are based. I t  is unfortunate that in this 
important case he does not report how many families and family members 
he counted. 

We have already mentioned that in the third edition Graunt estimates 
the population size in 1661 at 403,000. Setting this number in relation to the 
average number of burials in 1660-1662, we get a death rate of 35 per 1000, 
in good agreement with his estimate of 3/88. 

The average population size for Romsey is estimated at 2700 and the 
average number of deaths 58, which gives a death rate of 22 per 10o0. He 
attributes the great difference in urban and rural mortality to the 
unhealthiness of London, with its polluted air and overcrowding. 

Since the number of christenings in London is about 12/13 of the number 
of burials, the birth rate becomes 31 per 1000. 

In Romsey the birth rate is estimated at 70/2700 or 26 per 1000. 
At Graunt’s time it was generally believed that the population of London 

amounted to about 1 million people. Graunt tells that one day an Alderman 
of the City asserted that the increase in population from before the plague 
in 1625 to 1661 was 2 million, and upon this provocation Graunt decided 
to endeavor to get a little nearer to the truth. 

Characteristically, he estimates the number of families in London in three 
different ways, namely, from the births, the burials, and the number of houses. 

Since the number of burials at the time was about 13,000 per year he 
estimates the number of births at 12,000, even if the number of christenings 
is considerably smaller for reasons previously mentioned. From the 
consideration that childbearing women “have scare more than one Childe 
in two years,” he estimates the number of childbearing women at 24,000 and 
the number of families at 48,000, because he imagines that the number of 
women between 16 and 76 years is about double the number of women of 
childbearing age. 

Second, from his estimated death rate of three persons per eleven families 
and the 13,000 yearly deaths, he again finds 48,000 as the number of families. 

Third, from a map of London and from the estimated area occupied by 
a house, he guesses that there are 54 families per 100 square yards, of which 
there are 220 within the walls. Since the yearly number of burials within the 
walls is about one-fourth the total number, he again gets 48,000 families. 

Of course this agreement is almost too good to be true. On the other 
hand, Graunt is disarmingly honest; he displays his data frankly and every 
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step in his (bold) reasonings, so that i t  is easy for the reader to criticize the 
result or to make improvements if he so desires. It should also be remembered 
that this is the first attempt to estimate the population of London on an 
objective, statistical basis. 

As mentioned previously, he estimates the average family size to be eight, 
which gives him a population in London of 384,000 for the area corresponding 
to the original bills. However, he also has the information that the burials 
in seven suburb parishes amount to about one-fifth the burials in London, 
which leads him to 460,000 as the population of Greater London. 

In 1665 Graunt got access to a census of the population of London taken 
in 1631, and he thus got the possibility of checking his estimate. The census 
covering only the central part of London gave a population of 130,000. Using 
as usual the ratio of number of burials as a measure of change in population 
size, Graunt corrects the census result by two factors, the first estimates the 
increase from 163 1 to 1661 and the second the increase of area. His result is 

11 9 
130,000 x - x -- = 403,000, 

8 4  

but he is deplorably vague about how he arrives at the correction factors. 

following figures: 
To estimate the growth of the different parts of London, Graunt gives the 

Number of Burials in Different Districts of London 

97 16 10 
YEAR PARISHES PARISHES OUT-PARISHES TOTAL I 

1605 2014 2974 960 5948 
1659 343 1 6988 4301 14,720 

Ratio 1.7 2.3 4.5 2.5 

The 97 parishes within the walls have the smallest rate of growth because 
there is almost no more space for new buildings. Then follows the 16 parishes 
immediately outside the walls and finally the 10 outer parishes, where the 
greatest increase has taken place. Graunt describes in some detail this 
development and points out the economic consequences of this westward 
movement of London. 

Since the number of deaths in London exceeds the number of births, 
Graunt faces the difficult problem of explaining the growth by means of 
migration from the country. His information on population movements in 
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the country is limited to the number of burials, christenings, and weddings 
from 1569 to 1658 in a parish containing the market town Romsey in 
Hampshire “being a place neither famous for Longevity and healthfulness, 
nor for the contrary.” (Romsey is Petty’s birthplace.) 

To estimate the population size he first proceeds as for London. Guessing 
at a death rate of 1/4 per family, a little smaller than the 3/11 for London, and 
using the average yearly number of deaths, he finds 58 x 4 = 232 families 
and 232 x 8 = 1856 persons. Comparing the number of families with the 
number of houses, and the number of people with the number of 
communicants, he discards these estimates as too low. From an ordinary 
number of communicants of 1500 and from the supposition that there are 
nearly as many under 16 years old as above, Graunt concludes that there 
are about 2700 people in Romsey. 

The excess of christenings over burials in Romsey during the 90 years is 
1059, or about 12 per year. This is the tiny basis for his speculations on 
growth and migration. He begins by distributing the surplus of about 1100 
people in three categories: about 300 have remained in the parish; i t  is 
probable that between 300 and 400 went to London; and it is known that 
about 400 went overseas. He supposes that Romsey has grown from 2400 
to 2700 during the 90 years. 

He also estimates the population of England and Wales at about 6,440,000 
people. First, he remarks that the whole population equals 14 times the 
population of London, 14 x 460,000 = 6,440,000, since London bears 1/15 of 
the whole tax. Second, he notes that there live 220 persons per square mile 
at Romsey and guesses that for the whole country, the density is about 3/4 
of that. Since the whole area is 39,000 square miles, he obtains the estimate 
220 x (3/4) x 39,000 = 6,400,000. Third, he guesses that the average number 
of people per parish is about 600, and multiplying by 10,000, the number of 
parishes, he gets 6,000,000. 

The problem is to get a consistent whole out of this information on the 
population of England, London, and Romsey. The most reliable estimate of 
the migration from the country to London is obtained from the growth of 
London itself. He considers the 40-year period from 1622 to 1661 in which 
the population has doubled. This follows from various investigations of the 
increase in the number of burials and is in agreement with the previous 
demonstration of an increase by a factor of 2.5 in 54 years. For the 40 years 
the increase has thus been 230,000 to reach the 460,000 in 1661. To this must 
be added the excess of deaths over births. Because the recording of 
christenings during the period in question is unreliable, he uses the excess 
33,000 for the period 1604-1643. His conclusion is that immigration has 
been about 250,000, or about 6000 per year. With a death rate of 3/88 thjs 
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gives a yearly increase in the number of burials of about 200, which is in 
agreement with the bills. (The numbers given in his text on p.43 do not 
agree with the numbers in the tables.) 

Turning to the direct estimation of the rate of migration, he first observes 
that the population in the country increases by about 1/7 in 40 years “as we 
shall hereafter prove doth happen in the Countrie [Romsey].” However, he 
does not return to this question. Perhaps he started from the increase 
1059 x (40/90) = 470 in relation to 2700, which is about 1/6, and for some 
reason changed this estimate to 1/7. With a population outside London of 
5,980,000, this gives an increase of 854,000 of which about 1/3, i.e., 285,000, 
migrates to London according to the experience at  Romsey. He also uses 
the same data in a loose way to estimate the yearly migration as 1 out of 
every 900 inhabitants, which gives a yearly number of 6600. He concludes 
that there is reasonable agreement between the estimates of migration based 
on the Romsey and the London data. 

To improve this analysis Graunt realized the necessity of getting more 
data on the population outside London. He therefore designed a 
representative sample of seven parishes, but he only succeeded in getting 
information from two besides Romsey. In the Appendix to the third and 
following editions he wrote, “I have here inserted two other Country-Bills, 
the one of Cranbrook in Kent, the other of Tiverton in Devonshire, which 
with that of Hampshire [Romsey], lying about the midway between them, 
give us a view of the most Easterly, Southerly, and Westerly parts of England. 
I have endeavoured to procure the like account from.. . thereby to have a 
view of seven countries most differently situated.” One would expect that he 
would have used these new data to improve the analysis carried out in the 
first edition, but he leaves this task to the reader. 

In the fifth edition he included a table of the monthly burials in Paris for 
the years 1670-1672, which he used for a discussion of the population size 
of Paris compared to that of London. 

7.9 GRAUNT’S LIFE TABLE 

Graunt naturally wanted to answer the important political question of how 
many “fighting men” (men between 16 and 56 years of age) there were in 
London. He therefore had to construct an age distribution of the living 
population from his data on the number of deaths according to causes, a 
seemingly impossible task. He hit upon the idea of estimating childhood and 
old age mortality from the data and then filing in the gap by guesswork. He 
thus constructed a life table showing how a cohort of 100 newborn infants 
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dies out. This is perhaps the most famous and most discussed passage in 
Graunt’s book, and  we shall therefore quote i t  extensively. 

Having premised these general Advertisements, our first Observation upon the 
Casualties shall be, that in twenty Years there dying of all diseases and Casualties, 
229,250, that 71,124 dyed of the Thrush, Convulsion, Rickets, Teeths, and Worms; 
and as Abortives, Chrysomes, Infants, Livergrown, and Overlaid; that is to say, 
that about 1/3 of the whole died of those diseases, which we guess did all light 
upon Children under four or five Years old. 

There died also of the Small-Pox, Swine-Pox, and Measles, and of Worms without 
Convulsions, 12,210, of which number we suppose likewise, that  about 1/2 might 
be Children under six Years old. Now, if we consider that 16 of the said 229 
thousand died of that extraordinary and grand Casualty the Plague, we shall finde 
that about thirty six per centum of all quick conceptions, died before six years 
old (Graunt, 1662, p. 15). 

His estimate of the  mortality for the age group 0-6 years is thus found to be 

71,124 + 6105 
= 0.36. 

229,250 - 16,000 

Graunt includes the 8559 abortions and stillborn among the deaths, and he 
therefore writes about the mortality of “all quick conceptions.” If  these deaths 
are excluded, the death rate becomes 0.32. 

Old-age mortality is estimated from the 15,757 deaths classified as “aged” 
in relation to the total number 229,250, which gives 7%. (He does not mention 
the plague deaths in this connection.) Then he writes on p. 18, “Onely the 
question is, what number of Years the Searchers called Aged, which I conceive 
must be the same, that David calls so, viz. 70.” However, in his description 
of the causes of death on p. 13 he writes, “whether men were Aged, that is 
t o  say, above sixty years old, o r  thereabouts, when they died.” He is thus 
rather inconsistent, and as we shall see, he finally decides that only 376 are 
alive a t  66 years of age and 1% a t  76. 

The  life table is derived on pp. 61-62: 

Whereas we have found, that of 100 quick Conceptions about 36 of them die 
before they be six years old, and that perhaps but one surviveth 76, we, having 
seven Decads between six and 76, we sought six mean proportional numbers 
between 64, the remainder, living at six years, and the one, which survives 76, and 
finde, that the numbers following are practically near enough to the truth; for 
men do not die in exact Proportions, nor in Fractions; from whence arises this 
Table following. 
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ACE DEATH 

X 4 64( 5/qY  RATE^ 
0 100 - 0.36 
6 64 64 0.375 

16 40 40 0.375 
26 25 25 0.36 
36 16 16 0.375 
46 10 10 0.40 
56 6 6 0.50 
66 3 4 0.67 
76 1 2 1 .00 
80 0 2 

Viz. of 100 there dies within 
the first six years 36 

The next ten years, or Decad 24 
The second Decad 15 
The third Decad 09 

ACE DEATH 

X 4  RATE^ 
1 100.0 0.43 
7 57.4 0.16 

17 48.1 0.16 
27 40.5 0.18 
37 33.4 0.22 
47 26.0 0.29 
57 18.4 0.39 
67 11.2 0.57 
77 4.8 0.98 
87 0.1 

The fourth 6 
The next 4 
The next 3 
The next 2 
The next I 

From whence it follows, that of the said 100 conceived there remains alive at six 
years end 64. 

At Sixteen years end 40 
At Twenty six 25 
At Thirty six 16 
At Forty six 10 

At Fifty six 6 
At Sixty six 3 
At Seventy six 1 
At Eighty 0 

There has been much discussion of how Graunt constructed his life table. 
Evidently he began with the two values (6,64) and (76, l), and then he 
mysteriously “sought six mean proportional numbers” to fill in the gap. Most 
authors have suggested that he used a geometrical series for the living. The 
simplest explanation has been given by Westergaard (1901, p. 31), who writes 
that for the first five decades Graunt used a mortality rate of about 3/8 and 
thereafter a somewhat increasing mortality. Glass (1950) has given an 
explanation in terms of the deaths rather than the survivors. 

Let I, denote the number of survivors at age x. The following table shows 
Graunt’s values for I, and the corresponding values for a constant mortality 
rate of 3/8 per decade. The two columns agree, except for the last three values. 
We have also shown the mortality rate for each age interval according to 
Graunt’s table. 

Graunt’s Life Table and some Supplementary Calculations and Data‘ 

GRAUNT ( I  662) r GENEVA (1601-1700) 
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How realistic is Graunt’s table? Hull (1899, p. 386) has given the 
distribution of 53,783 deaths according to age in Geneva for the years 
1601-1700 taken from a paper by E. Mallet in 1837, and from these data 
we have calculated the life table (assuming a stationary population) and the 
mortality rates given in the table above. It will be seen that the death rates 
in Geneva for the age interval 6-36 years are only about half of the death 
rates assumed by Graunt, which indicates that Graunt’s assumption is 
unrealistic. 

Graunt did not grasp all the implications of his new concept. He did not 
know the relationship between the life table and the age distribution of the 
corresponding stationary population, and he even made a mistake in the use 
of the table for its intended purpose, namely to find the number of men 
between 16 and 56 years of age. Referring to the table he writes, “There are 
therefore of Aged between 16 and 56 the number of 40, less by six, viz. 34.” 
However, 34 is the proportion dying between 16 and 56, not the proportion 
living, as pointed out by Westergaard (1932, p. 23). Graunt goes on to find 
the number of fighting men in London from the total population, using the 
previously derived ratio of males to females and the 34% found above. 

We mentioned earlier two arguments that depend on the age distribution 
and were used by Graunt to estimate the population sizes of London and 
Romsey. For London, he assumes that the number of women between 16 
and 40 and between 40 and 76 are about equal, and for Romsey he assumes 
that the number d people under 16 years of age is a little smaller than over 
16. If he had confronted these statements with results derived from his life 
table, even by his flawed method, he would have perhaps realized that the 
number of deaths alloted to ages betwen 6 and 46 is much too large. Of 
course the whole problem was obscured by migration, and it  is odd that 
Graunt did not comment on the different age distributions of the rapidly 
growing London and the nearly stationary Romsey. 

7.10 CONCLUDING REMARKS ABOUT GRAUNT’S 
OBSER VA TIONS 

Graunt’s book had immense influence. Bills of mortality similar to the 
London bills were introduced in other cities, for example, Paris in 1667. 

Graunt’s methods of statistical analysis were adopted by Petty, King, and 
Davenant in England; by Vauban in France; by Struyck in the Netherlands; 
and somewhat later by Sussmilch in Germany. Ultimately, these endeavors 
led to the establishment of governmental statistical offices. 

Graunt’s investigation on the stability of the sex ratio was continued by 
Arbuthnott and Nicholas Bernoulli. His life table was given a probabilistic 
interpretation by the brothers Huygens; improved life tables were constructed 
by de Witt in the Netherlands and by Halley in England and used for the 
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computation of life annuities. The life table became a basic tool in medical 
statistics, demography, and actuarial science. 

Thereexists a large literature about Graunt’s work. We refer to Hull (1899), 
Westergaard (1932), Willcox (1937), Greenwood (1941-43), Sutherland (1963), 
Glass ( I  964), and K. Pearson ( I  978). 

Kreager (1988) throws new light on Graunt. He traces Graunt’s method 
back to Bacon and relates his statistical technique to  common bookkeeping. 
He also explains many of Graunt’s remarks in terms of the prevailing religious 
and mercantile opinions. 

7.1 1 WILLIAM PETTY AND POLITICAL ARITHMETIC 

William Petty (1623- 1687) was the son of a clothier in Romsey in Hampshire, 
where the precocious boy received his basic education, including some 
mathematics and Latin and Greek. After a roving life that included studies 
in French, mathematics, astronomy, and navigation at Caen in France; 
several years in the Royal Navy; and during the Civil Wars several more 
years of study, particularly medicine, at Utrecht, Leiden, Amsterdam, and 
Paris, he came back to England in 1647, got his doctor’s degree in medicine, 
and became Professor of Anatomy at Oxford in 1650. I t  was about that time 
that he made the acquaintance of Graunt, who helped him to become 
Gresham Professor of Music, a post he really never took over. The 
decisive break in his career came in 1652, when he was appointed physician 
to the army in Ireland and to the Lieutenant-General Henry Cromwell. 
From 1655 to 1656, Petty undertook a survey of Ireland as a basis for the 
distribution of forfeited lands to army oflicers and soldiers, and he also 
became a member of the commission that distributed the lands. Petty himself 
took over a great deal of land and was later charged with dishonesty, which 
led to many lawsuits. By the end of his appointment in 1659, the initially 
poor university professor had become a great landowner and a wealthy man. 
Returning to England, he joined a group of natural scientists who met at 
Gresham College and eventually founded the Royal Society in 1662. At  the 
Restoration in 1660 one would have expected Petty to have great difficulty, 
but he soon gained the King’s favor; he was kinghted in 1661 and appointed 
Surveyor-General of Ireland. He involved himself in many practical, 
economic, and political problems in Ireland, where he spent a large part of 
his life, 

Petty’s abundant energy also resulted in a great number of reports, essays, 
and books. Hull ( 1  899, Preface) writes; 

The writings of Sir William Petty may be roughly divided into three classes. The 
first relates to his activities as surveyor of forfeited lands in Ireland under the 
Protectorate; its present interest is chiefly biographical. The second includes his 
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papers on medicine and on certain mathematical, physical and mechanical subjects. 
These are now forgotten. The third class comprises his economic and statistical 
writings. The merit of these has been freely recognized. No writer on the history 
of political economy who touches the seventeenth century at  all has failed to 
praise them. 

Petty is one of the founders of the English school of political economy. His 
economic writings are responses to actual problems, such as tax problems 
caused by the Restoration and by the Dutch war, money problems in 
connection with the recoinage project, assessment of the wealth of England 
as compared to France as an argument for making Charles I1 independent 
of Louis XIV, the economic problems of Ireland to support his arguments 
for reforms. With his background in mathematics and medicine, he coined 
the terms “political arithmetick” and “political anatomy” used in the titles 
of his books. 

Petty was greatly influenced by Bacon and Graunt. In the preface of his 
Political Arithmetick, written in 1676 but first published in 1690, he writes; 

The Method I take to d o  this, is not yet very usual; for instead of using only 
comparative and superlative Words, and intellectual Arguments, I have taken the 
course (as a Specimen of the Political Arithmetick I have long aimed at) to express 
my self in Terms of Number, Weight, or Measure; to use only Arguments of Sense, 
and to consider only such Causes, as have visible Foundations in Nature. 

The importance of the works of Graunt and Petty for the establishment 
of official statistical offices has been described by Hull ( 1  899, p. LXVI). Hull 
also points out that statistics rests on the enumeration of a large number of 
items and the construction of tables by addition of the observations into 
adequate categories; however, Petty’s political arithmetic is based on scanty 
and imperfect data from which by multiplication he derives information on 
phenomena correlated with the observed, using the stability of statistical 
ratios and often simply guessing at these ratios. 

Petty was less critical in his assessment of data and methods than Graunt, 
and he extended his analysis to many more topics about which less was 
know. Since Petty did not contribute new methods of statistical analysis, we 
shall not give an account of the many Essays in Political Arithmetick, which 
he published in the 1680s. 

The sketch above is essentially based on the book by Hull (1899), which 
also contains reprints of the most important of Petty’s papers with notes by 
Hull. More recent investigations of Petty’s life and works and on the 
further development of political arithmetic in the 17th and 18th centuries 
have been given by Westergaard (l932), Greenwood (1941-1943), and 
K. Pearson (1978). 
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The Probabilistic Interpretation 
of Graunt’s Life Table 

There are thus two different concepts: the expectation or the 
value of the future age of a person, and the age at which he 
has an equal chance to  survive or not. The first is for the 
calculation of life annuities, and the other for wagering. 

- ~ - ~  C H  R I S T I  A A N ri u YG E N S ,  I 669 

8.1 
HUYGENS, 1669 

THE CORRESPONDENCE OF THE BROTHERS 

Presumably, Graunt did not know anything about probability theory, and 
in particular he did not know Huygens’ work. In March 1662, Sir Robert 
Moray set a copy of Graunt’s book to Huygens, who politely thanked him 
for the gift and expressed his admiration of Graunt’s ingenuity in general 
terms. 

In 1669 Lodewijk (Ludwig) Huygens (1633-1699), Christiaan’s younger 
brother, began a correspondence with Christiaan on the expectation of life 
and the usefulness of Graunt’s table for calculating values of life annuities. 
They never got to life annuities; this was left to de Witt and Hudde two 
years later, as we shall see next in Chap. 9. They had, however, an interesting 
correspondence about the expected and the median lifetime, which was not 
published until 1895 in Huygens’ Oeuvres, Vol. 6. (In the following, we shall 
cite page numbers only when referring to this volume.) 

In Lodewijk’s first letter (p. 483) he writes that he has made “a table of 
the remaining lifetime for persons of any given age” based on Graunt’s table 
and states that i t  will be useful for the evaluation of life annuities. He adds 

106 
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that “the question is to what age a newly conceived child will naturally live” 
and asks the same question for persons of any other age. He states that 
Christiaan, who at the time was 40 years old, will live to about 56; years 
of age. Without disclosing his method of calculation, he asks Christiaan to 
make similar calculations for comparison. 

Lodewijk’s formulations are somewhat vague, and Christiaan does not 
seem to be much interested. In his short reply he states that to get “exact” 
results, one needs a life table with the number of deaths for each year of age. 
Further, he considers the life table as defining a game of chance and says 
that one may bet 4 to 3 on the event that a person aged 16 will live at age 
36. (This should have been 24 to 16 or 3 to 2 instead.) Finally, he asks to 
see Lodewijk’s calculations. 

In his reply Lodewijk gives the numbers shown in Table 8.1.1. 
Within each interval Lodewijk assumes a uniform distribution of the 

number of deaths so that tx represents the average lifetime for each of the 
d, deaths. He explains how to calculate the average age at death and the 
corresponding expectation of life (without using the word “expectation”) as 

76 76 - 
t, = 1 t i d l /  f dl = t l d i / l x ,  i and x =0,6,16,. . . ,76,  

i = x  l = x  i = x  

and 5, = T, - x. For example, for x = 0 he says that the total lifetime of 1822 
years should be divided equally among the 100 persons, which gives 18.22 
years as the “age” for each of them. 

Table 8.1.1. Calculation of expectations of life by Lodewijk Huygens in 1669” 

Number Number Midpoint Average 
of of of age Accumlation of age at Expectation 

Age survivors deaths interval t,dx from death of life - 
X I ,  4 tx f,dx below ‘x e* 

0 
6 

16 
26 
36 
46 
56 
66 
76 
86 

100 
64 
40 
25 
16 
10 
6 
3 
1 
0 

36 
24 
15 
9 
6 
4 
3 
2 
1 

3 108 
1 1  264 
21 315 
31 219 
41 246 
51 204 
61 183 
71 I42 
81 81 

1822 
1714 
1450 
1135 
856 
610 
406 
223 
81 

18.22 
26.78 
36.25 
45.40 
53.50 
61.00 
67.67 
74.33 
81.00 

18.22 
20.78 
20.25 
19.40 
17.50 
I5.00 
11.67 
8.33 
5.00 
0.00 

“Lodewijk does not use the mathematical symbols used here, he only gives the numerical results 
with verbal explanations. 
Source: Huygens’ Oeuvres, Vol. 6, p. 516. 
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Perhaps confused by Christiaan’s letter he adds the (wrong) comment that 
a person aged 6 and a person aged 16 have about the same chance of living 
another 20 years. 

In his reply (pp. 524-532 and 537-539), Christiaan repeats Lodewijk’s 
calculations, finds the same results, and gives the correct interpretation. 

At the time the only vocabulary available for discussing probability theory 
was that of games of chance. Therefore Christiaan considers the life table as 
defining a lottery with 100 tickets, 36 tickets having the value 3, 24 having 
the value 11, etc. He states that the expectation of life has been calculated 
according to the rule given in his treatise. 

In his description of the life table Huygens considers the remaining 
lifetime for a person aged x, T,, say, as a random variable. Instead of the 
(cumulative) distribution function Pr { T, < I }  or its complement Pr (T ,  > i}, 
he uses the odds and the corresponding bets in a fair game to characterize 
the distribution. Thus he states that the number of chances that a person 
aged 16 will die before age 36 equals 24 and that the number of chances that 
he will die after age 36 equals 16, so that in a fair game one should bet 16 
to 24, or 2 to 3, on the event that the person dies before age 36. 

Introducing the probability that a person aged x will survive t years as 
,px = and the complementary probability ,qx = 1 - ,pr = ( I ,  - l,+,)/I,, 
i t  will be seen that Huygens uses the odds ,qx/,px - I x + , ) / I x + ,  for the 
description of the probability distribution instead of ,px, as we do today. 

He then turns to the special case where there is an even chance of dying 
before or after t years, that is, I,+, = fl,, and solves this equation for t ,  the 
median remaining lifetime as it  is called today, sometimes also called the 
probable lifetime. He explains carefully the distinction between the 
expectation and the median and states that for a newborn child, the median 
equals about 11 years, whereas the expectation equals 18 years. 

He also takes the remarkable step of considering the life table as a 
continuous distribution and gives a graph such as the one shown in Fig. 8.1 . I .  
This is the first graph of (the complement of) a distribution function. He 
points out that the median lifetime for a newborn child may be found on 
the graph as the abscissa corresponding to an ordinate of 50, and he 
generalizes to the median remaining lifetime for any given age as shown for 
a person of age 20, for whom the median remaining lifetime is about 16 
years. He does not comment on the fact that the graph shows a nearly 
exponential decrease of I,, whereas his calculation of Z, assumes a linear 
decrease between the given points. 

Finally, Huygens discusses joint-life expectations. As an example he 
mentions the case of a man aged 56 who marries a woman aged 16 and asks 
for the expected value of the time they are both living, the expectation of 
the shortest life, and the expected value of the time of the longest life. He 
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0 L 6 16 

Fig. 8.1.1 Huygens’graph of Graunt’s life table and his determination of the median 
remaining lifetime. For a person aged A, the median remaining lifetime is given by 
AC. since the ordinate CD is half of the ordinate AB. 

does not carry out the calculations for this example but, for simplicity, only 
for a couple both aged 16. 

To describe this situation Huygens considers a lottery containing I,, = 40 
tickets having the values t,  - 16, with the corresponding number of chances 
equal to d,. The two persons, (x) and (y), say, each draw successively and 
independently (with replacement) a ticket and the values of T, and T,, the 
remaining lifetimes, are recorded. To find the expectation of T = max { T,, T,}, 
Huygens uses a conditional argument based on the idea that if  T , = t ,  i t  
follows that T = t for Ty 6 t ,  and T = T,, for T, > t. 

Suppose that T, = 15, i.e., (x) dies in the age interval (26,36), and combine 
this information with the following distribution of T,,: 

Ty 5 15 25 35 45 55 65 
d , 1 5  9 6 4 3 2 1 
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To derive the distribution of T, Huygens remarks that the only difficulty 
occurs for T, = T, = 15. He distributes the nine deaths uniformly over the 
ten-year interval and notes that there are 4.5 chances for T,.< 15 and 4.5 
chances for T,E( 16,20), which he simplifies by using the midpoint T,. = 18. 
For Ty 2 25, he uses the shortcut to take the expected lifetime from Lodewijk’s 
table, which gives 53.50-16 = 37.50 for the 16 cases considered. Hence, the 
distribution of 7 becomes 

T 15 18 37.50 
r l  19.5 4.5 16 

which gives the (conditional) expectation E{Tlr ,  = 15) = 24.3. 

following table: 
In this way, he calculates all the conditional expectations and obtains the 

I, - 16 5 15 25 35 45 55 65 

(1, 1 5 9 6 4 3 2 1  
E{TIT,= I ,  - 16) 20.3 24.3 30.2 37.6 46.1 55.3 65.0 

The unconditional expectation then becomes E (  T }  = 29.22. 
This is a good example of an early application of the fundamental principle 

that the expectation E {  T }  may be found as the expectation of the conditional 
expectation E {  TI ’I’‘}, 

Huygens also indicates how to obtain the expectation of the shortest life. 
The step taken by the brothers Huygens in calculating the expectation of 

life is a very essential one, since the evaluation of a life annuity only requires 
that T be replaced by the value of an annuity certain of duration T. 

For other discussions on the present topic we refer the reader to Kohli 
and van der Waerden ( 1  975) and Hacking ( 1  975). 

8.2 NICHOLAS BERNOULLI’S THESIS, 1709 

The results of the brothers Huygens remained unknown outside Holland, 
but their ideas were in the air. In 1666 a review of Graunt’s book containing 
the life table was published in Jourrzal des SCaonns. Based on this, James 
Bernoulli in a publication of 1686 quoted Graunt’s table and stated without 
proof that the odds for a person aged 16 to die before a person aged 56 
against the opposite event are 59:101. In 1709 Nicholas Bernoulli 
(1687-1759), a nephew of James Betnoulli, took up the same problems as 
the brothers Huygens and published similar solutions in his thesis De Us24 
Artis Conjectaridi in Jure (The Use of the Art of Conjecturing in Law). It  



8.2 NICHOLAS BERNOULLI’S THESIS, 1709 111 

seems that neither James nor Nicholas had seen Graunt’s book, which is 
odd in view of its wide circulation and its importance to Nicholas’ thesis. 
There are abundant references to juridical literature in the thesis. For 
probability theory the only references are to Huygens’ treatise (1657) and to 
the unpublished manuscript of Ars Conjectandi by James Bernoulli. The life 
tables of de Witt (1671) and Halley (1694) are not mentioned. Nicholas 
Bernoulli published a summary of his thesis in Acta Eruditarurn, Supplementa, 

The title of Chap. 3 of the thesis is “Of an absent person to be presumed 
dead.” After a discussion of the legal meanings of the word “absence,” 
Bernoulli turns to the case where an absent person is “someone of whom i t  
is not known where he is and whether he is alive.” After a certain time of 
absence, the person may be presumed dead by order of the court. Bernoulli 
quotes many prominent jurists who hold widely varying opinions regarding 
the length of time of absence necessary to be presumed dead, namely, from 
5 and up to 30 years with an “outlier” of 100 years. Bernoulli proposes to 
solve the problem by means of probability theory and Graunt’s life table, 
which makes it possible to find “in what time it  is twice, thrice, four times, 
etc. as likely that someone be dead than that he still be alive.” He then gives 
the solution for the case where it is twice as probable that the absent person 
is dead than living; that is, he solves the equation I , , ,  = 1,/3 with respect to 
t for x = 0,6,16,. . . ,76, using linear interpolation in Graunt’s table and 
rounding 1,/3 to integers. His results are as follows: 

4, 1711, pp. 159-170. 

x 0 6 16 26 36 46 56 66 76 
t 205 24; 25 25 23; 20 15 10 65 

Bernoulli concludes that “if someone should have started his absence at the 
twentieth or thirtieth year of his life, for example, and has been absent for 
25 years, and nothing has been heard from him through that time, the Judge 
would be able to declare him dead and to grant his goods to his nearest 
relatives without caution.” 

It will be seen that Bernoulli, like Huygens, considers the life table to 
define a probability distribution and that he reasons by means of the odds 
I%/, P x .  

In Chap. 2 of his thesis, Nicholas Bernoulli discusses the “estimation of 
the length of human life,” in particular the expectation of life, the median 
lifetime, joint-life expectations and the probability of survivorships. 

To prove James Bernoulli’s statement mentioned above, Nicholas uses a 
conditional argument, which may be expressed by the formula 

Pr{T,< T,) = C Pr{T,< T y ( T y ~ C i }  Pr{TyECi}, 
m 

i = O  
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where Ci denotes the ten-year interval [ IOi,  IO( i  + I )  3, i = 0, I , .  . . . As an 
example, consider the term for i =  I ,  which means that the person aged 56 
dies in the age interval (66,76). The probability of this event equals 
d 6 6 / / 5 6  = 2/6. The conditional probability is found by noting that there are 
d , ,  = 15 chances for a person aged 16 to die in the first decade, d , ,  = 9 
chances to die in the second decade, and I,, = 16 chances to die later, which 
gives the probability (I5 x I + 9 x + 16 x 0)/40 = 39/80. For the second 
decade, Bernoulli distributes the number of chances equally between the two 
persons because “neither has a stronger hope than the other of surviving.” 
The final result becomes 

I t  will be seen that Bernoulli, like Huygens, quite naturally uses conditional 
expectations. 

In accordance with James Bernoulli, Nicholas states that the probability 
of surviving a certain age cannot be found by a priori reasoning as in a game 
of chance but that i t  may be estimated from observation. for example, by 
observing how many of 300 men will survive a period of 10 years. He then 
quotes Graunt’s life table, which he believes “has been observed from collation 
of very many catalogues of this sort [of deceased persons].” 

He begins by calculating the expectation of life by the same method as 
Lodewijk Huygens and finds the same results as shown in Table 8.1.1. He 
notes that the expectations may be obtained in an easier way by backward 
recursion and carries out the calculations by the formula 

In all of his calculations, Bernoulli assumes that the deaths are uniformly 
distributed within the age intervals given in Graunt’s table, and he therefore 
interpolates linearly to intermediate values of I,. 

Like Christiaan Huygens, he clearly distinguishes between the mean and 
the median remaining lifetime. As an example, he shows by linear 
interpolation that the median lifetime for a newborn child equals 11; years, 
whereas the expectation equals 18g years. He does not give a graph of 
the life table. 

The most remarkable of Bernoulli’s results in Chap. 2 concerns the 
expected lifetime of the longest living among several lives. He begins by 
proving the following lemma. 
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Lemma. Let it  be equally likely that a person dies at any moment within 
a time interval of length a and consider the distribution of 6 deaths within 
this interval. The expected lifetime of the longest living within the interval 
equals a6/(b + 1). 

In modern terminology this means that he considers a random variable 
with a uniform distribution over the interval (0,a) and asks for the expectation 
of the largest of 6 observations. 

For b = 1, the expected lifetime is obviously a/2.  
For b 2 2 ,  Bernoulli divides the interval into n equal parts of length 

m, nm = a, and lets n tend to infinity. He speaks of these intervals as moments. 
Suppose that 6 = 2  and that the largest lifetime equals xm, say, x =  

1,2, ..., n. It follows that there are x cases (samples of two observations), 
giving a largest lifetime of xm, since the first death may occur at anyone of 
the moments 1,2,. . . , x .  The expectation of the longest living then becomes 

a "  2 ( x m ) x /  x = - -  c x2 x. 
x =  1 x = ~  n , = ~  IZ 

For n-,  00, Bernoulli replaces the sums by integrals and gets 

Bernoulli gives similar proofs for b = 3 and 4, from which the general proof 
follows. The basic problem is to find the number of cases in which b -  1 
deaths may be distributed on the x moments (an occupancy problem in 
modern terminology). However, this problem had been solved by James 
Bernoulli in Ars Conjectandi, and Nicholas simply gives the results 

\ b - 1  

without comment. Nicholas' proof implies that the general solution is 

x =  1 ( x m ) ( x + b - 2 ) /  6 - 1  x=l ( x + b - 2 ) ,  b - 1  

which tends to 
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He supplements this (combinatorial) proof by a geometrical one based on 
the idea that the expectation of a random variable x with distribution y ( x )  
equals the center of gravity of the figure under the curve y ( x )  over the interval 
(0, a); that is, the expectation equals 

xy(x) dx  s: 
If the longest living dies at time x ,  then y ( x )  will be proportional to x b - l ,  

and the expectation becomes 

ah 
b +  I '  

JI x h  d x  
- _ _ ~ -  - -- 

x b -  d x  

Bernoulli then turns to the calculation of the expected lifetime of the 
longest of two (independent) lives (x) and (y). We shall use the notation from 
Table 8.1.1 so that x and x + i, say, take on the values 0,6,16,. . . ,86 only. 
The distribution of (T,,T,) is given by all possible products of the form 
d,+id,+ jflxl,,, where I, = d, + d,, + ... + d,6 for x = 6, 16,. . . ,76 and 
I,, = do + I,. For j < i, we have T, < T,, so that the longest lifetime equals 
i + 5. Summing d,, for all j less than i, we get I, - For i = j, (x) and (y) 
die in the same interval, and the lemma then gives the longest lifetime as 
i + 5 x 10 = i + 6f, apart from the case where x = y = i = 0, which gives 
f x 6 = 4. If both x and y are larger than or equal to 6, the expectation 
becomes 

The necessary modification when at least one age equals zero is obvious. 
The formula becomes simpler for x = y .  

Bernoulli does not use the symbols above but gives two numerical 
examples from which the formula follows. For x = y = O ,  he finds the 
expectation equal to 27.8238 years; we shall leave the calculation to the 
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reader as an exercise. For x = 16 and y = 46, he calculates the expectation 
as follows: 

(4 x 15 x 6 $ + 9  ~4 x 1 5 +  15 x 3 x l 5 + 3  x 9 ~ . 1 6 $ + 6  x 7 x 25 

+24  x 2 x 2 5 + 2  x 6 x 265+4 x 9 x 3 5 +  30 x I x 35 + 1 x 4 x 365 

+ 3 x 10 x 45 + 2 x 10 x 55 + 1 x 10 x 65)/40 x 10 = 25%. 

The reader should use Bernoulli’s method to find the expected lifetime of 
the longest of two lives for x = y = 16 and thus compare the methods of 
Huygens and Bernoulli. 

Bernoulli notes that his method may be used for any number of lives. 
Bernoulli remarks that the assumption of a uniform distribution of the 

number of deaths over such large intervals as in Graunt’s table is 
unsatisfactory. He has therefore asked a friend to provide some observations 
from a town in Switzerland on “the ages of nearly 2000 men in the same 
year, some living and some having died.” Unfortunately, he publishes neither 
the data nor the method of analysis. He only gives a table of 2, for x =  
0,5, lo,.. . , 8 5 ,  the first five expectations being 27, 38, 37, 33, and 30 years, 
that is, considerably higher than the results from Graunt’s table. He writes 
that the reason for this difference is unclear. I t  may be that the number of 
observations is too small to give reliable results, but i t  may also be, as he 
suspects, that “in our Switzerland, perchance because of more temperate life 
or better constitution of air, men more frequently succeed in arriving at a 
very great age than in France, where those observations which are contained 
in the Ephemerides (Journal des Sqauans) were perhaps made.” He 
recommends that accurate parish records of the ages of the deceased be kept 
in future. 

We shall discuss the remainder of Bernoulli’s thesis in $59, I ,  9.2, and 2 I .  I .  
A summary of the thesis with commentaries has been given by Kohli (197%). 
The quotations given above are from Drucker’s translation (1976). 

Part of the present chapter has previously been published by Hald (1987). 
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The Early History of 
Life Insurance Mathematics 

From these Considerations 1 have formed the adjoyned Table, 
whose Uses are manifold, and give a more just ldea of the 
State and Condition of Mankind, than any thing yet extant 
that 1 know of: I t  exhibits the Number of People in the City of 
Breslaw of all Ages,fiom the Birth to extream Old Age, and 
thereby shews the Chances of Mortality at all Ages, and 
likewise how to make a certain Estimate of the value of 
Annuitiesfor Lives, which hitherto has been only done by an 
imaginary Valuation. Also the Chances that there are that a 
Person of any Age proposed does live to any other Aye given; 
with many more, as 1 shall hereajier shew. 

-HALLEI'. 1694 

9.1 THE BACKGROUND 

Bequests of maintenances, usufructs, and life incomes have occurred since 
ancient times. The necessity of evaluating such legacies, whether in kind or 
in money, arose in ancient Rome, when the Falcidian law, passed in the year 
40 B.C., ruled that the heir (or heirs) to an estate should receive not less 
than one-quarter of the total property left by the testator. Hence, if the 
testator had given legacies amounting to more than three-quarters, they 
had to be reduced proportionately, and this also applied to the bequest of life 
incomes. 

116 
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The Roman jurist D. Ulpian (?-228) devised a table for the legal conversion 
of a life annuity to an annuity certain: 

Ulpian’s Conversion Table 

Age of annuitant in years 

Duration of annuity certain in years 

0-19 20-24 25-29 30-34 35-39 40 ... 49 50-54 55-59 60- 

30 28 25 22 20 19 ... 10 9 7 5  

The table is to be found in Corpus Iuris Civilis, Digesta, XXXV, 2 ,  68; the 
section in question has been quoted (in Latin) by Greenwood (1940). 

The interpretation of Ulpian’s table has been much discussed. Some 
authors hold that the table gives the expectation of life and that it to some 
extent is based on observation. Greenwood (1940), however, points out that 
the object was to protect the interests of the legal heir, and therefore the 
valuation is chosen too high. It is particularly unrealistic to suppose that 
the life expectancy of persons between zero and 19 years of age equals 30 
years in view of the high mortality of children. Therefore, Greenwood is of 
the opinion that the 30 years is not an estimate of the expectation of life, 
but simply the legal maximum valuation of any usufruct. Greenwood further 
suggests that Ulpian rather arbitrarily may have chosen five years as the last 
value in the table and then inserted (interpolated to) the intermediate values, 
so that they generally agree with values previously used. 

The approximation to a life annuity obtained as an annuity certain with 
a duration equal to the annuitant’s expectation of life is sometimes called 
Ulpian’s approximation, even if there is no such rule explicitly stated in the 
Digest. 

Nicholas Bernoulli ( 1  709, Chap. 5 )  discusses the application of Ulpian’s 
table and the “Falcidian fourth” in his own time. He criticizes the 
interpretations made by some lawyers who have not understood the 
probabilistic nature of Ulpian’s rule. Bernoulli considers the numbers in 
Ulpian’s table to be the expectations of life, and he explains how to find the 
value of the corresponding annuity certain. As an example, he takes a person 
aged 24, who has a legacy of 10 ducats per year. According to Ulpian this 
has to be valued by means of the duration of 28 years, and some lawyers 
therefore use 280 ducats as the corresponding capital. Bernoulli, however, 
presents a table (in his Chap. 4) of the values of an annuity certain of one 
per year at 5% interest for all durations from 1 to 100 years. From this table 
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it follows that the correct evaluation leads to a capital of 148.98 ducats. 
Finally, Bernoulli remarks that the expectations of life given by Ulpian 

do not agree with his own results based on Graunt’s life table. In particular, 
the highest expectation of life found by Bernoulli is 21 years, which is 
considerably less than the 30 years given by Ulpian. This disagreement does 
not, however, lead Bernoulli to reflect on the provenance and meaning of 
Ulpian’s numbers. Bernoulli concludes “that reason can best enter into this 
case of the Falcidian law if legacies of this sort are estimated according to 
the value and prices of life incomes, as we have determined them in the 
preceding chapter,” and he then gives a numerical example of this procedure. 

Bernoulli (1709, Chap. 4) also gives some information on “the purchase 
of yearly incomes for life.” First, he discusses whether such a purchase can 
be considered legal. The background for this question is that temporary life 
assurances had been declared illegal in several countries, because “men are 
not included within the terms of merchandise, that a free man cannot be 
bought and sold, and that a free man cannot be given a value.” Bernoulli 
rejects these arguments and says that a fair contract may be based on the 
life table. For life annuities, however, most lawyers agree that such contracts 
are legal. This is also supported by Canon law, which permits a monastery 
to grant a man a yearly income in return for a gift. 

In the Middle Ages it became common for states and towns to raise funds 
by selling annuities. The price depended on the prevailing rate of interest 
but was generally independent of the age of the annuitant, which naturally 
caused the buyers to chose healthy children as nominees. The price varied 
greatly from town to town and over time; often, it was about half the price 
of a perpetual annuity. Bernoulli gives many examples of prices of single life 
annuities varying from six to twelve years’ purchase and also examples of 
prices of annuities for two or more lives. The following example from London 
in 1704 is quoted by Bernoulli: 

Yesterday the Queen issued an order for the sale of life annuities; in two hours 
Ll0,OOO were subscribed and to date €100,000. These are the conditions for the 
annuities; if someone wants 10 pounds of yearly income with a possible extension 
to two succeeding persons, then he pays 90 pounds for one life, 110 pounds for 
two lives, 120 pounds for three lives following one another; and if one wishes to 
have 14 pounds yearly for 99 years, one pays 210 pounds for i t .  

After “having related all those opinions which are constructed without 
foundation,”Bernoulli concludes (like de Witt and Halley before him) that 
the price has to depend on the age and health of the annuitant. As an example, 
he quotes the prices demanded by the Magistrate of Amsterdam in 1672 as 
shown in the following table: 
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Price of an Annuity of 100 Florins Yearly at Amsterdam in 1672 

Age of annuitant in years 
1-19 20-29 30-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75- 

Price in florins 
1000 950 900 850 800 750 675 600 500 400 300 

In 1673 the prices were increased to 800 florins for all over 45 years of 
age. Bernoulli finds that these prices are in reasonably good agreement with 
those calculated by himself. Later, we shall discuss his method of calculation. 

The price of a life annuity was usually quoted as “14 years’ purchase,” 
say, which means that the price was 14 times the yearly payment. 

De Witt (1671) states that the current price of an annuity at Amsterdam 
in 1671 was 14 years’ purchase at a time when the rate of interest was 4%. 
He further says that most of the annuities sold previously at a time with a 
higher rate of interest were obtained at  nine years’ purchase. He then presents 
a method for the correct evaluation of an annuity, which we shall discuss in 
the following section. He finds that the price of an annuity for a three-year-old 
child ought to be at least 16 years’ purchase. 

It is of course essential to know the relation between the value of an 
annuity and the rate of interest. De Witt (1671) and Halley (1694) calculated 
values only for one rate of interest. A simple solution was first given by de 
Moivre (1725) under the assumption that I ,  = 86 - x, 10 6 x 6 86. Let the 
yearly rate of interest be i and let a, denote the value of a life annuity of 
one per year for a life aged x. Then de Moivre proved that 

, 1O<x<86, (1 + i ) a m  ia, = 1 - 
(86 - X) 

where a4 denotes the value of an annuity certain of one payable in n years 
(see 525.5). Some values of ialo have been given in the following table: 

Ratio of Value of Annuity to Value of Perpetuity according to de Moivre’s 
formula for a life aged 10 years 

1 OOi 4 6 8 10 12 

ia10 0.675 0.770 0.823 0.855 0.877 
a10 16.9 12.8 10.3 8.6 7.3 

It will be seen that a price of nine years’ purchase is advantageous to the 



120 THE EARLY HISTORY OF LIFE INSURANCE MATHEMATICS 

purchaser when the rate of interest is a little below 10% and that at 4%, a 
price of 14 years’ purchase is advantageous. 

Another scheme for raising money to the state was invented by Lorenzo 
Tonti (1630-1695), a Neapolitan banker living most of his life in Paris. Tonti 
proposed to Cardinal Mazarin that funds might be raised by selling shares 
of a given amount to a number of persons of about the same age and that 
this group of persons afterward, as long as anyone was alive, should share 
the interest of the fund. Let the yearly rate of interest be i and the number 
of persons entering into the arrangement at age x be I,; then the interest 
rate obtained after t years will be i l x / l x + , .  This is the simplest form of a 
“tontine.” The state gets immediately access to the fund, and in return the 
state guarantees the payment of a constant yearly annuity to be divided 
equally among the surviving members of the group and terminating with the 
death of the last survivor. It is clear that the advertisement of such a project 
must contain a table of lx as an essential element. 

Cardinal Mazarin did not succeed in carrying out the idea in 1653 because 
of opposition of the Parliament. The first state tontine in France was 
established in 1689. Bernoulli gives a detailed description of its rules. 

Tonti came much nearer to realizing his idea in Denmark in 1653. Poul 
Klingenberg (1615--1690) was born in Hamburg, where he got his commercial 
training. In 1652 he moved to Copenhagen; he became Postmaster General 
in 1654 and spent the rest of his life in Copenhagen as a member of the 
civil service. Klingenberg met Tonti in Amsterdam in 1652 and became so 
knowledgeable about Tonti’s scheme that he was able to convince the Danish 
King Frederik 111 to try it  out. Klingenberg and the King wanted to make 
subscription to the scheme compulsory for certain persons, but this was 
rejected by the Parliament. The rules of the tontine were described in a 
booklet of 49 pages, printed in 750 copies, 450 in Danish and 300 in German. 
In May 1653 the scheme was advertised all over the Monarchy, but the 
project was abandoned because only about 5% of the stipulated capital was 
subscribed. 

The project is of interest because it contains the first published life table. 
Whether i t  is due to Tonti or Klingenberg is unknown, but as already 
indicated, Tonti must have had a life table as the basis for his project, so it 
is presumably his. 

The main rules of the State tontine of 1653 are as follows. The total capital 
amounted to 1,600,000 rix-dollars with a yearly annuity of 80,000 rix-dollars, 
guaranteed by the King and the Parliament by reserving certain taxes for 
this purpose. Each share of the capital was set at 100 rix-dollars, and each 
subscriber could buy several shares. The subscribers were divided into eight 
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classes according to age, the first being children below eight years of age, 
the next from eight to sixteen, and so on until  the last from 56 years and 
above, the capital for each class being 200,000 rix-dollars. 

The advertising material contained a life table for each class giving the 
expected number of survivors for every year. The table for the first class 
begins with 2000 persons between zero and eight years of age. For brevity, 
let us set I, = 2000. The following table gives some values of I,,, [see Iversen 
(1910) for more details]: 

Table of I,,, from Klingenberg’s Life Table of 1653 

t 0 5 10 15 20 25 30 40 50 60 70 
I,+, 2000 1700 1400 1150 900 700 500 250 115 35 2 

In 1670 a similar tontine was established by the town of Kampen in 
Holland, and the administrator Jacob van Dael published the following life 
table [an English translation of the pamphlet has been given by Hendriks 
(1853, $29)]: 

Van Dael’s Life Table from 1670 

x 1 12 24 36 48 60 61 66 68 70 72 74 76 80 
I ,  400 200 100 50 25 12 1 1  6 5 4 3 2 1 0 

Tontines became a popular means of raising funds for many towns and 
states, and many variants of the simple tontine described above were created. 
When private firms also established tontines, some of them with disastrous 
results for the subscribers, the idea was discredited. Du Pasquier (1910) has 
given a historical account of the tontines. 

From an actuarial point of view, the tontines are of interest because of 
their life tables. The first tables used were presumably guesswork, but they 
were at least as good (realistic) as Graunt’s table. Supposedly, mortality 
has been overvalued to make the tontines look attractive. To compare the 
three life tables we have found I, =93  and I ,  =74 by interpolation in 
Graunt’s table, and starting from these values we have calculated I, by 
means of Klingenberg’s and van Dael’s tables. By interpolation we have 
also found the death rates 9, = (I, - I,, , ) / I , ,  as shown in the following 
table: 
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Comparison of Three Early Life Tables 

KLINGENBERG ( I  653) GRAUNT (1 662) VAN DAEL (1670) 
~~ ~ 

X 1, 1 oooq, 4 1 oooq, 4 1 ow, 
- - - - 100 0 

1 - - 93 - 93 
77 74 4 74 

6 70 32 64 46 68 61 
16 48 39 40 46 37 56 
26 30 49 25 44 21 56 
36 16 69 16 46 12 56 
46 8 69 10 50 7 56 
56 4 95 6 67 4 59 
66 1 222 3 I04 1 87 
76 0.0 1 __ 0.2 
80 0 

_- 
- 
- - - 

- __ 

There exist many books on the history of insurance. For the early history 
we refer to Trenerry (1926)and for a general history until 1914 to Braun (1925). 

A history of mortality from prehistoric times through the Middle Ages 
has been given by Acsadi and Nemeskeri (1970). 

9.2 
LIFE ANNUITIES. 1671 

JAN DE WITT AND HIS REPORT ON THE VALUE OF 

When the Northern Provinces of the Netherlands won their independence 
from Spain in the late 16th century, a period of exceptional growth in power 
and wealth began. During the Golden Age of the Dutch Republic in the 17th 
century many outstanding contributions to the arts and sciences were made. 
In our field of interest we find three men, Jan de Witt, Jan Hudde, and 
Christiaan Huygens, of the same age who received the same education in 
law and mathematics. As young men they were inspired by the works of 
Descartes (who lived in Holland at the time) through their mathematics 
teacher Frans van Schooten, who induced them to write original papers on 
mathematics, which he published under their own names as appendices to 
his Exercitationum Mathematicarurn (1657) and his edition of Descartes’ 
CCornktrie (1659- 1661). They also made fundamental contributions to 
probability theory and insurance mathematics. De Witt became the leading 
statesman of the Republic; Hudde became burgomaster of Amsterdam; and 
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Huygens became the leading natural philosopher in Europe during the time 
period between Descartes and Newton. 

Jan (Johan) de Witt (1625-1672) was born into an old burgher-regent 
family. After studies at the University of Leiden and a traveling tour of 
Europe he settled in the Hague as an advocate. His most important 
mathematical work, from about 1650, gives a systematic treatment of the 
conics by means of analytical geometry. In 1650 he began his remarkable 
political career as pensionary of Dordrecht (secretary of the town council) 
and leader of the town deputation in the States of Holland. In 1653 he became 
grand pensionary of Holland (prime minister) at the age of 28. As leader of 
the Republican Party, he was in opposition to the Prince of Orange. 

It was a period of fierce commercial and maritime competition between 
the two rapidly growing powers, England and Holland, leading to many 
disputes and eventually to war. De Witt conducted his policy with great 
diplomatic skill and consolidated the finances of the state in the relatively 
peaceful period between 1654 and 1665. The second Anglo-Dutch war 
1665-1667 tapped the Republic for much of its sea power and economic 
strength with heavy taxation as a result. An impending war against France 
made it necessary to build up the army, and de Witt proposed to raise funds 
by selling annuities. In a report to the States General in 1671 he showed 
how to calculate the value of an annuity. When in 1672 France invaded the 
Republic, de Witt resigned and was replaced by the Stadholder William 111. 
De Witt was murdered by a mob in 1672. 

Jan (Johannes) Hudde (1628-1704) spent most of his life as a politician 
and civil servant. In 1672 William 111 chose him as one of the burgomasters 
of Amsterdam, a post he had for 21 years, intermittently being chancellor 
of the admiralty. His most important mathematical papers are on the solution 
of algebraic equations and on the maxima, minima, and tangents of algebraic 
curves, in which he continues the investigations of Descartes and Fermat, 
respectively. In 1665 he had a correspondence with Huygens on games of 
chance (discussed in 86.2). In 1671 he checked de Witt’s paper, which led to 
correspondence with de Witt. About the same time he had correspondence 
with Huygens on the mortality of annuitants. 

De Witt wrote his Waerdye van LyfRenten Naer proportie van Los-Renten 
(Value of Life Annuities in Proportion to Redeemable Annuities) in 1671 to 
the States General, and it was published in the Resolution uan de Heeren 
Staten van Holland en West-Frieslnnd in the same year. Some copies were 
also printed for private circulation. At  the time the rate of interest was 
4%, and life annuities were sold at 14 years’ purchase. De Witt proved 
that the price ought to be at least 16 years’ purchase for a child aged 3, 
and from his report it is easy to calculate the prices for other ages of 
entrance. 
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De Witt begins his report by defining the expectation of a random variable 
and explaining its calculation. He closely follows the definitions and proofs 
of Huygens (1657). He next turns to the assumptions on mortality. He divides 
the age interval from 3 to 80 years into four periods, namely, (3,53), (53,63), 
(63,73), and (73,80), and makes two assumptions: ( I )  within each period “it 
is not more likely that this man should die in the first half-year of a given 
year, than in the second half”; and (2) that the “chance of dying” (die 
apparentie of dat hazardt van sterven) in a given year of the second period is 
not more than 3/2 times the chance of dying in a given year of the first 
period, and that the corresponding factors for the third and fourth periods 
are 2 and 3. As an example he takes a man aged 40 and another aged 58 to 
whom the factor 3/2 applies. He says that i t  is a fair contract, if the one aged 
40 were to inherit 2000 florins in case the one aged 58 should die within six 
months in return for an inheritance of 3000 florins to the one aged 58 in 
case the 40 year old dies within six months. Hence, if the one aged 58 dies, 
the amount to be paid is only 2/3 of the amount to be paid if the one aged 
40 dies. 

From the first assumption de Witt deduces that within each of the four 
periods each half-year of life is equally mortal. Combining this with the 
second assumption, he obtains the distribution of the number of chances of 
dying in each half-year. His reasoning is somewhat obscure and has given 
rise to much discussion. Here we shall only present his result, which is stated 
very clearly. 

I t  is natural for de Witt, like Huygens, to consider the distribution ofrhe 
number ofdeaths as the fundamental probability distribution. Since annuities 
were paid in half-yearly instalments, he uses the half-year as time unit. He 
specifies the number of chances (deaths) in each half-year of the four age 
intervals as 1, 2/3, 1/2, and 1/3, respectively, the total number of chances 
thus being 

I x 1 0 0 + $ ~ 2 0 + $ ~ 2 0 + ~ ~  14=128. 

An annuitant dying in the (t  + 1)st half-year will get the half-yearly payment, 
1, say, at the end of each of the t half-years. The present value of these 
payments is 

I 

a4 = (i  + i ) - k ,  where 1 + i = 1.04’/2. 
k =  1 

De Witt therefore gives a table ofaa for t  = 1,2,. . . ,200; actually, he tabulates 
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lo8 all to avoid decimals. Finally, he calculates the expectation of aiT as 

1 99 2 1 1 9  1 1 3 9  1 1 5 3  

I 100 2 1 2 0  140 
E { q )  = { Call + 5 ad + - c ad + c a d ]  = 16.001607. 

De Witt points out that the value of the annuity really is somewhat higher 
than 16 florins for several reasons, which he has not taken into account in 
his assumptions on the mortality. First, there is the effect of selection; the 
buyer of an annuity will appoint a nominee “in full health, and with a manifest 
likelihood of prolonged existence,” which will lead to a low mortality in the 
first few half-years. Second, the corresponding increase in value of the annuity 
is larger than may be thought, because: 

one half-year of life, at the commencement of and shortly after the purchase of 
the life annuity, is of greater value to the annuitant, with respect to the price of 
such a purchase, thaneighteen half-years during which the person upon whom the 
annuity is purchased might live after the said purchase, from the age, for example, 
of I 0  to 19 years. 

Third, there is a certain probability of living to age 80 and above, and this 
has been neglected. De Witt says that if the span of life is extended to 100 
years, the value of the annuity will increase only by 0.7 florins, and if we 
further assure the heirs of the annuitant of a perpetual annuity, the increase 
in value will be only 0.5 florins. Fourth, the effect of a higher mortality than 
assumed may also be evaluated. If the factors 2 and 3 for the last two intervals 
of age are changed to 3 and 5, respectively, the value of the annuity will 
decrease only by 0.3 florins. Taking all these considerations into account de 
Witt concludes that the value ofan annuity for a nominee aged 3 will certainly 
be above 16 years’ purchase. He further adds that annuities are exempt from 
taxes. 

This is certainly an ingenious analysis of the effects of selection and changes 
of mortality on the value of an annuity. 

At the request of de Witt, Hudde certified that the method used was 
mathematically correct and that the numerical result of a price of at least 
16 years’ purchase also was correct, provided that the calculations had been 
carried out without error. The basic table of annuities certain was certified 
by the two bookkeepers of the States General. 

In a supplement to his report de Witt says that it may be dificult for 
the untrained to follow his theoretical reasoning, and he has therefore 
provided an empirical proof based on the registers of annuitants for Holland 
and West Friesland. He has extracted for some thousand of cases the age of 
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the nominee at the purchase of the annuity and the duration until death. 
For each annuitant he has calculated the present value of the payments 
received and then found the average for “a fair number of young lives. This 
being calculated upon considerably more than a hundred different classes, 
each class consisting of about one hundred persons,” it has invariably been 
found that the average value exceeds 16 florins and for many classes higher 
values have been found, even up to 18 florins. Unfortunately, these 
calculations have not been preserved. 

Hudde began his work on the mortality statistics of annuitants in the 
spring of 1671. In a letter to Huygens (Huygens’ Oeuvres, Vol. 7, p. 59), he 
states that he has found some preliminary results quite different from those 
of Graunt. This seems to indicate that Hudde knew of the correspondence 
of the brothers Huygens in 1669. The day after the presentation of de Witt’s 
report to the States General, Hudde sent his final table of mortality statistics 
to de Witt, and three weeks later he sent a copy to Huygens (Huygens’ 
Oeuvres, Vol. 7, pp. 95-98). A correspondence with de Witt ensued. 
Unfortunately, Hudde’s letters to de Witt are not preserved; we only have 
de Witt’s letters to Hudde [see Hendriks (1853, §28)]. 

De Witt and Hudde discuss three topics: (1) the value of an annuity 
evaluated from the data on annuitants; (2) the mortality of annuitants; and 
(3) the calculation of annuities on two or more lives. 

Hudde’s table is similar to that described by de Witt in his Supplement. 
I t  contains the age at purchase of 1495 annuitants from the register at 
Amsterdam and the duration in years of the annuity, all annuities having 
been bought in the period 1586-1590. For the 796 persons who were between 
1 and 10 years of age at purchase, Hudde finds the average value of the 
corresponding annuities certain to 17.6 florins, whereas de Witt for the same 
age class finds 17.9 florins based on the registers at The Hague. Hudde adds 
that the average value for all the annuitants is 16.6 florins, which covers 
persons between I and 50 years of age at purchase. 

The data tabulated by Hudde are ideal for the calculation of death rates 
according to age. I t  does not seem that Hudde has made such calculations, 
but a remark from de Witt indicates that Hudde proposed to replace de 
Witt’s hypothetical distribution of deaths by the simpler hypothesis of a 
uniform distribution over the age interval from 6 to 86 years. De Witt, 
however, analyses the data (whether his own or Hudde’s), probably by 
counting the number of survivors aged 50,55,60,. . . ,and finds “that they 
[annuitants at 50 and over] die almost exactly, at least without any sensible 
difference,” as shown in the following table. For comparison we have added 
the death ratescalculated by Iversen (1910) from Hudde’s data and also the 
rates following from de Witt’s original hypothesis and from Hudde’s 
hypothesis. 
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Probability of Dying within Five Years 

Age 50 55 60 65 70 75 80 85 
From Hudde’s 

De Witt 116 115 114 113 112 315 213 119 
De Witt’s 

Hudde’s 

data 0.160 0.205 0.259 0.322 0.468 0.591 0.704 0.813 

hypothesis 0.255 0.263 0.321 0.394 0.565 1.000 

hypothesis 0.139 0.161 0.192 0.238 0.313 0.455 0.833 1,000 

It will be seen that the death rates found by de Witt agree remarkably well 
with the rates found from Hudde’s data and that they are somewhat lower 
than the rates following from the hypothesis in de Witt’s report. De Witt 
notes that “contrary to my expectation” there is a discrepancy between the 
data and his original hypothesis and indicates that he will investigate the 
matter further, also for ages below 50. He does not, however, return to this 
problem in the letters to Hudde. 

De Witt also presents a general method for finding the value of an annuity 
based on the last survivor of several lives. He considers as an example a 
group of eight young lives of the same age and with the remaining lifetimes 7, 
15,24, 33,41,50,59, and 68 years. From a table of the eight annuities certain 
payable yearly he finds the average 17.2 florins. He has obviously chosen a 
nearly uniform distribution of the eight deaths such that the average value 
of the annuities certain equals the average previously found from his registers. 
The value of an annuity on the last survivor of the eight lives equals an 
annuity certain of duration 68 years, which gives 23.3 florins, and the values 
of annuities on a number of lives between one and eight will lie between 17.2 
and 23.3 florins. 

For m lives, 2 < m < 8, there are (i) combinations of the eight ages and 
to each combination a corresponding annuity certain of longest duration. 
The number of combinations for each of the possible durations, beginning 
with the shortest, is 

De Witt does not give this formula, but his table leaves no doubt about 
these binomial coefficients. The average of the annuities certain with the 
binomial coefficients as weights gives the value sought. For two lives de Witt 
shows that the value becomes 20.8 florins, and he further explains how the 
averages may be found by successive summations of the annuities certain, 
instead ofby multiplication, because of the special structure of the weights. 
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That de Witt was ahead of his time may be demonstrated by a comparison 
of his method with those used by Nicholas Bernoulli (1709) 38 years later. 
Bernoulli begins by setting the value of an annuity equal to the value of an 
annuity certain of duration equal to the expectation of life. He therefore gives 
a table of annuities certain for durations of 1 to 100 years at a rate of interest 
of 5%, and by means of this table and his previously calculated expectations 
of life, according to Graunt’s table, he tabulates the values of annuities for 
the usual ages. Then he writes, “Indeed while I write these things, I notice 
that the value of these incomes is not correctly calculated by supposing that 
the return will last as many years as someone is supposed probably to live.” 
He afterwards explains that the correct method is to calculate the expected 
value of the annuity certain using the probability distribution of the deaths. 
Since Graunt’s table gives the deaths for ten-year intervals only, he 
approximates the sum for each interval by the total number of deaths 
multiplied by the average value of the annuities certain. Finally, he tabulates 
the value of the annuities. For example, for x = 16 his first method gives a 
value of 12.6, whereas his second (correct) method gives 10.6. It is odd that 
Bernoulli does not interpolate to yearly values of the number of survivors 
in the life table to get a better approximation. As remarked in the previous 
section, he finds these values in good agreement with the prices demanded 
at Amsterdam in 1672. 

Finally, we shall comment on de Witt’s work using modern notation and 
terminology. 

Let T denote the remaining lifetime for the life (x) with probability 
distribution d,+,/l, ,  t =0,1, ..., where d ,  = O  for x 3 w and l , = d , +  
d,+ + ... + d,-  1. De Witt’s formula for the value of an annuity may then 
be written as 

The corresponding formula for the expectation of life, 

1 cu-x -1  

e , = E {  T }  = - C i d ,+ ,  
I ,  1 = 1  

had already been used (with a small modification) by the brothers Huygens, 
as explained in g8. l .  Whether de Witt knew about this, perhaps through 
Hudde, is unknown. It is more likely that de Witt’s theoretical approach was 
inspired by his empirical investigations in which he calculated the arithmetic 
mean in the distribution of aV for the deceased annuitants. In a letter to 
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Hudde on the calculation of joint-life annuities, de Witt writes that he could 
“establish thereon an argument a priori, although I have found it a posteriori, 
like in almost all inventions.” 

Inserting 

aq= (1 + i ) - k  
k =  1 

into de Witt’s formula and changing the order of summation, we get 

which is Halley’s formula (1694) for the value of an annuity. De Witt does 
not give this formula, but his remarks on the contributions of the first few 
years, compared to many years later in life, indicate that he was familiar 
with this form of the formula. 

De Witt and Hudde did not construct life tables, possibly because their 
calculations only required the distribution of the deaths. Enestrom (1896, 
1898) has pointed out that the life table corresponding to the values of d, 
used by de Witt in his report is a piecewise linear function: 

128 - 2(x - 3), 3 < x < 5 3 ,  . I  28 - $(x - 53), 53 < x < 63, 

1 45- 5(x - 73), 73 < x < 80. 

Enestrom has further pointed out that the death rate q, = dJ1, increases 
in each of the four intervals but that q, jumps from a higher to a lower value 
at the end of each interval; for example, q 5 2  = 0.067 and q53 = 0.048, the new 
level being approximately 2/3 times the foregoing in this case. This is of 
course unreasonable, and one may wonder why de Witt had not observed 
or commented on this fact. 

This leads to the crucial question about de Witt’s determination of the 
distribution of the deaths. i n  his second assumption on the mortality it is 
assumed that the death rate at age 58 equals 3/2 times the death rate at  40; 
that is, he assumes that the death rates are increasing. However, in the 
following he never argues in terms of death rates; he only uses the chances 
of dying for a three-year-old nominee, and he assumes that the number 
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of deaths at age 58 equals 2/3 times the number of deaths at 40. He does 
not explain how to obtain this result from his assumption. 

Looking at the formula for a, it will be seen that an essential simplification 
of the calculations is obtained by keeping d ,  constant over suitably chosen 
intervals. It also has the further advantage that the calculation of a, as a 
function of x becomes very simple. Such considerations may have induced 
de Witt to chose a constant value of d ,  within each of the four intervals. 

Today we are inclined to read de Witt’s report as a mathematical paper. 
It is, however, a prime minister’s attempt to convince the States General that 
the price of annuities should be raised from 14 to 16 years’ purchase. As 
other prime ministers in critical situations, de Witt was short of time and 
money. He had to work out his report in a very short time, and he had 
presumably no hope of getting the price raised to more than 16 years’ 
purchase. This may explain the inconsistencies in his paper. We shall support 
this point of view by means of a small calculation which might easily have 
been carried out by de Witt himself. 

The average values of the annuities certain for the four intervals follow 
directly from de Witt’s table. Hence, i t  is easy to find the value of the annuity 
for different distributions of deaths, as shown in the table below for (1) the 
distribution corresponding to de Witt’s assumption with the factors 1, 3/2, 
2, and 3; (2) a uniform distribution; and (3) the distribution actually used by 
de Witt with the factors 1 ,  2/3, 1/2, and 1/3. 

Value of Annuity for Three Different Distributions of Deaths 
~~ ~~ 

AVERAGE VALUE OF 

INTERVAL ANNUITY CERTAIN NUMBER OF DEATHS 

0-99 14.076 1oox 1 100 100 x I 
100-119 22.280 20 x 3 20 20 x f 
120-139 23.243 20 x 2 20 20 x + 
140-153 23.816 1 4 x 3  14 1 4 x f  

Total 212 154 128 
Value of annuity 18.90 17.22 16.00 

I t  will be seen that de Witt’s original assumption would have led to a 
value of 18.90 florins. Presumably, de Witt realized that he had no chance 
of getting an increase from 14 to 19 accepted. Furthermore, a price of 19 
was higher than the one following from his empirical investigations. He could 
then have turned to a uniform distribution, which would have given a price 
of 17.22, in good agreement with his empirical results. Instead, he chose 
factors, reciprocal of the original ones, leading to the (desired) result 16.00. 
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De Witt was both a great statesman and a great mathematician. 
Hudde’s data has been analyzed by Westergaard (1901, pp. 270-273) and 

Iversen (1910) who have calculated the corresponding life table. Westergaard 
has also studied the mortality over time and shown the effects of the plague 
in Hudde’s data. Plotting the life table calculated by Iversen it will be seen 
that 1, is nearly linear, namely, I ,  = 11 1 - 1 . 3 7 ~  for 15 Q x Q 75. For x Q 15, 
selection makes the death rates smaller. Of course, Hudde’s data comprise 
mainly healthy and wealthy persons, so that the death rates are not 
representative for the population in general. 

De Witt’s considerations on the five-yearly death rates are essential and 
might have led him to revise his mortality assumptions. 

De Witt’s method ofcalculating the value of an annuity on the last survivor 
of two lives is rather primitive compared to Huygens’ method of finding the 
corresponding expectation of life. This seems to indicate that de Witt did 
not know the details of the correspondence of the brothers Huygens. 

As mentioned before, the city of Amsterdam took the remarkable step in 
1672 to offer annuities at a price dependent on the age of the annuitant. The 
price was, however, very low (at most 10 years’ purchase) compared to the 
results found by de Witt and Hudde. The explanation for this lower price 
may be the need for money, an increase in the rate of interest and perhaps 
also the fear of inflation following the war. 

It has often been asserted that de Witt’s report is very scarce. However, 
according to van Brake1 (1976) one edition existed for the general public and 
at least three printings for the States General and the administration. De 
Witt’s method is mentioned by Struyck (1740) in his discussion of life annuities, 
and his report is mentioned in Gouraud’s History (1848). 

De Witt’s method was superseded by Halley’s (1694), which became very 
popular, and from the middle of the 18th century, de Witt’s paper was 
forgotten until Hendriks found it and provided an English translation with 
commentaries in 1852-1853. 

Besides the references given we refer to Algemeene Maatschappij (1898, 
1900); Braun (1925); van Haaften (1925); Chateleux and Rooijen (1937); Kohli 
and van der Waerden (1975); and Seal (1980). 

9.3 
SEVEN USES, 1694 

HALLEY A N D  HIS LIFE TABLE WITH ITS 

Edmond Halley (1656-1742) was the son of a wealthy citizen of London. He 
received a good classical education and, at the same time, he studied 
astronomy, navigation, and mathematics and carried out astronomical 
observations with instruments provided by his father. At seventeen years old 
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he went to Oxford to continue his studies and his observations. Without 
taking his degree in Oxford he followed his interest in astronomy and went 
to the island of St. Helena to make observations of stars which were too 
near the south pole to be visible in Europe. After his return in 1678 he 
published a catalog of the positions of 341 southern stars, which was of 
importance to the navigation of the many new trade routes to the southern 
hemisphere. On the basis of this work he was elected a fellow of the Royal 
Society in 1678 at the age of 22. He served the Society well as assistant 
secretary and as editor of the Philosophical Transactions for several years, 
and he helped Newton with the Principia. In 1704 he became professor of 
geometry at Oxford, a post he held until 1720; when 63 years old, he took 
over the post of Astronomer Royal at Greenwich, in which position he 
remained until his death. 

Halley was a scientist of unusual versatility and energy. His 
main works are on astronomy and geophysics, but he also made contributions 
to physics, mathematics, demography, and insurance mathematics. 
Furthermore, he edited the mathematical works of Apollonius and several 
other Greek mathematicians in Greek with a Latin translation, and he 
combined his astronomical and classical knowledge to help historians to 
date important events in ancient times. 

In geophysics he made important contributions to the theory of terrestrial 
magnetism, and on a two years’ voyage as captain of a small ship he traversed 
the Atlantic and made a chart of the variation of the compass “in all those 
seas where the English Navigators were acquainted.” 

Halley’s many observations of positions of the stars, the planets, the moon, 
and the comets led him to important practical and theoretical results. He 
discovered the proper motions of the stars, which hitherto had been 
considered fixed. He proposed to use transits of Venus across the sun for a 
better determination of the sun’s distance from the earth. He improved the 
tables of the moon’s orbit to make determinations of the longitude at sea 
more precise. 

Using Newton’s theory he worked out the orbits of 24 comets. Noting 
that the orbits of the comets of 1531, 1607, and 1682 were similar, he 
conjectured that these comets were one and the same object moving 
periodically in an elliptical orbit, and he predicted the next appearance of 
this comet, today known as Halley’s comet. 

To get a better understanding of Halley’s paper on demography and 
insurance mathematics, we shall introduce some fundamental notions from 
population theory. The life table gives the number of survivors I ,  at age x 
from a number of births I,. Consider now a population where (1) the number 
of births in each calendar year is I,; (2) the mortality as defined by the life 
table is constant over time; and (3) there is no migration. This is the stationary 
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population corresponding to the given life table. The problem is to find the 
age distribution of the living in the stationary population and the size of the 
population. 

The lifetime of a person may be depicted in a coordinate system with age 
as abscissa and calendar time as ordinate, a Lexis (1 875) diagram, as shown 
in Fig. 9.3.1. For each person a lifeline is drawn beginning at the date of 
birth on the ordinate axis and continued diagonally until  the date of death, 
the corresponding abscissas being zero and the age at death. In the diagram 
a lifeline has been shown ending with death at  the age 1.5 years. The number 
of lifelines beginning in each calendar year equals I, of which I, will cross 
the vertical line x years later. The number of deaths d ,  between x and x + 1 
equals lx - I,, and is represented by the number of lifelines stopping in the 
corresponding parallelogram. This number may be divided into the number 
of deaths before (b) and after (a) the first of January, d ,  = d t  + d:, say. The 
number of persons between x and x + 1 years of age, L,, equals the number 
of lines crossing the corresponding horizontal line so that 

L, = I, - d: = I,, + d: = + ( I x  + I ,  + I )  + +(dz - d t ) .  

-190 - / 
7 
7 

0 1 2 3 Age 
Fig. 9.3.1. A Lexisdiagram showing the relations between I,, d,, and L,. The numerical 
values of L, are from Halley’s life table. 
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If the number of deaths are nearly uniformly distributed over the 
parallelogram, we obtain the approximation L, N $(Ix + I,, ,) z I,, which 
is usually sufficiently accurate, apart from very small and very large values 
of x. The population size is obtained by adding all the L’s. 

The background for Halley’s work is as follows. At Breslau in Silesia 
registers of births and deaths according to sex and age had been kept since 
the end of the 16th century. A prominent evangelical pastor and scientist, 
Caspar Neumann (1648-1715), used the lists from 1687 and the following 
years in his attempts to fight popular superstitions about the influence on 
health of the phases of the moon and the climacteric ages, i.e., ages divisible by 
seven and nine. Neumann sent his results to Leibniz, who in 1689 informed 
Justell, secretary of the Royal Society at London, of Neumann’s researches. 
After the works of Graunt and Petty, members of the Royal Society had been 
waiting for observations suitable for the construction of a life table, and 
Justell therefore wrote to Neumann who responded by sending his observ- 
ations for each of the years 1687-1691. The Society asked Halley to analyze 
the data, and in 1693 Halley presented his paper A n  Estimate of the Degrees 
of the Mortality qj” Mankind, drawn from curious Tables of the  Births and 
Funerals at the Ci ty  of Breslaw; with an Attempt to ascertain the Price of 
Annuities upon Lives. 

Halley begins by referring to Graunt and Petty and points out that they 
themselves had been aware of the defects of their data, namely, that the 
population size was unknown, that the ages of the deceased were unknown, 
and that the populations of London and Dublin were increasing because of 
migration. These defects seem to a great extent to be alleviated in the bills 
of mortality at Breslau “wherein both the Ages and Sexes of all that die are 
monthly delivered, and compared with the number of Births,” which exceeds 
the number of deaths only to a small extent. The only thing missing is the 
population size. 

Halley does not present Neumann’s data in detail; he merely gives the 
average yearly numbers without distinguishing between the sexes. The 
average numbers of births and deaths are 1238 and 1174, respectively, so 
that there is an increase in the population ofabout 5% per year. Halley writes, 

I will suppose the people of Breslaw to be encreased by 1238 births annually. Of 
these it appears by the same Tables, that 348 do die yearly in the first Year of 
their Age, and that but 890 do arrive at a full Year’s Age; and likewise, that 198 
do die in the five years between 1 and 6 compleat, taken at a Medium; so that 
but 692 of the persons born do survive S i x  whole Years. 

Following Graunt’s idea, Halley begins by constructing a life table with 
I, = 1238, I, = 890, and I, = 692. For ages above six, he gives the information 
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that of the whole People of Breslaw there die yearly, as in the following Table, 
wherein the upper Line shews the Ages, and the next under it the Number of 
Persons of that Age dying yearly. And where no Figure is placed over, i t  is to be 
understood of those that die between the Ages of the preceding and consequent 
Column [see Table 9.3. I]. 

Note that age seven, say, in Table 9.3.1 indicates the seventh year of life, i.e., 
the age interval from six to seven. Halley’s table contains the first published 
empirical distribution of deaths according to age. 

Table 9.3.1. The Average Yearly Number of Deaths at Breslau for the 
Period 1687 - 169 I 

Age 7 8 9 . 14 . 18 . 21 . 2 7 2 8  . 35 
Deaths I 1  1 1  6 54 2 34 5 6 4f 64 9 8 7 7 

Age 36 . 42 3 45 . 49 . 54 55 56 . 63 * 70 
Deaths 8 94 8 9 7 7 10 lw I 1  9 9 10 12 9f 14 

Age 71 72 . 77 + 81 . 84 . 90 91 . 98 99 100 
Deaths 9 1 1  9f 6 7 3 4 2 1 1 1 1” 0 3 
”These two numbers are missing in Halley’s table. possibly due to printer’s errors, (see Knapp, 
1874. p. 127). 
Source: E. Halley. Phil. Trans., 1694. Vol. 17, p. 599. 

Halley’s analysis of these numbers is rather brief. He considers four age 
intervals: 9-25, 25-50, 50-70, and above 70. He observes that within the 
first interval there is a minimum number of deaths about age 14. He does 
not believe in the reality of this minimum for two reasons. First, i t  may be 
“attributed to Chance, as are the other irregularities in the Series of Ages, 
which would rectifie themselves, were the number of Years much more 
considerable, as 20 instead of 5.” Second, experience from Christ Church 
Hospital in London indicates that the death rate in this age group is about 
1%, and since the number of people of age 14 in Breslau is about 600, this 
would lead to an expected number of deaths of about six. He therefore uses 
six as the minimum number of deaths in the first interval. For the two 
following intervals he uses a gradual increase of the number of deaths from 
7 to 11, and for the last interval a gradual decrease from 1 I to 0. 

Without further explanation he writes; “From these Considerations I have 
formed the adjoyned Table” (see Table 9.3.2), and “This Table does shew the 
number of Persons that are living in the Age current annexed thereto”. 

Halley’s table gives L, for x = 0, 1, . . . ,83, and the sums of seven consecutive 
L’s, i.e., the number of persons in seven-year age intervals and also the number 
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of persons between 84 and 100, the total sum, 34,000, being the population 
size. 

A thorough discussion of the demographic part of Halley’s paper, with 
an attempt to reconstruct his method of finding the Us, has been given by 
Bockh (l893), which we shall follow. Presumably, Halley used the monthly 
observations to find Lo, which he then for convenience rounds to 1000. From 
I ,  = 1238, L,  = 1000, and I ,  = 890, i t  follows that d: = 238 and d t  = 110, 
which seems to be a reasonable distribution of the number of deaths in the 
first year (see Fig. 9.3.1). Halley must also have calculated ! 2 , .  . . , I6 from the 
data even if he only informs us that I ,  = 692; perhaps he only calculated I ,  
and found the remaining values by interpolation. Assuming an even 
distribution of the deaths within each age interval he may have found L, to 
be : ( I x  + I , ,  

The crucial point, however, is the relation between the numbers in 
Tables 9.3.1 and 9.3.2. If Halley had assumed that the population of Breslau 
was stationary, he could have calculated the life table by summation of the 
successive numbers of deaths. He would then have obtained I ,  = 1174. By 
choosing I ,  = 1238, he had to increase the number of deaths in Table 9.3.1 
by 1238-1 174 = 64. He seems to have adjusted the numbers in the table in 
three ways: ( 1 )  he increased the yearly number of deaths in the interval from 
9 to 25 to a minimum of 6 for the reasons already mentioned; (2) he carried 
out a smoothing operation to reduce chance variations; and (3) he combined 
the smoothing with a distribution of the 64 deaths, using the restriction that 
the yearly number of deaths should be between 6 and 1 1  for the age interval 
9 to 70 and gradually decreasing thereafter. 

Bockh has carried out this adjustment and given a table of the resulting 
values of I,, the first eight being 1238,890,820,776,744,720,700, and 685. We 
note that Halley’s adjustments also have affected I,, originally given as 692, 
such that the adjusted value becomes 700 with the result that L6 = 692, which 
of course has caused a great deal of confusion. 

Halley’s adjustments mean that the differences in his table of L, are nearly 
constant for considerable sections of the table; they increase slowly from 6 
to 1 1  for 6 ,< x 6 53, nearly all of them equal 10 for 54 6 x 6 77, and then 
they decrease to zero. Of course, theoretically, (1, varies continuously, but 
because of rounding to integers, Halley reaches the artificial result that d ,  
is piecewise constant. 

In Fig. 9.3.2 we have shown the distribution of 1000 deaths according to 
Halley’s table and for comparison the distributions corresponding to the 
tables of Graunt and de Witt. Although Halley’s d’s are constant within 
rather short intervals, we have shown the distribution as continuous. 

At the end of his paper Halley briefly discusses whether the life table and 
the results derived from it may be considered “universal.” He notes that the 

for x = 1 , .  . . , 5 ,  as indicated in Fig. 9.3.1. 
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crude death rate in Breslau is 1174/34,000, or 35 per 1000, which is about 
the same as Petty (Graunt) found for London, and that infant mortality also 
is about the same as found by Graunt. He concludes that “there cannot 
perhaps be one better place [than Breslau] proposed for a Standard.” He 
does not comment on the great differences between Graunt’s life table and 
his own, neither does he discuss the changes in mortality and population 
composition due to the plague and other epidemic diseases. These problems 
have been discussed by Westergaard (1901, pp. 34-39). 

We shall now briefly recount the seven ways Halley used his table. 

- 
--------------- ----’1 

I 
L----, 

I 
.-.-.- 

i-.-.-, 
.-.-.- 

(1) Like Graunt, he finds the “Proportion of Men able to bear Arms.” 
Summing L, from 18 to 56 and dividing by 2, he gets 9027 men, so that the 
required proportion is 9/34, “which may perhaps pass for a Rule for all other 
places.” 

He also finds that there are about 7000 women above 16 and under 45 
years of age and wonders why the yearly number of births is only 1238. He 
recommends “an effectual Care to provide for the Subsistence of the Poor, 
by finding them Employments, whereby they may earn their Bread, without 
being chargeable to the Publick” as a means for increasing the birth rate. 

(2) He uses the odds L, +,/(L, - L,,,) as a measure of the “differing degrees 
of Mortality, or rather Vitality in all Ages.” 
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(3) He defines the median remaining lifetime for a life (x) as the solution 
of the equation L,+, = 4Lx. 

(4) He remarks that the price of a term assurance may be found from the 
odds calculated under item (2). 

( 5 )  On the valuation of annuities upon lives Halley writes “that the 
Purchaser ought to pay for only such a part of the value of the Annuity, 
that he has Chances that he is living; and this ought to be computed yearly, 
and the Sum of all those yearly values being added together, will amount to 
the value of the Annuity for the Life of the Person proposed.” Halley’s 
formula for the value of an annuity thus becomes 

Halley carefully explains that the present value of 1 payable after r years 
equals ( I  + i)-’ and that this value has to be multiplied by the chance that 
(x) is living at time r .  Halley presents a table of 1.06-’ for r = 1(1)40(5)100 
and a table ofthe corresponding values of annuities for every fifth year ofage. 

Value of an Annuity at 6% Interest According to Halley 

Age I 5 10 20 30 40 50 60 70 
Value of 

annuity 10.28 13.40 13.44 12.78 11.72 10.57 9.21 7.60 5.32 

Halley remarks that the English government sells annuities at a price of 
seven years’ purchase, which is to great advantage for the purchasers. Halley’s 
paper did not affect the government, which continued to sell annuities cheaply 
and at a price independent of the age of the annuitant. 

(6) The value of an annuity dependent on two lives, (x) and ( y ) ,  say, may 
be found by a similar calculation, since “the number of Chances of each 
single Life, found in the Table, being multiplied togethcr, become the Chances 
of Two Lives.” 

Let us denote the number of deaths in Halley’s table between x and x + I 
by D,,, so that D,., = L, - L,,,. Halley then finds the number of chances 
corresponding to the four possible combinations of survival and death by 
expanding L,L, as 

and he gives a pictorial representation of this relation by means of the four 
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areas in a rectangle, as shown in Fig. 9.3.3. Halley does not give the formulae 
for the corresponding annuities, but i t  is implied that the formula for the 
joint-life annuity is 

with analogous formulae holding for the three remaining cases. 
(7) The results of the previous section are generalized to three lives. After 

a discussion of the meaning of the eight terms of the product L,L,L,, Halley 
gives the value of the reversion of the younger life (x) after the two elder, (y) 
and (z), as 

0 L x * t  Lx 
Fig. 9.3.3. Halley's pictorial representation of the number of chances for survival and 
death for two independent lives. The notation is of a later date. 
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He shows that it will be expedient to introduce LI = L ,  - D,.l and calculate 

The result may then be subtracted from the main term, which may be 
expressed as an annuity certain. In an example he calculates only the first 
six terms of the sum above because of the laborious calculations. 

Halley does not discuss the expectation of life, but the formulae in question 
follow immediately from his formulae for annuities by setting i = O .  I t  will 
be seen that his method is more direct and easier to understand than Huygens’ 
method for joint lives. Halley’s method was rediscovered by N. Bernoulli in  
1709, as discussed in $8.2. 

The demographic concepts introduced by Halley were not understood by 
his contemporaries, possibly because Halley’s explanations were somewhat 
unsatisfactory. 

De Witt used the distribution of deaths as starting point, and he therefore 
calculated the value of an annuity as the expectation of the payments made 
to the deceased annuitants, that is, as xa,d, t f / I x .  Working independently 
of de Witt, Halley used the distribution of the survivors as the starting point, 
and he therefore introduced the expectation of the payments made to the 
living, that is, ( 1  +i)- ‘15 ,+~/L~,  and found the value of an annuity as the 
sum of all these expectations. Halley’s paper became of great importance to 
actuarial science. The expectation ( I  + i ) - f lx+f / / , ,  today called a pure 
endowment, became a fundamental quantity in life insurance and has 
remained so ever since. 

Halley may have written his paper because as an editor, he needed papers 
of high quality for the Phil. Trans.; he never returned to this topic. It  is a 
singular proof of his versatility that he produced this seminal paper in a field 
rather far from his main interests. 

For supplementary reading we refer to Graetzer (1883), Greenwood 
(1941-1943), and K. Pearson (1978). Daston (1987) has given a sociological 
analysis of the interplay between probability and insurance business. Part 
of the present chapter has previously been published by Hald (1987). 

9.4 PROBLEMS 

1. Compare the life tables of Graunt, de Witt, and Halley by means of graphs 
of I , , &  and qx.  
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2. For 
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1 0 - x - 1  

I ,  r = l  
e , = E { T } = -  C ld,,, 

prove that a, < a a .  

3. Compare ex, the curtate expectation of life, and t?,, the complete 
expectation of life, and show that 2, EZ ex + as a first approximation. 

3. Calculate the expected payment according to age for each survivor in the 
Danish State tontine of 1653. 

5. Set I, = 86 - x for x 6 86 and I, = 0 for x > 86, as suggested by Hudde. 
Use de Witt's formula to find a, and show that u50 = 11.3 at 4% interest 
and yearly instalments. This result is given by de Witt in a letter to Hudde. 
Solve the same problem for I, = 1 1  1 - 1.37~.  

6. Assume that (x) and (y) are independent and set I , , + ,  = I , x t r l y + ,  for t 2 0 .  
Let ex, denote the joint expectation of life. Show that 

where b x y +  r = 4 - I,, f , ) / d t .  
Replacing L by I In Halley's formula, we get the value of the joint-life 

annuity, 

1 w - x - I  

a,,, = -- c ( 1  + i)-'lxyfr, x < y .  
I , ,  I= I 

Setting i = 0, we get the curtalc expectation of life exy .  

7. Following Halley, let us write 

41, = (Ix f f  + 4 J U ,  t r + "J. 

Use this formula to prove that the probability that at least one of the 
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lives will survive t years is 

1 - 1 4 X  I 4 Y  = r P x  IPY + r P x  r q y  + rPr r q x  

= r P x  + I P Y  - #xyr ’ 

where r ~ x  = l x + , / I x ,  ,qx = 1 - ,p,, etc. 

8. From Problem 7 it follows that the expectation of life for the last survivor 
equals ex + Ey - eXy. Find this expectation for x = y = 16 from Graunt’s 
life table and compare with Huygens’ method and result. 
Hint :  Consider I , , + ,  as a life table and compute ExY.  The result is 
20.25 + 20.25 - 11.42 = 29.08. This computation is based on the 
assumption that lxyfr is linear between the given points, which is at 
variance with the assumption that I , + ,  is linear in each interval. Hence, 
improve the computation by using a quadratic function for l x r + , .  

9. Following Halley, the expectation in Problem 8 may also be found as 

( 1  - , q x r q y ) d t  for x 6 y. 

Evaluate this integral by the trapezoidal rule and show that the result for 
x = y = 16 becomes 70 - 40.92 = 29.08, in agreement with the result in 
Problem 8. 

10. Write out the various forms of the value of an annuity on the last survivor 
of three lives. 



CHAPTER 10 

Mathematical Models and 
Statistical Methods in Astronomy 
from Hipparchus to Kepler 
and Galileo 

10.1 
ESTIMATION IN ANTIQUITY AND THE MIDDLE AGES 

OBSERVATIONAL ERRORS AND METHODS OF 

Astronomy was the most important and the most advanced field of 
applied mathematics from antiquity until the 18th century. Observational 
and mathematical astronomy give the first examples of parametric model 
building and the fitting of models to data. In this sense, astronomers are the 
first mathematical statisticians, and it seems therefore natural to begin the 
history of mathematical statistics with a sketch of the history of mathematical 
models in astronomy. Problems in astronomy gradually led to the principle 
of the arithmetic mean and to various methods of estimation in parametric 
models, culminating with the method of least squares. 

The crude instruments used by astronomers in antiquity and the Middle 
Ages could lead to large systematic and random errors. By planning their 
observations astronomers tried to balance positive and negative systematic 
errors. They seem not to have developed fixed rules for taking averages of 
observations to estimate the true value. If they made several observations of 
the same object they usually selected the “best” as estimator of the true value, 
the “best” being defined from such criteria as the occurrence of good 
observational conditions, special care having been exerted, and so on. Sheynin 
(1973) has made a survey of these problems with many quotations and 
references. 

144 
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A probabilistic theory of errors and a corresponding theory of estimation 
did not emerge until the 18th century. Nevertheless, parameters had been 
successfully estimated by “primitive” methods for more than 2000 years. 

Examples are to be found in estimating the length of periods of revolution 
of the heavenly bodies. The simplest model assumes that the sun revolves 
with constant speed in a circular orbit around the earth, which means that 
the angular position of the sun is a litiear function of time. To  estimate the 
length of the (tropical) year, Hipparchus about 135 B.C. uses a simple ratio 
estimate (as we would say today) of the slope; that is, he observes two points 
on the line and uses the ratio of the differences of the coordinates as the 
estimator. He also realizes that the error of the estimate depends on the 
distance between the two points. He uses the date of the summer solstice of 
the year 280 B.C., observed by Aristarchus of Samos, and his own 
observation for the year 135 B.C. The difference in time expressed in 
days and hours divided by the number of revolutions, 280- 135 = 145 
gives him 365$ days minus (1/300)th of a day as estimate of the  length 
of a year. The correction of (1/300)th of a day was an improvement of 
the then current estimate of 365; days. Berry (1898, p. 55) writes, 

It is interesting to note as an illustration of his scientific method that he discusses 
with some care the possible error of the observations, and concludes that the time 
of a solstice may be erroneous to the extent of about day, while that of an  
equinox may be expected to be within f day of the truth.  In  the illustration given, 
this would indicate a possible error of I $  days in a period of 145 years, or about 
15 minutes in a year. Actually his estimate of the length of the year is about six 
minutes too great, and the error is thus much less than that which he indicated 
as possible. 

Ptolemy checked this result by a similar computation based on an observation 
by Hipparchus of the autumn equinox and a corresponding observation of 
his own 285 years later and found the same estimate as Hipparchus, see 
Plackett (1958). Ptolemy also discussed several observations of the vernal 
and autumnal equinoxes and concluded that the length of the year is constant. 

Since the parameters of the model could usually be identified with or 
related to specific observable phenomena, the natural method of estimation 
was to form the equations of condition (as they were later to be called) by 
equating predicted and observed values and to solve for the parameters. I t  
was also natural to use only as many equations as there were parameters. 
In the linear case exemplified above we have ax,  + b = r, and a.yz + b = r,, 
which give the ratio estimate a = (f2 - r,)/(x2 - x,). A constant systematic 
error in the observation o f t  will disappear in the ratio estimate. We shall 
return to parametric models and estimation in $10.4. 
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10.2 
BY TYCHO BRAHE 

PLANNING OF OBSERVATIONS AND DATA ANALYSlS 

The Almayest by Ptolemy about A.D. I50 contained a catalog of the positions 
of 1028 stars, tables of important astronomical constants, and parameters 
for the planetary motions. Such tables depend on both direct observation 
and the theory of the motion of celestial bodies employed to reduce the 
observed positions to geocentric coordinates. Several Arab and European 
astronomers revised these tables during the Middle Ages. They corrected 
computational errors and mathematical inconsistencies, but they did not 
essentially reduce the uncertainties due to observational errors. Copernicus 
(1543) gave a star catalog based on Ptolemy’s catalog corrected by a few 
new observations and arranged so as to avoid the effects of the precession 
of the equinoxes. Erasmus Reinhold published in 1551 his Pnusicin Tables 
containing revised tables of the positions and the motions of the celestial 
bodies calculated from the Copernican model. 

In the construction of his heliocentric model, Copernicus used data 
covering the large time interval from Hipparchus about I50 B.C. to his own 
time. These data were naturally somewhat inconsistent and encumbered with 
many errors that misled Copernicus into introducing some long-term changes 
in his parameters. The Ptolemaic and Copernican models fitted the data 
about equally well, and many astronomers therefore realized the importance 
of providing new and more accurate observations as a basis for further 
development of models of the universe. 

The Danish astronomer Tycho Brahe (1546-1601) became the leading 
observational astronomer in the latter part of the 16th century. Supported 
by the Danish king, he built a magnificent observatory on the island Hven, 
where he educated a large number of assistants and demonstrated his 
instruments and methods to many visitors. Very early in life he set himself 
an immense task: to redetermine the positions of the celestial bodies with 
far greater accuracy than previous observers and thus to create a new 
empirical foundation for revising the existing mathematical models. 

He constructed better and larger instruments with finer gradations. He 
mounted some of the instruments on sturdy supports and built an 
underground observatory to avoid the effects of wind, temperature, and other 
outside disturbances. He regularly checked his instruments against each other 
to control systematic errors. 

He trained his assistants in observational procedures and had them 
independently observe the same phenomenon at the same time to check each 
other’s results. 

He began a program of regular observation of the same celestial bodies 
that extended over a period of nearly 25 years. 
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In modern terms, he controlled both systematic and random errors by 
measuring the variations between instruments, between observers, and over 
time. His methods served as a model for other observatories and scientific 
laboratories. 

He collected his observations in a catalog of 1000 stars. In most cases the 
positions were determined with an error of less than 2', and for eight of his 
nine "reference stars," the error was less than 1 ' .  This was a great improvement 
for observations made with the naked eye. 

We shall now discuss two recent investigations of Tycho's work in more 
detail. The first is due to Plackett (1958). Tycho knew that his observations 
were affected by systematic errors due to parallax and refraction. In his 
attempts to determine the right ascension of the star OL Arietis, he therefore 
combined his observations in pairs based on objective astronomical criteria 
of symmetry so that the two observations might be supposed to have 
systematic errors of the same size but of opposite sign. For the years 
1582-1588 he collected 12 such pairs. To eliminate the systematic errors he 
calculated the arithmetic mean of each pair. For example, the first pair gave 
26'4'16" and 25'56'23" with a mean of 26'020". (Plackett presents a complete 
table with the date for each observation, from which it  follows that the 
systematic errors, the differences divided by 2, vary from about 0' to 8', the 
example above with a systematic error of about 4 being typical.) Deducting 
26" from each mean, Tycho's results expressed in seconds of arc are as follows: 

20, 38, 18, 32, 42, 37, 27, 29, 14, 4, 28, 39. 

Tycho supplemented the twelve means with three single observations equal 
to 44", 32", and 3 0 .  He gave the final result of his analysis as 26"0'30" without 
explaining how he arrived at  this number, and he referred this result to the 
end of the year 1585, which is nearly the midpoint of the observational period. 
By modern methods the position is calculated to be 26'045". 

This is a fine example of carefully planned observations combined with 
refined data analysis using the arithmetic mean to eliminate systematic errors 
and choosing a central value as an estimate of true position to reduce the 
effects of random errors. 

For comparison with Tycho's result we note that the mean and standard 
deviation of the 12 means are 26'027" and 11.5", respectively, so that the 
standard error of the mean is 3.3". This indicates that the mean (and also 
Tycho's value) is significantly smaller than the modern value, if we assume 
that the latter is without error. The difference is, however, very small. 
Multiplying the standard deviation by J2 we obtain 16" as the standard 
deviation of a single observation, which shows the great accuracy of Tycho's 
observational method. 
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One may wonder why the practice of calculating the arithmetic mean of 
several independent, equally good observations did not become firmly 
established before the 18th century. The concept of the arithmetic mean had 
been known in other contexts long before, for example, the center of gravity. 
Part of the explanation may be that since new observations were taken with 
the purpose of improving previous results, the observations were not 
considered equally good. 

The early history of the arithmetic mean has been given by Eisenhart 
( 1  974). Kepler’s few attempts of statistical considerations have been described 
by Sheynin (1975). 

To  investigate the accuracy of the instruments used by Tycho Brahe, 
Wesley (1978) computed the positions of 20 stars at Tycho’s times with an 
error negligible compared to the errors of Tycho’s observations. These 
computed values may thus be considered the true values, and the difference 
between Tycho’s observations and the true values demonstrate the combined 
effects of systematic and random errors. For example, for the declination of 
the star Tauri the average error equals 60“, and the standard deviation of 
the errors equals 15” for observations carried out with the mural quadrant. 
Wesley states that the number of observations is at least eight, so we are not 
able to give the standard error of the average, but we can say that i t  is smaller 
than l S ” / J 8  = 5“. This means, however, that the larger part of the average 
represents systematic errors. To test Tycho’s assertion that his instruments 
gave consistent results, Wesley has calculated the average error for five other 
instruments and found the results 39”, 52“, 44”, IOS”, and 59“, which is in 
agreement with the first result i f  we take the slightly larger standard deviations 
and the smaller number of observations into account. Wesley finds similar 
results for the other 19 stars and for a few more instruments as well. He also 
concludes that the average errors do  not change greatly from year to year, 
presumably because of Tycho’s constant checking of each instrument against 
all the others. 

Tycho Brahe succeeded in carrying out his observational program. He 
also proposed a new mathematical model, a compromise between the 
Ptolemaic and the Copernican models; however, this was shortly superseded 
by Kepler’s model. In his Astronomin Noon from 1609 Kepler writes, 

Since the divine goodness has given to us in Tycho Brahe a most careful observer, 
from whose observations the error of 8’ is shewn in this calculation,. . . it  is right 
that we should with gratitude recognise and make use of this gift of God. .  . . For 
if 1 could have treated 8’ of longitude as negligible 1 should have already corrected 
sufficiently the hypothesis.. . discovered in chapter XVI. But as they could not be 
neglected, these 8’ alone have led the way towards the complete reformation of 
astronomy, and have been made the subject-matter of a great part of this work. 
(Berry, 1898, p. 184.) 
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10.3 GALILEO’S STATISTICAL ANALYSIS OF 
ASTRONOMICAL DATA, 1632 

In his works on physics Galileo describes many experiments to support and 
elucidate his mathematically formulated physical laws. He did not, however, 
publish his experimental results, and therefore there has been some discussion 
on whether he actually carried out these experiments. Undoubtedly, some 
of the experiments were imaginary, or “thought experiments,” in which 
he appealed to generally acknowledged experiences and to common 
sense; in other cases, as documented from his notebooks, he did carry 
out experiments. 

Drake (1978, p. 89; 1985) and others have analyzed Galileo’s experiments 
with a ball rolling down an inclined plane placed on a table, the ball heing 
deflected horizontally until i t  hits the floor. Galileo records the vertical 
distance of fall (above the table) and the horizontal distance traversed (from 
the table to the end of the trajectory). Assuming that horizontal distance is 
proportional to the square root of vertical distance, he estimates the constant 
from one pair of observations, calculates the expected value of the other 
horizontal distances, and notes the deviations. 

In his Dialogo Galileo (1632) gives a detailed statistical analysis of 
observations on the new star of 1572. He was provoked by S .  Chiaramonti, 
professor of philosophy at Pisa, who published the De tribus nouis stellis quae 
annis 1572,1600, I604 cornparuere (On the Three New Stars Which Appeared 
in the Years 1572,1600,1604) in 1628 to prove that the new star was sublunar, 
in opposition to Tycho Brahe and some other astronomers, who held that 
it was situated among the fixed stars. As mentioned earlier in 92.3, the ques- 
tion of the immutability of the heavens was a very serious one, both 
philosophically and theologically. Tycho wrote a small book on the new star 
in 1573, and in his posthumously published works in 1602 he returned to a 
detailed discussion and interpretation of the observations made by himself 
and other astronomers; a summary has been given by Dreyer (1890, Chaps. 3 
and 8). The Dialogo has been translated into German by E. Strauss (1891) 
and into English by S .  Drake (1967), see the references under Galileo (1632), 
and both translators have provided many useful notes. The following page 
references are to Drake’s translation. The whole analysis takes up 

Galileo gives an informal discussion of random errors on pp. 281 -282 and 
287-293. He does not discuss systematic errors, nor does he use the terms 
“random” and “distribution”; rather, he writes about “observational errors.” 
However, his description of the properties of these errors leaves no doubt 
that he is discussing what today is called the distribution of random errors. 
His discussion may be summarized as follows: 

pp. 280-3 18. 
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1. There is only one number which gives the distance of the star from the 

2. All observations are encumbered with errors, due to the observer, the 

3. The observations are distributed symmetrically about the true value; 

4. Small errors occur more frequently than large errors. 
5. The calculated distance is a function of the direct angular observations 

such that small adjustments of the observations may result in a large 
adjustment of the distance. 

center of the earth, the true distance. 

instruments, and the other observational conditions. 

that is, the errors are distributed symmetrically about zero. 

We do not know whether the properties of observational errors as 
described by Galileo were generally known among astronomers of the time; 
at any rate they were not taken into account by Chiaramonti. These properties 
are the foundation on which mathematical error theory later was built. 

Based on these suppositions, Galileo discusses how to compare the two  
hypotheses about distance. Comparing the observations with the two 
hypothetical values he says that the nimt probable hypothesis is  the oiie which 
rc.qirire.5 the stnallest corrections of’ the observations. He writes on p. 290, 
“Then these observers being capable, and having erred for all that, and their 
errors needing to be corrected in order for us to get the best possible 
information from their observations, i t  will be appropriate for us to apply 
the minimum amendments and smallest corrections that we can,” and on 
p.293, “Those observations must be called the more exact, or the less in 
error, which by the addition or subtraction of the fewest minutes restore the 
star to a possible position. And among the possible places, the actual place 
must be believed to be that in which there concur the greatest number of 
distances, calculated on the most exact observations.” 

Galileo’s error theory has been discussed by Maistrov (1974, pp. 32-34) 
who reached similar results to those stated above. 

The crucial question is, What does Galileo mean by “the smallest 
corrections”? Hc does not answer explicitly, but from his analysis of the data 
it follows that he uses the sun1 ~ j ’ t h e  nbsolute detliations,/ioni the hypothetical 
uulue as his criterion. 

We shall use the notation indicated in Fig. 10.3.1. 
The data adopted by Galileo from Chiaramonti’s book are given in 

Table 10.3.1. 
Unfortunately, Galileo does not offer a critical evaluation of the data. He 

only remarks that repeated observations of the polar altitude by the same 
observer may result in variations of a minute or so, or even of many minutes, 
and that Tycho and the Landgrave are known to be among the best observers. 
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Zenith 

Fig. 10.3.1. The point 0 represents the center of the earth, the circle the celestial 
sphere, x the altitude of the polar star P ,  and y and z the minimum and the maximum 
altitudes of the new star corresponding to the daily rotation of the earth. 

Table 10.3.1. Observations of the Star of 1572 

Observer 
~~ 

l a  Tycho 
Ib Tycho 
2a Camerarius 
2b Camerarius 
2c Camerarius 
3 Peucer 
4 The Landgrave 
5 Reinhold 
6 Busch 
7 Gemma 
8 Ursinus 
9a Hainzel 
9b  Hainzel 
9c Hainzel 

10 Hagek 
I I  Muiioz 
12 Maurolycus 

Altitude of 
the pole, x 

55"5X' 

52"24' 

5 1'54' 
5 I "  18' 
51"18' 
51"10 
50"50 
49"24' 
48"22' 

48'22' 
3 Y 3 0  
38"30 

Minimum altitude 
of the star, y 

27"57' 
27"45' 
24"28' 
24"20' 
24" 1 7' 
23"33' 
23"03' 
23"02' 
22"40 

22" 
20"0940 
20"09'30 
2009'20" 
20" 15' 
1 1'30 
- 

Maximum altitude 
of the star, z 

84"OO' 

80' 3 0  
XO"27' 
80"26' 
79"56' 
79"30' 
79"30 
79"20' 
79"45' 
79" 
76'34' 
76"33'45" 
76"35' 

- 

67"30 
62" 

Soitrcr: Galileo, Dialogo, 1632. pp. 294-295. 
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In his notes, Strauss (1891) points out that Chiaramonti has obtained his 
data from Tycho's book (1602) apart from Maurolycus' observations, which 
have been obtained from another publication. Tycho himself remarks that 
his first observations 27'57' is unreliable, so that only the second should be 
used. Tycho also remarks that Reinhold has copied the observations of the 
Landgrave. Galileo speaks of 13 astronomers, but two of them, Peucer and 
Schuler, have used the same data. Chiaramonti and Galileo therefore treat 
the data as 12 independent sets. 

Looking at the data in Table 10.3.1, i t  is clear that they are of somewhat 
varying quality. Some observations are recorded in whole degrees only, 
whereas others are given to an accuracy of 10"; it is obvious, however, that 
the three observations by Hainzel cannot be independent. Looking at the 
differences between the maximum altitude of the star and the polar altitude, 
i t  will be seen that the maximum altitude given by Maurolycus is an outlier 
being at least 4" too small. Chiaramonti seems uneasy about Maurolycus' 
observation but concludes that since Maurolycus is the Bishop at Messina, 
his observation ought to be reliable. Galileo does not comment on this matter. 

The plotting of observations in a coordinate system had not yet been 
invented at the time of Galileo. Nevertheless, we shall plot the data to give 
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Fig. 10.3.2. The observed altitude of the star plotted against the polar altitude. The 
slope of the line equals unity. The altitude corresponding to the arrow is 5"36'. 
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X i  Yi 
x j  Yi 

x i - x j  yi - y j  

the reader a better understanding of the following discussion (see Fig. 10.3.2.) 
For each observer we have used the mean of the altitudes. I t  will be seen 
that the minimum and maximum altitudes are nearly linear functions of the 
polar altitude. (The constant 56’24’ is the average difference between the 
maximum and the minimum altitudes.) Galileo explains this phenomenon 
on p. 282, “For if it [the star] was placed in the firmament among the other 
fixed stars, its meridian altitudes when taken at different elevations of the 
pole would have to differ among themselves in the same way as did these 
polar elevations.” This means that the true values of x , y ,  and z satisfy the 
relations x - y = z - x = a, say, a being a constant, if the new star is placed 
among the fixed stars. I t  follows that the true values of y and z are linear 
functions of the true values of x ,  the slope of the line being unity, as shown 
in Fig. 10.3.2. 

On p.311 Galileo remarks “that if  the new star, or some other 
phenomenon, is close to the earth and is turning in the diurnal motion about 
the pole, it will show itself more distant from the pole when i t  is below the 
pole on the meridian than when above it.” 

To simplify the exposition we shall introduce some symbols and formulae. 
Galileo, however, proceeds by numerical examples only. 

Let the three altitudes of the ith observation be denoted by ( x i , y i , z i ) .  In  
Table 10.3. I the observations were ordered according to decreasing values 
of x i ,  the polar altitude. Consider the comparison of two observations, as 
shown in the following table: 

X i  - Y i  
X j  - Yj 

Pi j 

Assuming that d i j  = x i  - xi > 0, the parallax of the star in relation to the two 
observational places i and j is found to be 

Another estimate of the parallax is obtained by replacing y by z.  In  the 

I t  will be seen that p i j  $ 0  corresponds to 
following we shall always give the parallax in minutes. 
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so that p i j > O  if  the slope of the line from (xi,yi) to ( x j . j i i )  is larger than 1. 
I f  follows from Fig. 10.3.2 that the majority of the p's vary closely around zero. 

According to  the hypothesis of Tjd io  and Galileo the true value of the 
parallax is zero, whereas by  Ckiaramonti's hypothesis the true vulue is positive. 

The distance of the star from the earth may be computed from the 
minimum (or maximum) altitudes of the star observed from two different 
places on the earth, located on the same circle of longitude and with different 
latitudes, i.e., different altitudes of the pole. The distance, expressed in 
multiples of the radius of the earth, from observerj to the star, is estimated 
by means of the formula 

The distance from the center of the earth, r i j ,  say, is obtained by adding 1 .  
A geometrical proof of the distance formula is given by Galileo on p.297; 
an analogous figure and proof using the notation above is shown in 
Fig. 10.3.3. Chiaramonti uses a similar formula. 

As an example, 
observations la  and 

consider the computation of distance based on 
10, as follows: 

Observation .Y J' 

la 55"58' 27"57' 
10 48"22' 2 0  15' 

Diference 7"36' 7"42' 

The parallax becomes p = 6 ,  and the distance formula gives 

2 sin 3"48'sin 155'5 1 '  

sin 6' 
r =  1 + - = 3 2  

This is an example of Chiaramonti's (and Galileo's) computations of 
distances. Today such a computation is easy, but at the time of Galileo i t  
required a great deal of labor, as can be seen from his book. I t  is therefore 
understandable that they did not carry out all the computations that the 
data admit. 

If there had been only one observation for each of the 12 astronomers, 
(I;) = 66 parallaxes and distances could have been computed. However, 10 
of the astronomers have observed the minimum altitude. and 1 1  have 
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Fig. 10.3.3. Galileo's proof of the distance formula: 0 represents the center of the 
earth, S the position of the star, and A i  the position of astronomer i. 

observed the maximum altitude, so that i t  is possible to make 

(;)+(;)=loo 

pairs. Furthermore, in some cases several observations are recorded for both 
y and z ,  which makes the number of possible pairs considerably larger. 

Chiaramonti writes that to investigate all pairs would be a nearly 
impossible task, and he therefore limits himself to demonstrating that i t  is 
possible to find 12 pairs, that lead to sublunar distances using observations 
from all 12 astronomers. However, one of his pairs gives a negative parallax, 
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which by a correction he makes positive; like Galileo we shall disregard this 
result. 

Resides the computation of r = 32 given above, Chiaramonti gives 10 
more, leading to distances between 1.2 and 32 (see Table 10.3.2.) He concludes 
that the new star is sublunar, since the distance to the moon according to 
Ptolemy is at least 33 radii. Chiaramonti rejects the pairs of observations 
giving negative parallaxes because they place the star in “impossible 
positions,” that is, beyond the fixed stars. Galileo, however, says that such 
observations are not at variance with the model of the universe because the 
negative parallaxes can be explained as due to observational errors. Galileo 
writes on p. 293 that “the most trifling errors made by the observer with his 
instrument will change the location from finite and possible to infinite and 
impossible” and that, conversely, “in these calculations made from the 
observations which would put the star infinitely distant, the addition or 
subtraction ofoiie single minute would often restore i t  to a possible location.” 

After having criticized the rejection of negative parallaxes, Galileo points 
out that Chiaramonti has also omitted five pairs of observations giving 
distances beyond the moon and, furthermore, five pairs with parallaxes equal 
to zero. 

To simplify the investigation of Chiaramonti’s hypothesis, that the true 
value of r lies between I and 33, Galileo proposes to replace the composite 
hypothesis by the simple hypothesis that the true value of r equals 32. He 
chooses 32 because it is the largest value found by Chiaramonti, and i t  is 
just below the upper limit of the sublunar sphere and thus the “most 
favorable” to Chiaramonti. 

Galileo’s own hypothesis implies that the true value of r equals infinity. 
He can only handle the distribution of r by remarking that most of the 
observations lead to distances which are infinite or “beyond.” This fact 
naturally supports Galileo’s hypothesis, but he wants more convincing 
arguments. He therefore turns to the distribution of the parallaxes, which 
under his hypothesis has a true value equal to zero and properties 
corresponding to those described in his error theory. He uses the quantity 
A. = c I p j , i I  as a measure of agreement between the observations and his 
hypothesis. 

Unfortunately, the simple alternative hypothesis becomes composite when 
expressed in terms of parallax. To find the value of the parallax, cij, say, 
corresponding to a distance of 32, Galileo solves the distance equation for 
pi j ,  which leads to the equation 
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Table 10.3.2. Values of p,,, r,,, and E,, for the 20 Pairs of Observations 

Chiaramonti’s pairs“9d Galileo’s pairs“,‘ 

i , j  pij r i j  cij lpij - cijl i . j  Pij  r i j  C i l  lPij - C i j l  

9*, 12* 
1 a, 9c 
la,4 
7*, 9* 
2c, 4 
8, 10 
4,6” 
11*,12* 
7*, 1 I *  
8*, I I *  

Total 

282.5 3 20 
10 19 6 
14 10 4 
42.5 4 5 

8 4 1  
43 1.5 1 
15 1.2 0.1 

210 1.2 2 
5 5  13 20 
96 7 20 

262.5 
4 

10 
37.5 
7 

42 
14.9 

268 
35 
76 

836 79.1 756.9’ 

lb,4 2 
2a,11 4 
I * , I I *  2 
3*,11* 2 
4*,9b* 0.25 
2c*,3* 0 
4*,9a* 0 
1*,3* 0 
5*,9a* 0 
2c10 0 

10.25 

61 
61 

479 
358 
716 
W 

rx, 
00 

0 

W 

3.9 1.9 
7.7 3.7 

30.8 28.8 
23.0 21.0 

5.6 5.3 
I .o I .o 
5.6 5.6 
7.8 7.8 
5.6 5.6 
3.0 3.0 

94.0 83.7 

n(*) Maximum altitude has been used. 

‘According to Drake (1967, p.485), the sum 7 5 6  would have been reduced to 658’ if Galileo 
had chosen a distance of 7 radii instead of 32. 
dNote that Chiaramonti uses observation 12 twice and l a  twice. 
eCalculation of the cij lor Galileo’s 10 pairs is due to me. 

(4.6) Galileo writes 10”. but in his calculations on p. 306 he uses 6 .  

for the determination of c i j .  Galileo does not give this equation explicitly 
but proceeds by trial and error to find an approximation to ci j .  His measure 
of agreement for Chiaramonti’s hypothesis thus becomes A, = c I p i j  - c i j ( .  

Galileo first considers the ten pairs of observations with nonnegative 
parallaxes which most support his own hypothesis (see Table 10.3.2). They 
consist of five pairs with positive parallaxes and a distance beyond the moon; 
the parallaxes are between $’ and 4’, and the distances between 61 and 716 
radii. The sum of the five parallaxes equals 10. The remaining five pairs 
have parallaxes equal to zero. Hence, the ten pairs contribute 10 to A,. 

Next, Galileo considers the ten pairs which most support Chiaramonti’s 
hypothesis, as mentioned above. He calculates the corresponding values of 
ci j  and finds that they contribute 757‘ to A,. The calculations are shown in 
Table 10.3.2. 

From these results Galileo concludes that the ten pairs which most support 
Chiaramonti’s hypothesis require a total correction of 757’ to be adjusted 
to a common distance of 32 radii, whereas the ten pairs which most support 
his own hypothesis only require a total correction of 10 to place the star in 
the firmament, and he regards this comparison as strong evidence for his 
own hypothesis, see pp. 307-308. 
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Galileo does not stop with the comparison of the corrections based on 
the 20 pairs with nonnegative parallax. He points out that one should use 
all the observations. He writes on p. 308, “Of the remaining combinations 
that can be made of observations taken by all these astronomers, those which 
imply the star to be infinitely high are much more numerous-about thir ty  
more--than those which upon calculation place the star beneath the moon.” 

Galileo may mean that each pair of astronomers should contribute only 
one estimated distance. The 12 astronorncrs will thus give 66 distances, which 
presumably is the number Galileo has in mind, but he does not tell how to 
select the 66 pairs among the many more possible pairs. We have summarized 
Galileo’s analysis in Table 10.3.3 and Fig. 10.3.4. 

The three pairs leading to a subterranean position have been listed by 
Galileo as (4*, 7*), (5*, 7*), and (6*, 7*); they have x i  > x j  and zi < z j .  The 
following I 1  + 5 + 5 pairs are the 20 pairs listed in Table 10.3.2 and the pair 
( la ,  10) with a parallax of 6‘ and a distance of 32 radii. 

Galileo does not evaluate the contributions to A ,  and A, of the 45 pairs 
with negative parallaxes. He writes, however, on p. 309 “that the corrections 
to be applied to observations which give the star as at an infinite distance 
will, in drawing i t  down, bring i t  first and with least amendment into the 

Table 10.3.3. Distributions of Distances and Parallaxes for 
Galileo’s Pairs of Observations 

Estimated position 
of star Value of p i j  No. of pairs 

Subterranean P < Q  3 
Su blunar P > O  1 1  
Between the moon and P > O  5 

Firmament p = O  5 
the firmament 

Beyond the firmament P < Q  42 

- Galileo’s pairs Chioramanti’s pairs 

.--t 

.-t 

I ,  0 -  
0 - t  

6 5  obs < O  : I 21 obs 20 

_ _ _ ~ _  “ - 
0 10 20 30 40 

Parallax in mlnulcs 

Fig. 10.3.4. The distribution of Galileo’s 66 parallaxes. The four arrows indicate the 
four largest values in Table 10.3.2. 
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firmament rather than below the moon.” This means that the negative 
parallax is first adjusted to zero by adding (p i j l  and then i t  is further adjusted 
by adding cij. The contribution to A, is thus 1 I p i j l ,  whereas the contribution 
to A, becomes c I p i j I  + c c i j ,  the summation being over the 42 pairs. Galileo 
does not discuss whether this contribution is sufficient to make A, larger 
than A,. I t  seems to him that the evidence presented in favor of his hypothesis 
is overwhelming. Furthermore, independent of the statistical analysis above, 
he gives other arguments in favor of his hypothesis, see pp. 3 10-3 18. 

Chiaramonti ( 1633, 1643) naturally replied to Galileo’s criticism, however, 
nothing of statistical interest seems to be involved. Riccioli (1651) gives a 
detailed discussion of the whole controversy and concludes that “I t  is more 
probable that the star of the year 1572 and 1573 has been above rather than 
below the moon” (Riccioli, 1651, Vol. 1, Part 2, p. 165). This seems to end 
the discussion, which is natural enough in view of the rapid progress of 
astronomy in the second half of the 17th century. 

We shall now comment further on Galileo’s analysis. Let us first consider 
the evaluation of A ,  and A, for the pairs in Table 10.3.3, except for the three 
subterranean pairs. The contributions from the 21 pairs are listed in 
Table 10.3.2. How could Galileo easily find an approximate value of l c i j  
for the 42 pairs? From his calculation of c i j  for Chiaramonti’s 10 pairs it will 
be seen that the average value of cij is about 8’, so i t  is therefore tempting 
to use the approximation 42 x 8 = 336. (Galileo might have used a central 
value other than the mean if  he had concerned himself with this problem.) 
Denoting the unknown sum of the 42 (pijI’s by a, say, we get the following 
evaluation: 

A,  =836 + 6 + 10 + a = 852 + a, 

A, = 757 + 0 + 84 + a  + 336 = I I77 + CI, 

so that A,  is somewhat smaller than A,. 
Today it  is well known that the value of c minimizing c I p i j  - C I  is the 

median of the distribution of p i j .  Since the majority of the p’s are negative, 
this means that the minimum is obtained for a value of c slightly less than 
zero, and i t  follows that A ,  is smaller than A, for positive c’s. 

In his criticism of Chiaramonti’s analysis Galileo naturally used the same 
data and the same method for determining the distances by pairing the 
observations, but he worked directly with the parallaxes instead of the 
distances. However, the pairing introduces correlations that make the 
statistical analysis unnecessarily difficult. Today one would use regression 
analysis of the independent observations to test the hypothesis, as indicated 
in Fig. 10.3.2. 



160 MATHEMATICAL MODELS AND STATISTICAL METHODS IN ASTRONOMY 

The statistical lesson to be drawn from Galileo’s discussion is that a 
comparison of a mathematical model with data may be misleading unless a 
theory of observational errors is taken into account. 

Even though Galileo did not state his method unambigously and did not 
carry out all the numerical details, his statistical analysis still contains the 
rudiments of a theory for comparing hypotheses using the sum of the absolute 
deviations as criterion. In view of the wide circulation of Galileo’s book it 
is odd that his method of analysis was not discussed by other astronomers. 
It may be that the controversy involved soon ceased to be of interest, and 
this section of Galileo’s book became less important. The method of feast 
absolute deviations was not taken up again by astronomers until Boscovich 
made use of it  more than a century later. 

A large part of the present section is reprinted with permission from my 
1986 paper in the International Statistical Review. This paper also contains 
two regression analyses of Galileo’s data. 

10.4 MATHEMATICAL MODELS IN ASTRONOMY 
FROM PTOLEMY TO KEPLER 

An enormous literature exists about the history of mathematical models in 
astronomy from Hipparchus to Newton; some expositions stress the 
astronomical details, others the philosophical implications. We -shall try to 
sketch the history from a statistical point of view with respect to model building 
and goodness of fit. This would have been impossible for us but for the paper 
by Riddell (1980), Parameter Disposition in Pre-Newtonian Planetary 
Theories, on which the following exposition is based. 

Mathematical astronomy in antiquity culminated with the works of 
Hipparchus about 150 B.C. and Ptolemy about A.D. 150. The Alrnagest by 
Ptolemy became the undisputed authority for about 1400 years until the 
work of Copernicus. Ptolemy inherited from earlier Greek astronomers and 
philosophers the idea that the revolutions of the heavenly bodies about the 
earth are describable in terms of uniform circular motions and on that 
assumption Ptolemy constructed his ingenious epicyclic model. His purpose 
was to predict the heavenly phenomena as accurately as possible, and he 
was perfectly aware of the fact that the models were descriptive and did not 
reflect physical realities. He stressed the importance of using simple models. 

The observations are the positions of the sun, the moon, and the planets 
referred to a coordinate system with origin 0 at the center of the earth. The 
angular positions are characterized by the longitude 1, measured eastward 
along the ecliptic from the spring equinox, and the latitude, measured along 
circles at right angles to the ecliptic. We shall write S for the sun and P for 
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the planet in question. The positions are observed at different times, and 
time t will be the independent variable in the system. 

We shall illustrate the main ideas of the models by giving numerical results 
for the longitude of the planet Mars. Similar results on the latitude and for 
the other planets, the sun, and the moon may be found in Riddell’s paper. 

Ptolemy’s model may be conceived as consisting of three stages; the 
third-order model is shown in Fig. 10.4.1. The second-order model is obtained 
by letting the points E and 0 coincide with M, the center of the circle. 

In the first-order model, the planet moves with constant angular speed 
on a circle so that the longitude is a linear function of t .  The model thus 
contains three parameters, the radius R ,  which is unidentifiable, and the two 
angular parameters, which are independent of R and easily estimated from 
observations. 

Because of the retrogressions of the planets as seen from the earth, the 
circular model is obviously wrong. To  deal with this phenomenon a 
second-order model is constructed in which P moves with constant speed 
on a small circle, the epicycle, with center C, which again moves with constant 
speed on a larger circle, the deferent, with center at 0. The three parameters 
of the deferent are thus supplemented by three parameters of the epicycle, 
namely, the radius r and the two angular parameters. To match the 
phenomena, C must travel around 0, and P must travel around C in the 
same direction once in a siderial year in such a way that the line C P  is 
always parallel to the line from the origin to the (mean) sun. This is eflected 
by introducing two linear relations between the four angular parameters. 

Fig. 10.4.1. Ptolemy’s third-order model for the longitude i. of an outer planet. 
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Hence the six parameters are reduced to four, of which the two angular 
parameters and p = r / R  are estimated from the observations, whereas R is 
unidentifiable. 

The goodness of$t is specified by Riddell by means of the maximum 
discrepancy between the observed and the computed longitude. Riddell (1980, 
p. 97) writes, "The reader is emphatically cautioned that our error estimates 
are in many cases rather rough, and are meant as an indication of orders of 
magnitude in comparisons with other similar estimates, not as exact 
maximum errors." For Mars the maximum error for the first-order model 
is 52", which is reduced to 13" for the second-order model, corresponding 
to an increase in the number of estimable parameters from two to three. 

Since discrepancies of 13" are considerably larger than the observational 
error, Ptolemy constructs a third-order model by letting the center of the 
deferent, M ,  say, be different from 0. He introduces three new parameters, 
the two distances / O M /  and } M E 1  and the longitude of the apogee A ,  the 
point on the deferent farthest from 0. Ptolemy makes the point E, the equant, 
the center of equal motion; that is, he assumes that the angle AEC (rather 
than the angle AMC) increases uniformly with time. 

For all the planets except Mercury, Ptolemy makes the two distances 
equal, which means that he uses e = I O M J = I M E J ,  the eccentricity, as 
parameter. The longitude of A and the eccentricity are estimated from the 
observations. The number of estimable parameters is thus increased by two, 
and the error decreases from 13" to 4', which is not much greater than the 
observational error. 

Taking the latitude also into account, the complete third-order model for 
the motion of Mars is generated by means of sixteen parameters subject to 
seven restrictions, which leaves nine parameters to be estimated from the 
observations; however, one parameter is unidentifiable. 

As indicated above, the restrictions have been chosen such that certain 
characteristic features of the phenomena are reproduced by the model. The 
free parameters are estimated from observation of suitably chosen positions 
of the heavenly bodies, for example, the planet's greatest elongation from 
the sun, the opposition to the sun, the beginning and the end of the 
retrocession, appearances and disappearances, occultations by the moon and 
eclipses. 

In  evaluating Ptolemy's ingenious model i t  should be remembered that 
his work is based on the two a priori assumptions that the earth is the fixed 
center of the universe and that the celestial motions are to be composed of 
circular motions only. He steadily compares observed and predicted values 
and succeeds by successive improvements to construct a complex model 
which can be used to predict the positions of the celestial bodies with an 
accuracy nearly equal to the observational error. I t  is an important feature 
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of the model that i t  is composed of linear angular motions which make i t  
computationally rather simple and therefore easy to use in the many practical 
applications. 

As more observations accrued during subsequent centuries, small 
systematic discrepancies between observed and predicted values were noted. 
Arab and European astronomers in the Middle Ages thus improved upon 
Ptolemy’s model by adding epicycles to epicycles, eccentrics to eccentrics, 
eccentrics with moving centers, and so on. The mathematical simplicity and 
beauty of the model thereby disappeared. The basic structure of the model 
was not questioned until the work of Copernicus in 1543. 

The mathematical complexities of Ptolemy’s model, in particular, his 
assumption about the uniform motion in relation to the equant rather than 
the center of the deferent, caused Copernicus to give up the assumption of 
the earth as the fixed center of the universe and to assume instead that the 
earth and the (other) planets revolved around the sun. By this fundamental 
innovation he was able to describe the complicated motion of a planet as 
seen from the earth by means of two independent circular motions of the 
earth and the planet around the sun. Copernicus also postulated that the 
apparent diurnal motion of the heavens is due in reality to the rotation of 
the earth. 

For the longitudinal motion of the planets, Copernicus begins with P’s 
uniform circular motion around s with radius R,, where the mean sun s is 
defined as the center of the earth’s circular orbit. To find the motion of P 
in relation to 0 it is necessary to combine the motion of P and 0 around 
s. Geometrically the resulting motion may be described by the 
deferent-epicycle model with R = R ,  and r = R,, so that Copernicus’ 
first-order model is equivalent to Ptolemy’s second-order model, with a 
maximum error of 13” for Mars. However, in the heliocentric model the 
radius is estimable. 

Copernicus did not question the assumption of compound circular 
motions. His second-order model makes use of a construction similar to that 
shown in Fig. 10.4.1 but with 0 replaced by s, so that P moves on an epicycle, 
and s has an eccentricity in relation to the center of the deferent. The model 
has six estimable parameters and leads to a maximum error of 4”, just as 
for Ptolemy’s third-order model. This means that the Copernican model 
gives essentially the same predictions as the Ptolemaic model. 

Copernicus did not make many observations himself but relied on the 
observations given in the Almagest and on observations made by his 
contemporaries. On his estimation of parameters Riddell (p. 124) writes, 
“Copernicus generally takes over Ptolemaic parameter values and adjusts 
them ad hoc where necessary.” 

Comparing the Copernican and Ptolemaic models we conclude that they 
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are about equal in mathematical and computational complexity, that they use 
about the same number of parameters, and they give nearly the same 
predictive accuracy. What, then, are the advantages of the Copernican model? 

First, by choosing the sun as center of the universe, Copernicus gives a 
natural explanation of the retrogradations of the planets. Similarly, he 
explains a large number of other phenomena and points out that his model 
gives a more natural and harmonious picture of the universe. 

Second, the assumption of the diurnal rotation of the earth explains the 
diurnal motion of the stars. 

Third, Copernicus demonstrates the natural order of the heavenly bodies 
and shows that the planetary periods of revolution T are increasing with 
distance R from the sun. Copernicus estimates 7 and R for each of the five 
known planets relative to the values for the earth, 

Tycho Brahe did not believe in the motions of the earth as proposed by 
Copernicus. In  1588 he published a model of his own based on the idea that 
the sun is the center of the orbits of the five planets and that the earth is 
the center of the orbits of the sun and the moon. He also supposed that the 
sphere of the fixed stars revolves around the earth in 24 hours, so that the 
position of the earth as stationary at the center of the universe was preserved. 
Conceptually his system was different from the Copernican model, but 
mathematically the two models were equivalent. He intended to determine 
the parameters by means of his own observations, but he died before he 
completed this project. 

In 1597 Tycho left Denmark, and in 1599 he settled in Prague as Imperial 
Mathematician at the court of the Emperor Rudolph 11. Johannes Kepler 
(1571-1630) worked as assistant to Tycho from the beginning of the year 
1600, and when Tycho died in 1601, Kepler inherited his position and his 
observations. 

Like Copernicus, Kepler was a great mathematical astronomer, and he 
now had in his possession the observations necessary to revise the Copernican 
model. Furthermore, Kepler had a physical theory about the planetary 
motions which guided him in his search for a simpler and more precise model. 

Kepler derived the following three laws: 

1. The orbit of a planet is an ellipse with the sun in one focus. 
2. The radius vector from the sun to a planet sweeps out equal areas in 

equal times. This law is also called the area law. 
3. The squares of the times of revolution of any two planets around the 

sun are in the same proportion as the cubes of their mean distances 
from the sun; that is T 2 / R 3  is the same for all the planets, where 7 is 
the planet’s siderial period, and R is the length of the major semiaxis. 
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In a much simplified version, Kepler’s physical hypothesis about the 
motion of the sun and the planets is as follows. A magnetic force emanates 
from the rotating sun, and this force spreads in the plane of the ecliptic and 
produces a vortex which would carry the planets in circular orbits around 
the sun were they not, like the earth, magnetic. Because of the interaction 
of the magnetic forces, the orbits become oval. As the emanating force 
diminishes with the distance from the sun Kepler assumes that the velocity 
of a planet varies inversely as the distance from the sun. The inverse distance 
law is incorrect but it nevertheless led Kepler to the area law. 

Based on Tycho Brahe’s observations, Kepler resolved the apparent 
motion of Mars around the earth into the orbits of Mars and the earth 
around the sun. Kepler began his model building with two incorrect 
assumptions: (1) that the orbit of Mars is circular with the sun displaced 
from the center; and (2) that the inverse distance law holds. In his application 
of the inverse distance law to find the angular velocity of Mars around the 
center of the circular orbit, a problem which really requires calculus for its 
solution, he made various mathematical approximations, which luckily led 
him to the area law. He proceeded to use the area law to compute Mars’ 
orbit and then found deviations from the observations up to 8’. Since he 
knew that Tycho’s observations were more accurate than that, he discarded 
the circular hypothesis and turned to an egg-shaped oval instead. After much 
computational work, he finally found that an ellipse gave the best fit.  

Kepler published his results in the Asrrorioriiia Noun (1609), which contains 
his first two laws. They were based on his results for Mars only, but he 
postulated that the same laws were valid for all the planets. 

Kepler makes the real sun the center of the planetary system and thus 
draws the full consequence of the Copernican hypothesis. Copernicus had 
used the mean sun as center, but Kepler states that the mean sun is just a 
point dependent on the earth’s orbit, and a physical explanation of the motion 
requires a real body in the center. 

Ignoring the small eccentricity of the sun, Kepler’s first-order model 
assumes that all the planets (including the earth) move with uniform speed 
around the real sun. The angular motion is described by the linear relation 
cp =2nft +q0 ,  so that the period of revolution equals T =  1 / f .  The 
parameters are f, ( p o ,  and R,  the radius of the circle. The first-order models 
of Kepler and Copernicus are thus the same, except for the substitution of 
the real sun for the mean sun. 

In the second-order model, the circle is transformed to an ellipse, and the 
uniform speed is changed to a variable speed by means of the area law. The 
reader should draw a figure of Kepler’s model based on an ellipse with major 
axis of length 2R ending in the aphelium A and with S in the focus farthest 
from A. This transformation requires two new parameters, the eccentricity 
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and the longitude of the major axis 1,. According to the area law the planet 
P moves such that the area, M, say, of the segment ASP of the ellipse increases 
at a constant rate, which leads to the equation 

where t,, the time for P's passage through A,  may be expressed by f and cpo. 
Hence, the area law does not introduce new parameters. The second-order 
model contains five estimable parameters and leads to an astoundingly small 
maximum error of 10.  

A comparison of the three models is shown in Table 10.4.1. 

Table 10.4.1 Number of Parameters and Maximum Error for Models of the 
Motion of Mars 

Longitudes 

Model First order Second order Third order Latitudes Totals 

Ptolerny (3,0,2)"52" (6,2,3)13" (9,3,5)4" (7,4,3)2" (16,7,8) 
Copernicus (3,0,3) 13" (8,2,6) 4" (8,531 2" (16,7,9) 
Kepler (3,0,3) 13" (S,O,S)lO G O ,  2) 15' (7,Q 7) 

"The three numbers in the parentheses are the number of parameters generating the model, the 
number of restrictions, and the number of estimable parameters, respectively. 
Source: Riddell (1980). 

Each line in Table 10.4.1 shows that the increasing complexity of the 
model, expressed by the increasing number of parameters, improves the 
goodness of fit. Comparison of the Ptolemaic and Copernican models on 
the one hand with Kepler's on the other shows that an even greater 
improvement is obtained with a smaller number of parameters by means of 
a fundamental change of the mathematical form of the model. Table 10.4.1 
strikingly demonstrates the simplicity and the strength of Kepler's model 
compared with previous models. Furthermore, K'epler's model treats all the 
planets in the same way in relation to the sun. 

In one respect, however, Kepler's model is more involved than the other 
two, namely, with respect to the computation of the heliocentric longitude 
of P. To find the angle ASP corresponding to the area M(t) ,  it is necessary 
to solve Kepler's equation 

e 
cp +  sin R q = 2 n f ( t  - tA ) ,  

with respect to cp for any given t .  Kepler prepared tables from which the 
solution may be obtained by interpolation. 
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In his indefatigable search for mathematical regularities, Kepler also 
investigated the relationship between Tand R for the live planets, as indicated 
earlier by Copernicus. By trial and error, Kepler succeeded in finding his 
third law. It takes great skill to find a nonlinear relation between two variables 
without a plot of the observations. Furthermore, i t  requires good intuition 
and great luck when it  turns out that this empirical relation, based on live 
observations, is identical with the theoretical one later derived from a general 
theory about the phenomena observed. Kepler gave his result in the 
Harmonice Mundi (The Harmony of the World), 1619, as shown in Table 
10.4.2. 

Table 10.4.2. Mean Planetary Periods T and 
Distances R Relative to the Earth 

Planet T ~ 2 ‘ 3  R 

Mercury 245,7 14 392 388 
Venus 612,220 721 124 
Earth 1,000,000 1000 1000 
Mars 1,878,483 1523 1524 
Jupiter 11,877,400 5206 5 200 
Saturn 29,539,960 9556 9510 

Source: Kepler (1619). Harntoriice Mundi. Ges. Werke. Bd. 6. 
pp. 31 1 and 358. 

No wonder that Kepler ecstatically wrote about the mathematical 
harmony of the Divine Design, and like the Pythagoreans he found a 
correspondence between musical harmonies and the velocities of the planets 
which he transformed into a “music of the spheres.” 

In 1627 Kepler published the Rudofphine Tables containing tables and 
formulae for the computation of the positions of the heavenly bodies based 
on Tycho’s observations and his own mathematical model. 

Kepler’s laws are empirical in the sense that they represent the observations 
with an accuracy corresponding to the observational error, but they are not 
deduced from axioms based on a physical theory of motion. The solution 
of this problem was given by Newton in his Principia (1687). 

The story told above reveals some principles for empirical model building 
of importance for any scientist and particularly for statisticians as professional 
model builders. The Gauss linear model, which is the most important tool 
of the statistician, may be compared to Ptolemy’s model in the sense that i t  
is flexible almost without limit; the introduction of more and more parameters 
leads to a good description but not necessarily to an understanding of the 
fundamental relations between the quantities involved. 

For a statistician, Kepler’s principles of model building are instructive 
and valuable even today. They may be summarized as follows: 
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1. Model building is a sequential process proceeding from simpler to 

2. The complexity of a model depends both on its mathematical form 

3. Models should be simple, aesthetic, and harmonious in mathematical 

4. Models should be based on a physical theory about the phenomena. 
5. The ultimate criterion for the choice among models is the agreement 

with the observations, the goodness of lit. 
6. These principles should interact on the various stages of the 

model-building process. This means that a many-parameter model built 
on one mathematical form may be superseded by a model with fewer 
parameters based upon another mathematical form. 

more complex models. 

and the number of parameters. 

respects. 

For supplementary reading we refer to Kuhn (1957), Wilson (1968), and 
Aiton (1969). 

10.5 PROBLEMS 

1. Regression Analysis of Galileo's Data. In the following table we have given 
Galileo's data except for the outliers la  and 12 and observation 5, which is a 
copy of 4. Furthermore, we have replaced the three observations given by 
astronomers 2 and 9 by their means: 

Altitude (degrees) 

Observer X Y z 

1 
2 
3 
4 
6 
7 
8 
9 

10 
1 1  

55.97 
52.40 
51.90 
5 1.30 
51.17 
50.83 
49.40 
48.37 
48.37 
39.50 

27.75 
24.36 
23.55 
23.05 
22.67 

22 
20.16 
20.25 
11.50 

- 

84.00 
80.46 
79.93 
79.50 
79.33 
79.75 
79 
76.57 

67.50 
- 

Suppose that yi = a1 + Plxi  + c l i  and zi = a2 + P2xi + cli, where the E'S 
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are independent random variables with mean zero. It  follows that 

an analogous expression being valid for the z’s. Galileo’s hypothesis may 
therefore be tested by testing the hypotheses 8 ,  = 1 and p2 = 1. 

Show that the two slopes are not significantly different; estimate the 
common slope and show that it does not differ significantly from 1. Setting 
P I  = p2 = 1 in the model above, show that the means and variances of 
x - y and z - x do not differ significantly. Estimate the common mean 
and variance and interpret the result. Test the linearity of the regression 
line. 

The nonlinear regression for r = 32 has been discussed by Hald ( 1  986). 

2. Find the two distributions of pi j  and calculate the mean, the median, and c IPijI. 

3. Consider Galileo’s distribution of n = n ,  + n2  + n3 parallaxes, where n, is 
the number of negative parallaxes, n2 the number of p’s such that 
0 < pij  < ci j ,  and n ,  the number of p’s such that pi j  2 c i j .  Let 

c=c+c+c  
1 2 3  

be the corresponding sums. 
Prove that A, < A,  if and only if 

and give an interpretation of this criterion. 

4. Plot Kepler’s values of(R, T )  on double-logarithmic paper and fit a straight 
line to the points. Having found a slope slightly different from $, would 
you dare to round it to and announce the result as a natural law for 
planetary motion? 



C H A P T E R  11 

The Newtonian Revolution in 
Mathematics and Science 

11.1 INTRODUCTION 

One would have imagined that the publication in 1657 of Huygens’ treatise 
on probability as part of van Schooten’s widely circulated text on 
mathematics would have caused many mathematicians to take up  this new 
subject. That this did not happen was perhaps due to the fact that the 
mathematical world was fully occupied with developing the calculus. 
Furthermore, probability theory did not yet have any important application 
in science, only in life insurance. 

The leading scientists at the time were Huygens, Newton, and Leibniz. 
All three exerted a strong influence on the four leading probabilists in the 
beginning of the 18th century, James and Nicholas Bernoulli, Montmort, 
and de Moivre, whose works we shall discuss in detail in the following 
chapters. As a background we shall first sketch some features of the 
Newtonian revolution in mathematics and science. 

Karl Pearson (1926) writes about the influence of Newton: 

De Moivre expanded the Newtonian theology and directed statistics into the new 
channel down which it flowed for nearly a century. The causes which led de Moivre 
to his “Approximatio” or Bayes to his theorem were more theological and 
sociological than purely mathematical. and until one recognises that the 
post-Newtonian English mathematicians were more influenced by Newton‘s 
theology than by his mathematics, the history of science in the 18th century-in 
particular that of the scientists who were members of the Royal Society-must 
remain obscure. 

This statement is, of course, extreme and provocative. I t  is true that 
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theological considerations and beliefs played a large role in the general 
philosophical outlook at Newton’s time, but the development of mathematics 
and science, the creation of new scientific institutions furthering 
communication among scientists, and the impact of society on science were 
even more important. 

In the beginning of the century, religious intolerance combined with 
economic and political interests led to persecutions and wars; such as the 
Thirty Years’ War (1618-1638) in Germany, the Civil Wars in the 1640s in 
England, and the persecution of the Huguenots in France that culminated 
in the Revocation of the Edict of Nantes in 1685. Many refugees found a 
new home in the Dutch Republic. After the Revolution of 1688 in England, 
religious freedom was guaranteed for the dominant Protestant sects by the 
Act of Toleration. Parallel to this political development ran a philosophical 
discussion of the relation of religion to science. 

For centuries the Christian religion had dominated the natural sciences 
but during the 17th century this situation gradually changed. The advancing 
knowledge of natural phenomena left smaller room for explanation by means 
of Divine providence and miracles. The importance of Descartes’ mechanical 
philosophy in this respect is evident. In  England most of the scientists were 
devout Protestants who considered the study of nature to be part of their 
religious duty to reveal the harmony of the world as created by God. From 
the order and wonders observed in nature, scientists concluded that the world 
had been created by a supreme being, thus inferring the existence of God. 
They wrote of God as the supreme clockmaker and “very well skilled in 
mechanics and geometry;” they referred to nature as God’s handiwork and 
considered the Book of Nature comparable to the Book of Relevations. 
Gradually, their attempts to provide a rational foundation of the Christian 
religion led them to a natural or rational religion, with little room left for 
the original spiritual side of Christianity. An analysis of the relation of science 
to religion in 17th century England has been given by Westfall (1958), a more 
comprehensive study is due to Shapiro (1983). The discussion on natural 
theology, probability, and statistics still goes on, as can be seen from 
contributions of Bartholomew (1984, 1988). 

An essential improvement in communication among scientists occurred 
in the latter part of the 17th century through the creation of scientific societies 
and journals. Most societies began as informal private gatherings of scientists 
and gradually developed into formal societies or academies. In  Rome the 
Accademia dei Lincei (The Academy of the Lynx-like) had only a short life 
in the beginning of the century. The Accademia del Cimento (The Academy 
of Experiments) founded in 1657 in Florence with the purpose of continuing 
the experimental science of Galileo and Torricelli and financed by the Grand 
Duke of Tuscany had to give up after about ten years. These first attempts 
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were, however, soon to be followed by the creation of national academies 
which still exist today. The Royal Society of London for Improving Natural 
Knowledge was founded in 1660 by a group of scientists and other interested 
individuals; the Royal Society was independent of government subsidies. In 
Paris the Academie Royale des Sciences, founded in 1666, consisted of a few 
members selected and salaried by the government. The Berlin Academy in 
1700 and the St. Petersburg Academy in 1724 followed the French model, 
whereas the American Philosophical Society in I769 followed the English. 
In most of the smaller European countries, academies of science were founded 
during the first half of the 18th century. 

The well-established science of astronomy obtained state-supported 
observatories, such as the Observatoire de Paris in 1669 and the Royal 
Observatory at Greenwich in 1675. 

The academics were influenced by Bacon’s ideas on collective research and 
the usefulness of science. The program of the Royal Society was to improve 
natural knowledge by data collection and by experiments and thereby to 
create a natural philosophy. During the early years of the Society, the 
meetings were largely occupied with the performance and discussion of 
experiments, a task neglected by the universities. The Society also sponsored 
and published treatises and books on natural philosophy, the most famous 
being Newton’s Principia in 1687. 

Of great importance for the dissemination of knowledge and new results 
was the publication of journals by the societies. Previously, new results had 
been communicated by letter to small groups of fellow scientists. To secure 
wider circulation a few persons had established themselves as intermediaries 
who received manuscripts and copied them for the information of their 
correspondents. This practice was very useful but liable to produce 
misunderstandings and priority disputes. I t  continued for some time after 
the appearance of the first journals. 

In 1665 the Royal Society began to publish the Philosophical Transactions; 
the French Journal de SCnvrrns began the same year. About the same time 
the Paris Academy began the publication of several journals. The Acta 
Eruditorurn was founded by Leibniz in 1682. 

Hence, by the end of the 17th century an international community of 
mathematicians and natural scientists had been established. 

11.2 THE NEWTONIAN REVOLUTION 

Isaac Newton (1642-1 727) entered Trinity College at Cambridge University 
in 1661. He taught himself mathematics by reading van Schooten’s second 
edition of Descartes’ Geontetry, van Schootens’ textbooks, and the works of 
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Vieta and Wallis. He also studied astronomy and physics, in particular, the 
theory of motion and the theory of light. 

Because of the plague the university was closed for about two years, 
1665-1667, which Newton spent in his family home at Woolsthorpe, 
Lincolnshire, continuing his studies, but now also producing extraordinary 
results of his own. Returning to Cambridge he got his master’s degree, and 
in 1669 he succeeded Barrow as professor of mathematics, a post he held 
until 1696 when he became warden and in 1699, master of the Mint in 
London. He was president of the Royal Society from 1703 until his death. 

After having mastered mathematics, astronomy, and optics, about 1670 
he turned with equal fervor to the more difficult subjects of alchemy and 
theology. For about ten years he devoted most of his time to these topics, 
although he occasionally returned to mathematics and optics to rewrite and 
complete some of his earlier papers. 

For a man of Newton’s intellect, theology had to be studied intensely and 
systematically from the original sources. He came to the conclusion that the 
Scriptures had been corrupted to support Trinitarianism from the time of 
Athanasius in the fourth century, and he became an Arian, rejecting the 
Trinity. His conviction, if publicized, would have cost him his position, and 
he therefore kept i t  secret. Another subject which he studied intensively was 
the prophesies, the Book of Daniel and the Book of Revelations, presenting 
new interpretations and comparing these with the historical facts. 

After he moved to London in 1696 he again took up theological studies, 
which became one of his major occupations for the rest of his life. He left a 
large number of manuscripts at his death, and two of the less provocative 
were published as The Chronology of Ancient Kingdoms Amended ( I  7 2 8 )  and 
Observations upon the Prophesies ( 1  733). The greater part of his manuscripts 
on theology were first studied in the 20th century. 

Nearly all Newton’s papers on mathematics and natural philosophy were 
completed and circulated as manuscripts at the last moment to prove his 
priority. This procedure unavoidably led to serious conflicts, the most notable 
being with Hooke, Flamsteed, and Leibniz. 

Newton’s contributions to the development of pure and applied 
mathematics, astronomy, optics, and the philosophy of science were 
revolutionary. The story of the Newtonian revolution has been told many 
times; the latest and most comprehensive version is by Westfall (1980). We 
shall comment only slightly on the calculus, celestial mechanics and the 
philosophy of science. 

In 1665 Newton discovered the infinite series for the binomial with 
fractional exponent. This result was of fundamental importance for his first 
exposition of the theory of infinite series and the calculus, which was circulated 
in manuscript form in 1669 as De Analysi per Aequationes Numero 
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Terminorurn Infinitas (On Analysis by Means of Equations with an Infinite 
Number of Terms); i t  was not published unt i l  171 I .  Besides the binomial 
theorem, this paper contains the definition of the rate of change of a function 
as the limit of the difference quotient and the fundamental theorem of the 
calculus that integration and differentiation are inverse operations. I t  also 
contains many examples of derivatives, integrals, and infinite series for 
algebraic and transcendental functions. 

In 1671 Newton wrote another exposition of his calculus, Trcrciutus rle 
Meiliodis Serierirtn ei Fluxionurn ( A  Treatise of the Methods of Series and 
Fluxions); i t  was not published unt i l  1736. Inspired by the theory of motion, 
he now considered his variables (fluents) as functions of time and introduced 
their rates of change under the name of fluxions. (He later introduced the 
dot notation for fluxions.) He also introduced derivatives of higher order 
(fluxions of fluxions) and partial derivatives, and he proved the rules for 
differentiation of products and quotients and of implicit functions. He applied 
the method of fluxions to finding tangents, maxima and minima, points of 
inflection, and curvatures. Besides finding the relation between the fluxions 
for a given relation between two fluents, he also studied the problem of 
finding the relation between the fluents given i1 relation between the 
fluxions; that is, he studied and solved differential equations. 

The first published version of Newton’s calculus was given in his main 
work Pliilosoplziae Natirralis Priricipitr Mrrthenicificu (The Mathematical 
Principles of Natural Philosophy), 1687, i n  which he applied the calculus to 
problems in physics and celestial mechanics. However, in most cases the 
proofs were given a geometrical formulation, following the tradition from 
Ptolemy to Kepler; only occasionally did he use the methods from De Arrtrlysi 
and Mttkot i is  F/u.~ionrrrn. 

Gottfried Wilhelm Leibniz (1646.- 1716) developed his form of the calculus 
in 1675 and published i t  for the first time in 1684, i.e., before the publication 
of the Principiu. Leibniz was aware of Newton’s previous work but did not 
refer to Newton, which led to the famous priority dispute. Leibniz introduced 
the notation that is still in use: d,v, dy/ t lx ,  and the integral sign as an elongated 
S for summa. Much of Leibniz’ work was incomplete, but it inspired James 
and John Bernoulli to write a large number of papers that contributed 
essentially to the clarification and the rapid development of the calculus on  
the Continent. 

After having worked on infinite series and the calculus, Newton turned 
to studying the theory of motion in the period 1665-1666. For uniform 
circular motion he found that the force by which a body endeavors to recede 
from the center is proportional to the square of the velocity and inversely 
proportional to the radius; that is ,jcc d / r .  As usual, he did not publish his 
result. Huygens found the same result independently and published i t  in 
1673, calling the force a centrifugal force. 
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According to Newton’s own account written many years later, he combined 
his formula for the centrifugal force with Kepler’s third law, according to 
which TZ/r3 is constant, where T denotes the time of revolution. Since 
u = 2nr/T he found that ja l/r*, the inverse square law. “I deduced that the 
forces which keep the Planets in their orbs must be reciprocally as their 
distances from the centers about which they revolve”, see Berry,(1898, p. 212). 

This is the first result on the way to Newton’s law of gravitation, which 
asserts that every particle of matter in the universe attracts every other 
particle with a force varying directly as the product of their masses and 
inversely as the square of the distance between them. 

Provoked by an impending priority dispute with Robert Hooke 
(1635- 1702) and challenged by a question by Halley, Newton wrote a 
nine-page manuscript De Motu Corporum in Gyrum (On the Motion of Bodies 
in an Orbit) in 1684. Urged on by Halley, Newton wrote the Principia in 
about two year’s time between 1684 and 1687. Deeply impressed by Newton’s 
results Halley, with unique magnanimity, devoted his time and money to the 
publication of the Principin. With the help of Roger Cotes (1682-1716), a 
thoroughly revised edition was published in 1713; a third edition with a few 
alterations was published in 1726. 

At the time the overriding problem in celestial mechanics was the 
derivation of Kepler’s laws from fundamental physical principles on motion. 
This is just one of the many problems solved by Newton in the Principia. 
Based on three axioms, today called Newton’s three laws of motion, he builds 
up a theory of motion of point masses in a central force field. As a special 
case, he shows that Kepler’s laws hold for the motion of a single point mass 
under the attraction of a central force. [As pointed out by Riddell (1980), 
we may thus add a line to Table 10.4.1 containing Newton’s model with a 
total parameter index of (6,0,6).] For two or more bodies, Newton proves 
that Kepler’s laws must be modified due to perturbations caused by 
interaction of the bodies involved; however, because of observational errors, 
Kepler (fortunately) did not notice these perturbations. 

After having developed a mathematical theory of motion, Newton 
compares the theory with the astronomical observations. He verifies Kepler’s 
third law from three sets of observations: for the satellites of Jupiter, for the 
satellites of Saturn, and for the planets around the sun, respectively. For the 
third case, he uses Kepler’s data, see Table 10.4.2, and a similar set of data 
due to the astronomer Boulliau. Newton calculates the expected distance 
from the sun for each planet as function of the periodic time by means of 
Kepler’s law and compares the calculated and the observed distances; he 
notes that the differences are insignificant but does not carry out a statistical 
analysis. 

Having thus shown that the motion of the heavenly bodies conforms to 
mathematical laws, Newton shows that the force of attraction used in the 
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mathematical theory may be identified with the force of gravity. The proof 
is the famous earth-moon test of the law of gravitation in which Newton 
demonstrates that the acceleration of the moon toward the earth equals the 
acceleration of a body at the surface of the earth due to gravity when the 
inverse square law is taken into account. 

Finally, Newton gradually constructs his “system of the world” by 
combining experiments, observations, and theory to explain a large number 
of astronomical phenomena, such as the masses and densities of the planets, 
the axes and eccentricities of the orbits, the perturbations caused by the 
interactions of several planets, the shape of the earth, the dependence of 
weight on the position of the earth, the motion of the moon, the tides, and 
the orbits of comets. 

Newton proves that Descartes’ explanation of the motion of the planets 
by means of vortices is irreconcilable with Kepler’s third law. With regard 
to his own explanation by means of universal gravitation, he remarks that 
“to us i t  is enough that gravity does really exist, and act according to laws 
which we have explained, and abundantly serves to account for all the motions 
of the celestial bodies, and our sea.” 

Newton was also an ingenious experimenter who designed and carried 
out many experiments of great accuracy, not merely the pendulum 
experiments reported in the Principia, but many others reported in his Opticks 
( 1  704), among them his “crucial experiment” proving the heterogeneity of 
light. 

With the Principia Newton created a model for the construction and 
exposition of scientific theories that has been followed ever since. The idea 
of explaining a large number of seemingly unconnected facts from a few 
simple laws, and after verification using these laws to predict and explain 
further facts, came to exert a profound influence on the development of science 
and philosophy. Newton characterized this method as “The Method of 
Analysis and Synthesis;” today it is called the inductive-deductive method. 
The “Newtonian style” has been discussed by Cohen (1980). 

11.3 NEWTON’S INTERPOLATION FORMULA 

Consider a function and its successive forward differences defined as 

In an unpublished manuscript from about 161 1, Thomas Harriot 
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(1560-1621), mathematician and astronomer at Oxford, constructed a table 
of differences for a function tabulated at unit intervals and used it to find 
the values of f ( x )  for more finely spaced arguments by interpolation. In 
modern notation Harriot’s interpolation formula may be written 

Setting h = j ,  $ , 3 ,  and 8, Harriot used this formula to subtabulate f ( x )  from 
a to a + 1. Of course he also used the simpler form of the formula obtained 
under the assumption that differences of order higher than 2, say, are zero. 
Briggs (1624) also used this method of quadratic interpolation to subtabulate 
log x to intervals of one-tenth the original tabulation. Without proof Briggs 
gave a method for constructing the difference table for unit intervals from a 
given difference table for five-unit intervals, a method that has become the 
standard method of subtabulation. A more detailed account of the early 
history of interpolation has been given by Goldstine (1977). 

About 1670 it was generally known that the nth difference of a polynomial 
of the nth degree is constant, and several mathematicians developed formulae 
for polynomial interpolation similar to the one found by Harriot and Briggs. 
Most of Newton’s work on interpolation was carried out during 1675-1676 
but not published until 1687 in Principia, Book 3, Lemma 5, where he states 
the interpolation problem as follows: “To find a parabolic curve which shall 
pass through any given points.” Without proof he gives what today are 
called the Gregory-Newton interpolation formula and Newton’s inter- 
polation formula with divided differences. The proofs were not published 
until 171 1 in his Methodus Digerentialis. 

During the decade before his work on interpolation Newton had studied 
the theory of infinite series, and it was therefore natural for him to represent 
the given function as a power series 

j - (A + x) = a + hx + cx2  + d X 3  + .*., 

say. If the series converges it  will often be sufficiently accurate for practical 
purposes to take only a finite number of terms into account, in particular if 
A is chosen such that x is small. 

Hence, if n + 1 values of a function f ( x )  are given, we may write 
f ( x )  = f,,(x) + r,,(x), where f , , (x )  is a polynomial of the nth degree to be 
determined from the given values, and r,(x) denotes the remainder term. The 
problem is to devise a practical method for calculating f,(x) for any given 
value of x in the interval defined by the n t 1 given arguments and also to 
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find an upper bound for r,,(x). We shall sketch Newton’s solution as given 
in the Methodus Difler.entiali.s. 

Let , f ( x )  be given for .Y = a,, a , ,  . . . ,arlr and define the divided differences 
0f.f as 

see also the arrangement in the following table: 

Table of Divided Differences According to Newton 

x m .f(. 1 .) ,f(. 9 * 3 .) .f(. 1 . ,  . , .) 

The name “divided difference” and the notation used here are of a later date 
than Newton’s. 

Setting f ( x )  = a + bx + c x 2  + .’., Newton first proves that the first 
differences between the values of the function are divisible by the differences 
between the arguments and that the differences between the divided 
differences of the first order are divisible by the differences between every 
second argument, and so on. Assuming that , f (x)  is a polynomial of the fourth 
degree, he presents a table of divided differences containing such results as 

He points out that the last of the divided differences will be equal to the last 
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of the coefficients in the polynomial and that the remaining coefficients may 
be found by means of the remaining divided differences by working backward 
in the difference table, which is obvious from the formulae given above. He 
concludes that when these coefficients are determined, the curve passing 
through the end-points of the ordinates has been found. 

Newton does not write the polynomial explicitly in terms of the divided 
differences as we do  today; however, if we follow his directions and begin 
with the divided difference of order II  + 1, we have by definition that 

Using this for backward recursion, we end with 

By substitution we obtain the identity 

which is Newton’s interpolation formula in modern notation. The first n + 1 
terms give the interpolation polynomial, and the last term is the remainder. 
if f ( x )  is a polynomial of order n, the remainder disappears. 

In  the special case with equidistant arguments, Newton introduces the 
more convenient central differences, S f ( x )  = J(.u + i) - f(.u - i), instead of 
divided differences. He leaves i t  to the reader to express the coefficients in 
terms of these differences; following the same procedure as above, the resulting 
formulae are known today as the Newton -Stirling and the Newton-Bessel 
interpolation formulae for n odd and even, respectively. 

Let f ( x )  be given for .x = a + ih, i = 0. I , .  . . , i t ,  and set (x - n) /h = y. It  
follows from Newton’s interpolation formula that 

where A f ( a )  = .f(a + h )  - f (n) .  This result was found independently by James 
Gregory (1638-1675) in 1670 and by Newton in 1676. I t  is, of course, just 
a slight generalization of Harriot’s formula. 

Newton points out that the area under any curve may be found 
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approximately by integration of the corresponding interpolation polynomial; 
as an example he gives the three-eighths rule 

Newton’s idea was taken up by Cotes who approximated the integral by a 
linear combination of n + 1 equally spaced values of the integrand. In 1722 
he published the coefficients in these Newton--Cotes formulae for n = 2, 
4,. . . ,to; they were much used by de Moivre and Simpson to approximate 
integrals in probability theory and insurance mathematics. 

In an unpublished manuscript Newton gave another version of his 
interpolation formula using “adjusted differences,” the adjusted difference of 
order n being equal to n! times the divided difference. The resulting formula 
becomes directly comparable to the formulae with equidistant arguments, 
see the detailed discussion by Fraser (1927). 

Newton presents many examples of the evaluation of the remainder term 
by considering the maximum value of the first neglected term of the series. 

Newton clearly states that the interpolation polynomial may be given 
many forms depending on the various applications. He also hints at a more 
general theory of interpolation using functions other than polynomials. 

Fraser (1928, p. 71) evaluates Newton’s work as follows: “Modern workers 
have struggled up to the level reached by Newton, and the twentieth century 
will no doubt see extensions and developments of the subject of interpolation 
beyond the boundaries marked by Newton 250 years ago.” This statement 
is correct if we add the qualification “polynomial” to interpolation. The 
essential progress made since Newton consists in investigations of the 
remainder term and “optimum” spacings of the arguments. 

Fraser has, however, overlooked one important invention from 1906, 
namely, Thiele’s interpolation formula with “reciprocal differences,” which 
uses rational functions instead of polynomials. Other types of functions, 
among them trigonometric functions, have also been used. In the 1930s the 
extension of polynomial interpolation to osculatory interpolation was much 
discussed, and this later developed into spline interpolation. 

The history of Newton’s interpolation formula has been discussed by 
Fraser (1928) and by Whiteside in his edition of Newton’s mathematical 
papers. 

After having stated his general interpolation formula in the Principia, 
Newton continues with a lemma entitled, “Certain observed places of a comet 
being given, to find the place of the same at any intermediate given time.” 
He does not give a numerical example; he only mentions that if  five 
observations are given, the interpolation formula may be used to find a 



1 1.3 NEWTON’S INTERPOLATION FORMULA 181 

polynomial of the fourth degree through the given points. Neither does he 
give numerical examples in his other publications on interpolation. However, 
in Newton’s Mathematical Papers, 1976, Vol. 7,682-687, Whiteside reports and 
comments upon a numerical example found on one of Newton’s worksheets 
from 1695. As shown in the following table the data consist of five 
observations on the path of a comet, the longitude of the fourth observation 
having been chosen as origin: 

Observations of the Longitude x and Latitude f(x) (in Degrees) of a Comet 
at Five Dates Between December 2 I ,  1680 and January 13, 168 1 a 

-63.6922 21.75833 
2.2589197 

0.6089636 0.00192787 

-0.910491 1 0.00201785 

-40.4178 27.01583 - 0.3882 16 

- 21 .I912 28.18666 -0.375937 0.00001 1127 

0.0000 26.25722 -0.364316 
- 2.308 1 702 

17.1733 22.29333 

“The divided dillerence of order i is denoted by ji 

Newton writes the result in a form which is equivalent to 

where the f’s are the descending differences in  the table, and 

As a check on the calculation of the difference table he uses the formula to 
find f(a4), which is found to agree with the tabular value. Newton’s goal is 
to find the slope of the path of the comet for x=a,.  Noting that 
pi = (x - a,- l)pi- so that 

PI = p i -  I + (x - a i - l )p i - l ,  

he obtains a simple expression for f‘(x), and, finally, he calculates 
f‘(a,) = - 0.01218842. (Actually, Newton finds the result 0.01216933 because 
of a small error in his divided difference of the fourth order.) 

Newton does not discuss the observational errors of the data, nor does 
he discuss the accuracy of the result obtained. He seems not to distinguish 
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between interpolation on a mathematically given function and observational 
data, like many other scientists in the following time. From a statistical point 
of view Newton’s method is unsatisfactory; the reader should analyze 
Newton’s data, taking both the astronomical model and observational error 
into account. 

About 1670 Newton developed an iterative method for finding the root 
of an equation based on previous work by Vieta. The method was further 
improved by Joseph Raphson (1648-1715) in 1690, and is now known as 
the Newton-Raphson method. Newton’s basic idea was to linearize the 
solution of polynomial equations by setting x” = (a + E)” z a” + nu”- ‘6, 
where a is a first approximation to the root, and then solve for E .  Obviously 
this corresponds to using the first two terms of Taylor’s expansion. In general, 
let a, be an approximation to the root of f ( x ) = O .  By means of Taylor’s 
formula we have 

f ( a J  + (x - a,) f ’(ai) z 0. 

Solving for x, we get a new approximation, ai+ say, of the form 

which is the modern formulation of the Newton-Raphson formula. The 
method and its generalization to functions of several variables has many 
important applications, for example, solving Kepler’s equation, finding the 
interest rate in equations involving annuities, and solving the likelihood 
equations in statistical estimation problems. 

The conditions of convergence were not discussed until much later. 
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Miscellaneous Contributions 
between 1657 and 1708 

The  Reader may here observe the Force of Numbers, which can be 
successfully applied, even to those things, which one would imagine 
are subject to no Rules. There are very few things which we know, 
which are not capable of being reduc’d to a Mathematical 
Reasoning: and when they cannot, it’s a sign our Knowldege of them 
is very small and confused: ... . I believe the Calculation of the 
Quantity of Probability might be improved to a very useful and 
pleasant Speculation, and applied to a great many events which are 
accidental. besides those of Games. 

-JOHN ARBUTHNOTT, I692 

12.1 PUBLICATION OF WORKS FROM BEFORE 1657 

In the period between the publication of Huygens’ treatise in 1657 and 
Montmort’s essay in 1708, some important works from before 1657 were 
published for the first time. 

In  1660 the Dutch version of van Schooten’s Mathematical Exercises 
containing Huygens’ treatise was published, see $6. I. Cardano’s Liber de 
Ludo Aleae was published in 1663 in Volume I of his collected works, see 
54.3. Pascal’s treatise on the arithmetic triangle and its uses was published 
in 1665, see $5.1. Pascal’s letters to Fermat in 1654 were published in the 
1679 edition of Fermat’s works, see 95.1. 
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12.2 NEW CONTRIBUTIONS PUBLISHED BETWEEN 
1657 AND 1708 

The contributions are ordered chronologically. 
Leibniz’ Dissertatio de Arte Combinatoria was published in 1666. It  is more 

a treatise on symbolic logic than on combinatorics, and Todhunter (p. 32) 
remarks that “The mathematical treatment of the subject of combinations 
is far inferior to that given by Pascal.” 

According to Todhunter (pp. 44-46), a textbook on mathematics, Mathesis 
Biceps, by John Caramuel was published in 1670. It contains a section on 
combinatorics giving well-known results; a reprint of Huygens’ treatise, 
attributed to the Danish astronomer Longomontanus; and some attempts 
of Caramuei to solve elementary problems in games ofchance which, however, 
do not go beyond the results in Huygens’ treatise. 

The French mathematician Joseph Saveur gave in Journal des Sccioans, 1679, 
some formulae without proofs for the advantage of the banker at Bassette, 
which at the time was a fashionable card game, see Todhunter (pp. 46-47). 

According to Stigler (1988) Thomas Strode published A Short Treatise of 
the Combinations, Elections, Permutations and Composition of Quantities; 
Illustrated by Several Examples, with a New Speculation of The DijJerences 
q f t h e  Powers qf Numbers in London 1678. Strode wrote in his preface that 
he had found many combinatorial results without knowing Pascal’s work, 
but during the printing of his book he got hold of Pascal’s treatise and took 
the opportunity to make some revisions and additions. Besides the properties 
of the binomial coefficients he found the result that the number of 
permutations of n elements consisting of k classes of ri identical elements in 
the ith class equals n ! / r , ! . . . r , ! ,  where r l  + + rk = n. He also tabulated the 
distribution of the total number of points thrown by two, three, or four dice, 
his derivation being the same as that used by Cardano and Galileo for two 
and three dice. Generalizing to n dice each having f faces, he proved that 
the number ofchances for getting a total of s points equals (5: i )  for s < n + ,f. 
I t  seems that all of Strode’s results were given previously by Mersenne (1636), 
see $5.2. 

The Algebra by Wallis from 1685 contains a section on elementary 
combinatorics (see Todhunter, pp. 34-36; and David, 1962). 

In 1685 James Bernoulli proposed the following two problems for solution 
in the Journal des Sqavans: 

1. Players A and B play with a die on the condition that he who  first 
throws an ace wins. Player A throws once, then B throws once; thereafter 
A throws two times in succession and then B two times; then A throws 
three times in succession and B also three times, and so on. 
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2. Alternatively, A throws once, then B two times in succession, then A 
three times, then B four times, and so on until one of them wins. What 
is the ratio of their chances? 

The two problems are generalizations of Huygens' Problem 1. 
After having waited in vain for a solution for five years, Bernoulli finally 

published his own solution without proof in the Acta Eruditorum, 1690, giving 
A's probability of winning as the infinite series 

p - 1 + 4 2  + 4 6  + q ' 2  + q z o  + ... -4-44  - 4 9  - q ' L  ... 

p 2 = 1 + 4 3 + 4 1 0 + 4 2 1 + q 3 6 +  . . . - q - q 6 - q l S - q 2 8  -. . .  
1 -  

where q = i. Bernoulli's paper is important because here for the first time 
we have the solution of a probability problem expressed as an infinite series. 
This presumably induced Montmort (1708, pp. 157-158) and de Moivre 
(1712, pp. 233-234) to develop the same method of solution of Huygens' 
Problem 1,  a method they also used on many other occasions. Bernoulli gave 
the proof in Ars Conjectandi (1713, pp. 54-60); we shall return to this in 
#14.2 and 15.3. 

Later in 1690 Leibniz published a solution in Acta Eruditorum in the form 

P ,  = ( 1  - q)(l + q 2  + 4 3  + 46 + 4' + q 8  + $ 2  + 4 ' 3  + q14 + 4'5 + *.*), 

which he reduced to Bernoulli's result, and he gave a similar solution of the 
second problem. Both solutions have been discussed by Biermann (1957) and 
Mora-Charles (1986). 

An English translation of Huygens' treatise by John Arbuthnott was 
published in 1692 under the title Of the Laws of Chance, or, a Method of 
Calculation of the Hazards of Game, Plainly demonstrated, And applied to 
Games as present most in Use. Besides the translation it  contains a preface 
and some examples of the application of Huygens' method to simple card 
and dice games, see Todhunter (pp. 48-53). Most interesting is the preface 
from which we shall give some quotations showing that Arbuthnott had 
similar ideas about the definition and applicability of probability as later 
expressed by James Bernoulli ( 1  7 13): 

It is impossible for a Die, with such determin'd force and direction, not to fall on 
such a determin'd side, only I don't know the force and direction which makes it 
fall on such a determin'd side, and therefore I call that Chance, which is nothing 
but want of art;. . . . 

Further, 

as I have hinted already, all the Politicks in the World, are nothing else but a 
kind of Analysis of the Quantity of Probability in casual Events, and a good 
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Politician signifies no more, but one who is dextrous at such Calculations; only 
the Principles which are made use of in the Solution of such Problems, can’t be 
studied in a Closet, but acquir’d by the Observation of Mankind. 

We have quoted Arbuthnott’s great expectations for the force of mathemati- 
cal reasoning in the epigraph. Finally, he writes 

There is likewise a Calculation of the Quantity of Probability founded on 
Experience, to be made use of in Wagers about any thing; i t  is odds, if a Woman 
is with Child, but i t  shall be a Boy; and if you would know the just odds, you 
must consider the Proportion in the Bills that the Males bear to the Females.. . . 

He returned to this problem in a paper 1712, see $17.1. He also gives other 
examples of relative frequencies from population statistics, which clearly 
shows the influence of Graunt’s book and testifies to his awareness of the 
usefulness of probability theory in this field of application. 

In 1699 the Scottish mathematician John Craig published a short book 
Thealogiae Christianae Principia Mathernatica (Mathematical Principles of 
Christian Theology) on the credibility of human testimony. Many critical 
comments and interpretations indicate the difliculty of understanding his 
theory, which nevertheless inspired many of the great French probabilists in 
their works on a theory of testimony. The following is based on the comments 
by K. Pearson (1978, pp. 465-467). Pearson first praises Craig for his 
originality in devising a mathematical theory on this subject. He stresses the 
soundness of Craig’s ideas that the reliability of testimonies decreases with 
the number of successive witnesses, the lapse of time, and the distance from 
the occurrence of the event under investigation. Craig’s formula for the 
credibility of the historical evidence of an event gives the probability as 

kT2 qD2 
t d2  

P = x + (rn - 1)s + -i- + - 9  

where x is “the probability that the first witness transmits”; m the number 
of witnesses in the chain; and s the suspicion created by a transfer; t the 
interval elapsed; d the distance of the event; and k ,  T, q, and D constants. 
The suspicion is given a negative value. Pearson remarks that Craig’s formula 
“is perfectly arbitrary, as are also Craig’s numerical values for the constants.” 
Pearson also objects to the formula because the three determinants of the 
probability enter additively instead of multiplicatively. Craig uses his formula 
to deduce that 1454 years after the writing of his book, all written testimony 
for the Iife of Christ will have disappeared in terms of credibility. 

Referring to Craig, but developing his own formula by the usual 
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probabilistic arguments, Laplace uses the decreasing evidence for historical 
events to demolish the conclusion of Pascal’s wager. The eternal happy life 
(or the infinite number of happy lives) promised by the Scriptures does not 
have a finite probability as assumed by Pascal. In his Essai (l814), Laplace 
writes, “The expression for the probability of their testimony thus becomes 
infinitely small. Multiplying it  by the infinite number of happy lives promised, 
infinity disappears from the product that expresses the expectation resulting 
from this promise, which destroys the argument of Pascal.” Pearson (1978, 
pp. 677-678) presents further details of Lapiace’s calculations. 

After having been subjected to heavy criticism for nearly three centuries, 
Stigler (1986) attempts to rehabilitate Craig by giving a completely new and 
surprising interpretation of his theory. Stigler points out that there did not 
exist a unique definition of probability at the time and that Craig’s probability 
concept differs from that used by Huygens and others measured on a scale 
from 0 to 1. Stigler suggests that Craig’s P equals the likelihood ratio of the 
present available evidence in relation to the historical hypothesis. 
Furthermore, Stigler considers t and d to be fixed units of time and distance 
and uses T and D as variables which lead to a log likelihood ratio as a linear 
function of rn and a quadratic function of T and D. We refer the reader to 
Stigler’s paper for further details. 

A comparison of Stigler’s testimony with that of Pearson and his 
predecessors offers a striking example of the difficulty of forming a 
mathematical theory of the credibility of testimony. 

Another paper on the same topic entitled A Calculafiori ofthe Credihiliry 
of Human Testimony was published anonymously in Phil. Trans. 1700. 
According to Stigler (1988) the author is Bishop George Hooper. The author 
speaks about “moral certitude absolute” and “moral certitude incompleat,” 
which has “several Degrees to be estimated by the Proportion it bears to 
the Absolute.” A similar terminology was later employed by J. Bernoulli 
(1713). According to K. Pearson (1978, pp. 466-469), the author derives the 
probability that a report is true when it is transmitted by single successive 
reporters who are equally credible. He also finds the probability that at least 
one report is true among several independent concurrent testimonies. Finally, 
he discusses the truth of either oral or written transmission over time. In all 
cases he solves the problems by means of the multiplication theorem for 
probabilities of independent events. The results of this paper have been 
discussed by Shafer (1978) and Zabell ( 1  988). 

It should be noted that the account given above is based on secondary 
sources; the reader who wants to be sure of the interpretations should 
therefore read the originals himself. 

Let us digress for a moment to the realm of philosophy and consider the 
discussion on the concept of (subjective) probability by John Locke in his 
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Essay Concerning Human Undersrading  ( 1  690), Book 4, Chapter 15, Of 
Probability and Chapter 16, Of the Degree of Assent, from which the 
following sentences have been pieced together: 

Probability is the appearance of agreement upon fallible proofs. I t  is to supply 
the want of knowledge. Being that which makes us presume things to be true 
before we know them to be so. The grounds of probability are two; conformity 
with our own experience, or the testimony of other’s experience. Probability, then 
being to supply the defect of our knowledge, and to guide us where that fails, is 
always conversant about propositions whereof we have no certainty, but only  
some inducement to receive them for true. The grounds of i t  are, in short, these 
two following: First, The conformity of any thing with our own knowledge, 
observation and experience. Secondly, The testimony of others, vouching their 
observation and experience. In the testimony of others, is to  be considered, ( 1 )  The 
number. ( 2 )  The integrity. (3) The skill of the witnesses. (4) The design of the 
author, where it is the testimony out of a book cited. (5) The consistence of the 
parts and circumstances of the relation. (6) Contrary testimonies.. . . Probability 
is either matter-of-fact or speculation. 

By “matter-of-fact,” Locke is thinking mainly of natural laws for which no 
causal explanation has been given. He writes, “These probabilities rise so 
near to certainty that they govern our thoughts as absolutely, and influence 
all our actions as fully, as the most evident demonstration; and in what 
concerns us, we make little or no difference between them and certain 
knowledge. Our belief thus grounded rises to assurance.” 

On testimony, Locke writes, “Unquestionable testimony and experience 
for the most part produce confidence. Fair testimony, and the nature of the 
thing indifferent, produce also confident belief. Experience and testimonies 
clashing, infinitely vary the degrees of probability. Traditional testimonies, 
the farther removed, the less their proof.” Presumably, Craig was influenced 
by Locke’s philosophy of testimony and probability. 

Locke does not give numerical values of probabilities, nor does he indicate 
a probability calculus. 

How much of this development was common knowledge at the end of 
the period? This question is easily answered because Montmort in the preface 
to the second edition of his Essay (1713) wrote the first history of probability 
and statistics in which he covers everything that has been mentioned above, 
except for Arbuthnott’s translation of Huygens’ treatise and Strode’s treatise. 
Montmort also mentions contributions to the theory of combinations by J.  
Prestet and A. Tacquet. Montmort states that the contributions of Pascal 
to combinatorics and probability theory are far superior to all the others 
and that his own  book is a continuation of Pascal’s work. 
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12.3 
AFTER 1708 

CONTRIBUTIONS DURING THE PERIOD PUBLISHED 

The most important unpublished works from the period in question are by 
Huygens and Bernoulli. We have discussed Huygens’ work on probability 
after 1657 in 956.3 and 6.4 and his use of Graunt’s life table in 98.1, James 
Bernoulli’s work on Ars Conjectandi can be followed through his 
mathematical diary, the Meditationes, which has been published in Volume 3 
of Bernoulli’s collected works (1975). We shall return to Bernoulli’s work in 
Chapters 14-16. 

Newton does not seem to have been interested in probability and statistics 
and did not makeessential contributions to these fields. In an unpublished note 
from his time as a student he extends Huygens’ Proposition 3 to the case 
with an irrational number of chances, He considers a ball dropped at random 
on a circle divided into two areas in the ratio 2: ,,h and gives the expectation 
as (2a + b$) / (2  + fi). He also mentions that examples of dice games may 
be generalized by using a die with unequal sides. In 1693 Samuel Pepys asked 
Newton to solve the following problem: What is the probability of throwing 
at least one six with 6 dice, at least two sixes with 12 dice and at least three 
sixes with 18 dice? Newton gave a simple algorithm for the solution 
corresponding to one, two, and three terms of the tail of the binomial with 
p = k .  Pepys might have found similar problems with their solutions in 
Arbuthnott’s translation (1692) of Huygens’ treatise; Newton does not refer 
to Huygens’ work. 

We mentioned earlier Newton’s use of his interpolation formula to fit a 
polynomial to observations, see !j 1 1.3. In his Chronology ( 1  728), Newton 
presents a statistical analysis of the length of reigns of successive kings in many 
countries using the mean as estimator. Finding that the mean reign in most 
cases is about 20 years, he rejects historians’ assertions, that rulers of some 
ancient kingdoms reigned about 40 years on average and explains that the 
discrepancy is due to confusion about generation and reign; he was thus able 
to reconstruct some ancient chronologies, see K. Pearson (1928) and Stigler 

More details on Newton’s work have been given by David ( 1  962), Sheynin, 
(1971), and Gani (1981). 

Leibniz did not make any direct contribution to probability theory, but 
in his unpublished manuscripts and his correspondence with other scientists, 
he had considerable influence on the philosophy of probability and the scope 
of its applications. Opinions differ, however; Hacking (1975) stresses his 
importance, whereas Schneider (1980, 1981, 1984) is more reserved. The 
unpublished notes on combinatorics by Leibniz have been discussed by 
Knobloch (1974). 

( 1  977). 
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12.4 A NOTE ON DATA ANALYSIS 

In the period considered, no statistical theory emerged. We have already 
mentioned successful attempts to f i t  equations to data in astronomy and 
mechanics, but these results were obtained without using formal methods of 
statistical estimation and tests of goodness of fit. A much-needed survey of 
data analysis before I750 has been given by Plackett ( I  988), who concludes, 

Sciences as diverse as mechanics, pneumatics and physiology employed models 
involving a single unknown parameter, estimated by selecting a single pair of 
measurements. Models were confirmed by the comparison of observed and 
theoretical values, residuals were calculated, and outliers noted. But  the sciences 
considered were variously affected by limitations of experimental technique, and 
there was no systematic advance on procedures of data analysis. 

A survey of the developments in political arithmetic has been presented 
by Westergaard ( 1932, Chapter 4). 



C H A P T E R  13 

The Great Leap Forward, 
1708-1718: A Survey 

I n  J 708 he [Montmort] published his work on Chonces, where with 
the courage ofColirmhus he reilealed a new world t o  mathematicians. 

--TODH U N T E R ,  I865 

13.1 A LIST OF PUBLICATIONS 

The beginnings of a theory of probability in the 1650s did not lead to the 
same rapid development as was the case for the calculus; for about 50 years, 
no essential new results were published. This period of stagnation ended in 
1708 with the publication of Montmort's Essay. There followed a decade of 
hectic activity and competition, as attested by the following list of 
publications: 

1708. P. R. de Montmort, Essay d'Analyse sur les Jeux de Hazard. Paris. 
1709. Nicholas Bernoulli, De Usu Artis Conjectandi in Jurc.. Basel. 
1712. J. Arbuthnott, An Argument for Divine Providence, taken from the 

constant 'Regularity observed in the Births of both Sexes. Phil. Trans. 
London. 

1712. A. de Moivre, De Mensura Sortis. Phil. Trans. London. 
I 7 13. James Bernoulli, Ars Conjectandi. Basel. 
1713. P. R. de Montmort, Essay. 2nd. ed. Paris. 
1716. N. Struyck, G'ytreekening der Kanssen i n  her spelen, door de 

Arithmetica en Algebra, beneevens eene Verhandeling iian Looterijen en 
Interest. Amsterdam. 

191 
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1717. Nicholas Bernoulli, Solutio Generalis Problematis XV propositi a 
D. de Moivre, in tractatu de Mensura Sortis. Phil. Trans. London. 

171 7. A. de Moivre, Solutio generalis altera praecedentis Problematis. Phil. 
Trans. London. 

1718. A. de Moivre, The Doctrine of Chances. London. 

After the breakthrough of probability theory in this decade, the 
mathematical world had at its disposal four excellent textbooks in French, 
Latin, Dutch, and English, respectively. The three texts by Bernoulli, 
Montmort, and de Moivre contained so many new ideas, methods, and 
problems that i t  took nearly a century to digest and develop them. The 
second editian of the Doctrine of Chances (1738) became the standard text 
for the remaining part of the century and was superseded only in I8 12 by 
Laplace’s Thtorie Analytique des Probabilitts. 

James Bernoulli died in 1705 and left a nearly finished manuscript of Ars 
Conjectundi. In a eulogy by Saurin ( I  706) a summary of the table of contents 
was published, but no indication of Bernoulli’s proofs was given. According 
to Kohli (1975a), it follows from Bernoulli’s mathematical diary that he had 
found the main results before 1690, but he was still working on his book 
when he died. Due to quarrels within the Bernoulli family, Ars Conjectandi 
was not published until 1713. 

The assignment of priority to the many new definitions, methods, theorems, 
problems, and solutions is therefore a difficult matter. Many of James 
Bernoulli’s results were found independently by Montmort ( I  708) and de 
Moivre ( 1  7 12) and published before Bernoulli’s book (1  7 1 3). Moreover, the 
second edition of Montmort’s book ( 1  7 13) contains a correspondence between 
Montmort and Nicholas Bernoulli, a nephew of James, with many new results 
of great importance for the following development. 

13.2 METHODS AND RESULTS 

We shall now present a survey of the methods used and the results obtained 
by James Bernoulli, Montmort, Nicholas Bernoulli, and de Moivre. In the 
following chapters we shall study some of their results in detail. 

Notations and Definitions 

As did their forerunners, they defined probability as the number of favorable 
cases (chances) divided by the number of equally likely cases (chances), and 
they considered only discrete probability spaces. Probabilities were written 
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a/(a + b), c / ( c  + d ) ,  etc., and only occasionally did they introduce a single 
letter symbol for a probability. The formulae were therefore cumbersome to 
read and write, the more so because indices not yet were in common use. 

The classical probability concept based on symmetry considerations in 
pure games of chance proved to be insufficient in games where the outcome 
also depends on the skill of the players. James Bernoulli therefore introduced 
a distinction between probabilities which could be calculated a priori 
(deductively, from symmetry) and a posteriori (inductively, from relative 
frequencies). A posteriori probabilities were also used in demography and 
insurance. 

Bernoulli also introduced a new and fundamentally different concept of 
probability, a subjective probability as a measure of the degree of belief in a 
statement or a proposition about things or events, however, this concept 
only became important in probability theory in the latter part of the century. 

Elementary Rules of the Calculus of Probability 

The addition and multiplication rules were derived from the classical 
definition of probability by the same arguments as those used today for a 
finite probability space, which means that the same rules hold for probabilities 
and relative frequencies. The authors clearly distinguished between 
independent and dependent events and illustrated this distinction by drawings 
with and without replacement from a pack of cards or from an urn with 
differently colored balls, or by comparison of dice and card games. The 
multiplication theorem was usually formulated for independent events only 
and then used with the adequate conditional probabilities for dependent 
events. 

Methods of Solution 

The classical method of enumeration of favorable and equally likely cases 
by combinatorial methods, as used by Pascal and Fermat, was developed 
much further. Each of the three books contains a section on combinatorics. 

Beginning with simple examples, complete and, more often, incomplete 
induction was used when direct proofs were too difficult. 

Recursion by means of difference equations, the method used by Pascal 
and Huygens, was used to solve more complicated problems. In many cases 
only a numerical solution was obtained, but in some cases they succeeded 
in solving the difference equation by ad hoc methods. Finally, de Moivre 
found more general results by means of his theory for the summation of 
recurring series. 

The method of inclusion and exclusion was used as a matter of course to 
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solve many complicated problems. It was used to derive the compound 
probability theorem for exchangeable events by de Moivre in 1718. 

To find the probability of winning in an infinite number of independent 
and periodic trials Huygens’ analytic method was used. 

Using the newly developed theory of infinite series, the probability of 
winning at each trial of a possibly infinite number of trials was found, and 
the total probability of winning was obtained by summation. 

Conditional probabilities and expectations were used to analyze two-stage 
games of chance. 

Generating functions or corresponding algorithms were invented; however, 
de Moivre’s proof in which a generating function was used for the first time 
was not published until  1730. 

The first continuous distribution, the uniform distribution, was introduced 
as a limiting case of a discrete distribution, and by means of the calculus the 
expectation of the largest observation in a sample was found by Nicholas 
Bernoulli. 

Limiting processes were used to derive the Poisson approximation and 
the law of large numbers for a binomially distributed random variable. 

Problems Solved 

The binomial and the hypergeometric distributions and the corresponding 
multivariate distributions were derived by combinatorial methods, and the 
waiting time distributions were found. 

The general solution of the classical problem of points was obtained, and 
various generalizations to bowl games and tennis were formulated and solved. 

Huygens’ five problems were solved by several methods. 
The distribution of the total number of points obtained by throwing any 

given number of dice was found and tabulated. 
The binomial equation B(c, n , p )  = was solved by means of the Poisson 

approximation, and np was tabulated as function of c. 
The expectation of the player in a large number of popular dice games, 

card games, and lotteries was calculated. 
The problem of coincidences (matches, rencontres) was formulated and 

solved. 
Various versions of the occupancy problem for a given number of balls 

distributed at random in a given number of cells, formulated as a problem 
in dicing, were solved. 

The probability distribution for the duration of play in a circular 
tournament (Waldegrave’s problem) was derived from the corresponding 
difference equation by Nicholas Bernoulli. 

The probability distribution for the duration of play in the ruin problem, 
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a random walk with absorbing barriers, was found in various ways by 
Nicholas Bernoulli and de Moivre. 

In a discussion with Montmort and Nicholas Bernoulli, Waldegrave found 
the optimal mixed strategy in the game Her by using the minimax principle; 
they did not, however, clearly recognize this as a fundamental new principle. 

James Bernoulli proved his fundamental theorem on the convergence of 
a binomially distributed relative frequency to the true value (the weak law 
of large numbers), and as part of his theorem he found an upper bound for 
the tail probability of the binomial distribution. Sharpening this proof, 
Nicholas Bernoulli found an approximation to the tail probability, which he 
used to test the stability of the sex ratio based on Arbuthnott’s data. 

The problems were formulated in terms of games of chance. Today we 
know that many of these problems are of great significance outside this 
context and they have therefore become standard problems in textbooks on 
probability. 

James Bernoulli and Montmort died rather young, and Nicholas Bernoulli 
did not have much time for research in probability theory once he became 
professor of law. It therefore became the fate of de Moivre to fulfill the work 
so splendidly begun in this decade. This he did in the second edition of the 
Doctrine of Chances (1738), the third edition (1756), and numerous editions 
of his Annuities on Lives from 1725 onward. 
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New Solutions to Old Problems, 
1708-1 718 

14.1 THE PROBLEM OF POINTS 

The problem of points for players of equal skill was solved by Pascal and 
Fermat in 1654, as related in 95.3. We shall discuss here the solutions for 
players of unequal skill using notation similar to that in 95.3. 

Montmort (1708, pp. 165-178) reprints Pascal’s letter to Fermat of 24 
August 1654, and on this basis he discusses the problem of points for two 
and three players without progressing further than Pascal and Fermat. James 
Bernoulli ( 1  7 13, pp. 106- 1 10) likewise refers to the Pascal-Fermat corres- 
pondence and discusses the combinatorial solution. They both give the 
formula (5.3.4) for two players and do not attempt to solve the problem for 
players of different skill. 

Montmort sent a copy of his Essay to John Bernoulli, who responded 
with a letter of 17 March 1710, reprinted in Montmort (1713, pp.283-298). 
John Bernoulli remarks that the solution of the problem of points for any 
value of p is obtained from the expansion of ( p  + q ) ’ + * - l ,  the sum of the 
last 6 terms giving A’s probability of winning, and the sum of the first n 
terms B’s probability of winning. He gives the solution as 

which is the generalization of (5.3.4) obtained by replacing 
P i @  + * - - i .  

by 

The same solution is given independently by de Moivre (1712 and 1718, 
Problem 2). 

196 



14.1 THE PROBLEM OF POINTS 197 

In 1713 (pp.244-246), Montmort added three pages to his previous 
discussion. He first gives John Bernoulli's solution. Next he uses the binomial 
to derive a new form of the solution. Beginning with A's probability of getting 
a successes in n trials, 

he notes that A's probability ofgetting the ath success at the@ + I)st trial is 

n + l  

a -  1 

Setting n + I -- a + i , i  = 0, I , .  . . , h  - I ,  and summing he gets 

which is the generalization of (5.3.9) with ($)"t i  replaced by p"qi. To prove 
that the two expressions for e(a, h)  give the same result, Montmort multiplies 
q i  in (2) by ( q  + v ) " - ' -~ ,  and expanding the binomial he reduces the resulting 
double sum to the form ( I ) .  He gives the proof only for a = 3 and b = 5. 

Today, the distribution 

is called the binomial waiting-time distvihurion. I t  is usually derived directly 
as the probability of getting a -  1 successes in a -  I + i  trials, times the 
probability of getting a success in the next trial. It is also called the neyatioe 
binomial distribution because it may be found by expansion of p a (  I - q)-'. 

In an example with three players of equal skill, Montmort (1708) first 
gives the solution based on the multinomial distribution and next the 
corresponding solution based on waiting times, without expressing his results 
in formulae. However, this was done independently by Montmort (1713, 
pp.242, 353, 371) and de Moivre (1712 and 1718, Problem 8). 

Let k players, A , , .  . . , A,, need points a , ,  . . . , a , ,  respectively, to win, 
xui = n, say, and let p I , .  . . ,p,, c p i  = I ,  respresent the skill of the players. 
Since the play will end after at most n + I - k games, the solution may be 
obtained from the multinomial 
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where x1 + ... + xk  = n + 1 - k .  If x, 2 a, and all the other x's are smaller 
than the corresponding a's, then the term in question is part of P , ,  A,'s 
probability of winning. For the remaining terms the coefficient C has to be 
split up between the players, depending on the perniutations of the n + 1 - k 
p's. If p ,  occurs at least a ,  times before p2 occurs a2 or more times and so 
on, then the term belongs to P , .  I t  will be seen that this procedure is identical 
to the one explained by Fermat in his letter to Pascal of 25 September 1654. 
As remarked by Montmort the work of counting the number of permutations 
belonging to each of the players makes the method unpractical for large 
values of ( a i } .  

The solution was given a more practical form by de Moivre ( 1  730; 1738, 
Problems 6 and 69; 1756, Problem 6) by means of the waiting-time argument, 
which leads to 

where the summation extends over all integer values of x i  from 0 to a, - I 
for i = 2,. . . , k .  For k = 2, the solution becomes identical to Montmort's, given 
by (2). 

14.2 SOLUTIONS OF HUYCENS' FIVE PROBLEMS 

Huygens' five problems came to play an important part in the development 
of probability theory because all the leading probabilists felt obliged to solve 
them and to generalize them. They used the same two methods that Huygens 
used, the method of recursion and Huygens' analytical method from his 
Proposition 14. Further, they introduced infinite series, as shown by Bernoulli 
in 1690; combinatorial methods; explicit solution of a difference equation; 
and a martingale argument. We shall discuss the solutions given by James 
Bernoulli (1713, pp.49-71, 144-149), Montmort (1708, pp. 156-165; 1713, 
pp. 2 16-223), Nicholas Bernoulli in Montmort ( I  7 13, pp. 309-3 I I), de Moivre 
(1 7 12, Problems 9, 1 1 - 14; 17 18, Problems 7, 10, I 1, 20), and Struyck ( 1  7 16, 
pp. 32-45, 46--48, 58 -64, 90---96, 108- 1 16). Huygens' own solutions were 
discussed in $6.3. 

Huygens' First Problem 

The order of the players in A BB A A  BB AA, and so on. The probability of 
winning in a single trial is p ,  for A and p2 for B, p1 + q1 = p2 + q 2  = 1 .  
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Spinoza (l687),  James Bernoulli, and Montmort all give the solution by means 
of Huygens' analytical method. 

Bernoulli also gives the solution as an infinite series, using the same 
reasoning as in his commentary to the analogous problem in Huygens' 
Proposition 14. He gives A's probability of winning as 

Taking every second term together, Bernoulli gets two geometric series with 
the common quotient qiq:,  which leads to the sum 

in agreement with the result previously found. Similarly, Bernoulli finds P ,  
and notes that PA + PR = I .  De Moivre and Struyck derive the same result 
by essentially the same method. 

Montmort does not give the infinite series for Huygens' problem but turns 
to the more difficult problem in which the order of the players is 
A BB A A  BBB AAA,  etc. He gives the solution as 

and remarks that it  is difficult to find the sum. For pI = p z  = p ,  he gets the 
special result 

which is obviously the solution of a problem analogous to the two posed 
by Bernoulli in 1685 and solved by him in 1690, see 912.2. Montmort does 
not refer to Bernoulli in 1708; however, in the preface to the 1713 edition 
of his book, he mentions the two papers by Bernoulli. 

Bernoulli stresses that his method may also be used for nonperiodic cases, 
and as an example he considers the following play: 

Player A B A B ... 
Number of trials k, k ,  k ,  k ,  ... 

Cumulative number m 1  rn, m3 m4 ... 

He assumes that the probability of success in a single trial is p for both A 
and B and that the play ends as soon as success occurs. He notes that the 
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probability of winning in a series of k trials will contain the expression 

p + q p  + q 2 p  + ... + q k - ' p  = 1 - 4&, 

so that 

This result is also given by Montmort in 1713. Bernoulli's two results from 
1690 are special cases of the formula above. 

Struyck, who had the advantage of reading the books by Bernoulli and 
Montmort, made a further generalization by considering the following play: 

Player A B C A B C A B C ... 
Number of trials N b ( 8  rl r .f rl e f ... 

The play is periodic after the first three turns. We therefore introduce the 
quotient 

Using Bernoulli's method, Struyck finds 

which contain all the previous results. Struyck remarks that the extension 
of the formulae to more than three players follows easily from the simple 
structure of the expressions. He gives six examples, among them the solution 
to Huygens' first problem and the solutions to Bernoulli's two problems 
from 1685. 

Huygens' Second Problem 

The order of the players is ABC ABC, etc., and they draw chips from a bowl 
containing a white and b black chips; the one who first draws a white chip 
wins. 



14.2 SOLUTIONS OF HUYGENS’ FIVE PROBLEMS 20 1 

James Bernoulli points out that the problem may be interpreted in three 
different ways: ( 1 )  The chips may be replaced in the bowl after each drawing; 
(2) the drawings are without replacement; (3)  each player has a bowl with a 
white and b black chips from which he draws. Further, more than three 
players may be introduced. We shall consider the first two interpretations 
and leave the solution of the third to the reader. 

For drawings with replacement, Bernoulli and Montmort first give 
Huygens’ analytical solution. Montmort remarks that the solution may be 
obtained as an infinite series but does not give the result. This is done by 
Bernoulli, de Moivre, and Struyck, who state that the probability of winning 
in the next drawing after k unsuccessful drawings equals 

e k + ,  =(n>“:, n = a + b ,  k = 0 , 1 ,  

By summation of every third term they get for a/n = p ,  

For drawings without replacement they find similarly, 

from which they get the probabilities required by summation. 

Huygens’ Third Problem 

James Bernoulli first solves the problem by recursion, like Huygens. He then 
remarks, like Montmort and Struyck, that the natural way of solving this 
problem is by combinatorics and gives the solution as lo4/(?). 

Huygens’ Fourth Problem 

All four authors solve the fourth problem by 
solution as 

combinatorics and give the 
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Bernoulli and de Moivre also give the general hypergeometric probability 

They also remark that the probability of getting at least k white chips is 
obtained by summation of hypergeometric probabilities. 

Huygens' Fifth Problem 

Let A have m counters and B n counters at the beginning of the play, and 
let their probabilities of winning in each trial be p and 4 = I - p ,  respectively. 
After each trial the winner gets acounter from the loser, and the play continues 
until one ofthe players is ruined. What is the probability of A being ruined? 

This is the general formulation of the Gamber's Ruin problem as given 
by James Bernoulli and de Moivre; Huygens' fifth problem corresponds to 
m = n =  12. 

We shall first discuss the problem for m = n. Huygens solved it for m = 
1,2,3,4,6 and concluded by analogy that the general solution is 
P,:P, = p":q", where P A  denotes the probability that A wins, see $6.3. In a 
letter to Huygens in 1665, Hudde solved the problem for m = 1 ,2 ,3  by the 
same method as Huygens, see Huygens' Oeuvres, Vol. 5, pp.470-471. 

In the Meditationes Bernoulli presents a numerical solution based on the 
recursion formula e(x) = [5e(x + 1) + 9e(x - l)]/l4, where e ( x )  denotes A's 
expectation when he has x counters, x = I ,  2 , .  . . , 23 ,e (0 )  = 0, and e(24)  = I .  
By substitution he solves the equations successively and finds that the 
ratio of e(12) and 1 - e ( 1 2 )  agrees with the answer given by Huygens. 
Bernoulli did not publish this procedure in the Ars Conjectandi; in- 
dependently, Montmort (1 708, pp. 162- 165; 171 3, pp. 222-223) used the 
same method. 

In Ars Conjectandi Bernoulli considers the general recursion formula 

e(x) = pe(x + I )  + qe(x - l ) ,  x = 1 ,2 , .  . . , 2m - I ,  e(0) = 0, e(2m) = I .  

He solves the equations for m = 2 and 3, and then he states that the ratio 
of the expectations of A and B is as p":q",  which may be shown by induction. 
Bernoulli's proof is thus as incomplete as the proofs given by Huygens and 
Hudde. 

Finally, Bernoulli gives the solution of the general problem as 

p,:p,  = (p"4" - p ' " + n ) : ( q " + n  - p"q") for m f n ,  
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and as m : n  for p = q. He leaves the proof to the reader without any indication 
of his method. 

A complete proof based on the difference equation was first given by 
Struyck (1716, pp. 108-109). He finds the explicit solution of the difference 
equation first for m = n and then for rn # n. In modern notation his ideas 
may be expressed as follows. The difference equation 

e(x) = pe(x  + 1) + qe(x - I ) ,  
e(0) = 0, e(m + n) = I ,  

x = 1,2,. . . , m + n - 1, 

may be written as 

pe(x + 1) = (P + q)e(x) - 4 4 x  - 11, 

so that 

4 e(x + 1) - e(x) = - [e(x) - e(x - I)], 
P 

which leads to 

and 

and an analogous expression for e(m + n) .  Using e(nz + n) = 1, Struyck gets 
the explicit solution 

and a similar expression for P , ,  in agreement with the results previously 
given by de Moivre and Bernoulli. 

The first solution published was that by de Moivre (1712, pp.227-228; 
I7  18, pp. 23-24) who used a completely different method. De Moivre's proof 
depends on an ingenious trick. Suppose that A's counters are numbered from 
1 to m and B s  from m + 1 to m + n and that counter x is given the fictitious 
value (q/p)" .  Suppose further that in each trial only consecutively numbered 
counters are used such that in the first trial A's stake is (4 /p)"  and B's is 
(4 /p ) " '+ ' .  I f  A wins he gets counter m + 1 from B, and in the next trial A's 
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stake is therefore ( q / p ) " + '  and B's is (q/p)"" and so on. Hence, in any trial 
A's expectation will be p ( q / p ) x +  ' - q ( q / ~ ) ~  = 0, and B s  expectation will 
similarly be 0. Since they have the same expectation in every trial, their total 
expectation must also be the same. However, the total expectation equals 
the probability of winning times the total amount won at the end of the play, 
so that 

P A [ ( ; ) " + '  + ...+(;)"+"] 4;+ ... +(;)"]. 
Assuming that PA + P ,  = I ,  the solution is easily found. De Moivre remarks 
that "The supposition that any counter is to the following as p to q does 
not change the probabilities of winning; therefore supposing that the counters 
have the same value, the probabilities of winning will still be in that same 
ratio which we have determined." 

I n  a letter of 26 February 1711 from Nicholas Bernoulli to Montmort, 
Nicholas found the probability that the play ends with the ruins of one of 
the players after at most x games, and he derived the solution of Huygens' 
problem by letting .Y tend to infinity. His letter is published in Montmort's 
Essoy ( 1  7 13, pp. 309-3 I I ) ,  see 520.3. 

For other discussion of the history of this problem we refer the reader to 
Thatcher ( I  957), Kohli ( I  975b), Edwards ( I  983), and Seneta ( I  983). 

14.3 
s POINTS WITH n DICE, EACH HAVING f FACES 

TO FIND THE NUMBER OF CHANCES OF THROWING 

This problem was solved for two and three ordinary dice by enumeration 
by Cardano and Galileo (see 554.3 and 4.4) and by Huygens in his introductory 
remarks to Proposition 10. The enumeration becomes rather complicated 
for more than three dice and must have required a great deal of labor for 
Montmort (1708, pp. 141--143; 1713, pp.203 -205) who published a table of 
the distribution of points for two to nine ordinary dice. He did not disclose 
his method, but in a letter to John Bernoulli of 15 November 1710 (see 
Montmort, 1713, p. 307), he gave without proof the formula for finding the 
distribution for .f = 6 in such a form that it is easy to generalize to any f .  
The general formula with a combinatorial proof was published by Montmort 
(1713, pp.46-50). In  the meantime, de Moivre (1712, pp.220-22; 1718, 
pp. 17-19) had published the same formula without proof; he gave the proof 
by means of a generating function in his Miscellartea Andyt ica  (1730, 
pp. 19 1-197). James Bernoulli ( 1  713, pp. 23-25) gave an algorithm for finding 
the distribution and used it for tabulating the distribution for two to six 
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ordinary dice. The same algorithm was given by Montmort (1713, pp. 51-55). 
We shall present these results, beginning with Bernoulli, continuing with 
Montmort and ending with de Moivre, although this was not the order of 
publication. 

Besides the classical methods of combinatorics two new methods of proof 
were used, namely, the method of inclusion and exclusion and the method 
of generating functions. 

From a statistical point of view, the problem is to find the distribution 
of the sum of n observations from a discrete rectangular distribution. 

James Bernoulli’s Algorithm 

Bernoulli gives his algorithm in the form of a table where he introduces one 
die at a time. For one die there is one chance for each of the six points. 
Combining two dice there are 6’ = 36 chances to be distributed over the 
possible sums from 2 to 12. The distribution may be found as shown in 
Table 14.3.1. 

As Bernoulli remarks, the method of construction is obvious; each face 
of the first die is successively combined with all the faces of the second die, 
and the 36 chances are distributed over the two-way table taking the sum 
of the points into account. By summation of the number of chances in each 
column, the distribution of the number of chances corresponding to the sum 
of points is found. 

For three dice the number of chances is 6’=216, which should be 

Table 14.3.1. Bernoulli’s and Montmort’s Algorithm for Finding the Number of 
Chances of Throwing a Given Number of Points with Two Dice 

Sum of points for two dice 

2 3 4 5 6 7 8 9 10 1 1  12 

1 2 3 4 5 6  

1 1 1 1 1 1 1  
2 1 1 1 1 1 1  
3 1 1 1 1 1 1  
4 1 1 1 1 1 1  
5 1 1 1 1 1 1  
6 1 1 1 1 1 1  

No. of 1 2 3 4 5 6 5 4 3 2 1  
chances 
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Table 14.3.2. Algorithm for Finding the Number of 
Chances of Throwing a Given Number of Points with 
Three Dice 

Sum of points for three dice 

3 4 5  6 7 8 9 1 0  

2 3 4  5 6 7 8 9 

1 1 2 3 4  5 6 5 4 
2 1 2 3  4 5 6 5 
3 1 2 3 4 5 6  
4 1 2 3 4 5  
5 1 2 3 4  
6 1 2 3  

No of 
chances 1 3 6 10 15 21 25 27 

distributed over the possible sums from 3 to 18. Combining the distribution 
of the 36 chances for two dice with the six chances for the third die in a 
table analogous to Table 14.3.1 above, Bernoulli finds the result shown in 
Table 14.3.2. 

We have abridged Bernoulli’s table because the second half is symmetric 
with the first. In this manner Bernoulli derives the number of chances for 
up to six dice. 

Montmort’s Combinatorial Solution 

Let x i  denote the number of points thrown by die i, x i  = 1,2,. . . , f .  The total 
number of points then becomes 

s,=x,+. . .+x, , ,  s , = n , n + l ,  ..., nf: 

Let the “reduced” number of points be 

r , = s , , - n +  1, r n =  1,2 ,..., n ( f -  1 ) +  1. 

Montmort’s formula for the number of chances of getting s points may then 
be written as 
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Mon tmort first proves that 

He considers the cases for n = 1, 2, and 3, and by complete enumeration he 
shows that the number of chances may be found by successive addition in 
the same way as the figurate numbers so that (2) holds. 

In Table 14.3.3 we have given an abridged version of Montmort's table 
for n = 3. The table shows the formation of each sum by listing the values 
of the three x's in increasing order of magnitude. In counting the number of 
chances it is thus necessary to take the number of permutations, 1, 3, and 6 
respectively, into account. 

Table 14.3.3. For Given Values of s = xi + x2 + x3, the Table Contains the 
Compositions (xj, x2, x,) in Increasing Order of Magnitude and the Corresponding 
Number of Chances 

S =  3 4  5 6 7 8 9 10 1 1  12 

1 1 1  112 113 114 I 115 116 117 118 119 11,lO 
122 123 124 I 125 

133 134 
126 127 128 129 

1 135 136 137 138 

222 223 224 
233 

N o  1 3 6  10 15 21 28 36 ,45 55 
Nl 3 9 18 30 45 63 

N 1 3 6 10 12 12 10 6 3 1 

N2 3 9 

Source: Montmort (1713, p. 48). 

The row indicated by N o  shows the number of chances when there are 
no restrictions on the x's, so that for each s, the largest value of any x equals 
s - 2. For each s, the value of N o  is obtained by adding the number of 
permutations of' the compositions listed in the corresponding column. 

The row indicated by N is obtaiced by excluding all compositions 
containing one or more numbers larger than 4, as indicated by the triangular 
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domains above the step-lines. This means that all the x’s are restricted to 
the numbers I , .  . . ,4, and N therefore gives the number of chances of throwing 
s points with 3 four-sided dice. 

The problem is to prove that N may also be obtained from N o  by applying 
the corrections N ,  and N , ,  in agreement with ( I ) ,  which shows that 

N ( S 3 , 4 1 = ( s i 1 ) - 3 (  s - 5  ) + 3 (  s - 9  ) = N o - N l + N 2 .  ( 3 )  

I t  will be seen that N I is obtained simply by multiplying N o  by 3 and moving 
four places to the right, and that, similarly, N ,  is obtained by multiplying 
N o  by 3 and moving eight places to the right. 

Let us first restrict one and m / y  one qftlie x’s, x,, say, to take on the values 
1 to 4. Considering s = 12, the compositions which should be excluded are 
shown in Table 14.3.4. 

Table 14.3.4. The Compositions (x3, x ? )  Giving 
s = x ,  + x 2  + x, = 12 for x ,  Larger than 4 

.Y 1 1 0 9 8 7 6 5  
S - . Y ,  2 3 4 5 6 7  

I 4  ‘+I ;: 1 1  12 13 
22 23 

33 34 
~~ ~ 

No. of 
chances 1 2 3 4 5 6  

Montmort does not include a table exactly like this, but Table 14.3.4 is 
actually only part of his table for n = 2. I t  will be seen that the corresponding 
number of chances equals the figurate numbers of order 2, their sum being 
21. This fact is explained by Montmort in the following way: To obtain 12 
points with x 1  > 4 and (x2, .x3) free from restrictions is obviously the same 
as to obtain 12 - 4 = 8 points without any restrictions on the x’s. However, 
it follows from (2) (see also Table 14.3.3) for s = 8, that the corresponding 
number of chances equals 21, namely, the figurate number of order 3,  which, 
as shown in Table 14.3.4, is obtained as the sum of the figurate numbers of 
order 2. Since one die may be selected among the three in three ways, we 
have to deduct 3 x 21 = 63 if only one of the .Y’S is restricted at a time (see 
N ,  in Table 14.3.3 for s = 12). 

Comparing Tables 14.3.3 and 14.3.4, i t  will be seen that we have deducted 
too much: instead of 3 x 21 cases we should only have deducted 3 x 18 cases. 
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The difference is due to the compositions which contain two x-values larger 
than 4, namely, 156,165, and 255. Correcting for this error we have to exclude 
the number of cases corresponding to 165, which is included in Table 14.3.4 
but not in Table 14.3.3, so that the 21 should be reduced to 19, and we 
should further count 255 only once instead of twice, which reduces the 19 
to 18. Hence, we have to add 3(1 + 2) = 9, as shown in Table 14.3.3 as N, 
for s =  12. Montmort explains this result as follows: To obtain 12 points 
with x, > 4, x, > 4, and no restrictions on x3 is the same as to obtain 
12 - 2 x 4 = 4 points without any restrictions on the XIS. It follows from (2) 
(see also Table 14.3.3 for s = 4) that the corresponding number of chances 
equals 3. Since the two x’s under restriction may be chosen in three ways, 
we have to multiply by 3. 

The proof given by Montmort follows the reasoning in the example. 
Montmort (1713, p. 50) writes, 

Suppose that the dice are denoted by the letters A, B, C, D, E, etc. and that one 
of the dice, for example A, has all its face values larger than f ;  it is then evident 
that this die A together with the other dice B, C, D, etc. have to give, besidesf 
points which with certainty are included on one of the faces of A, further s -f  
points. Hence, one has to take the number of cases expressing the number of ways 
of getting s - f points and multiply by the number of dice, because it may be 
either A or B or C, etc. which is chosen to have face values larger than f .  But it 
may happen that we have deducted too much, namely in the cases where two dice 
have been chosen to have all their face values larger than S a n d  it is thus necessary 
to add the number of cases of getting s - 2fpoints multiplied by n(n - 1)/2, because 
two dice may be selected. 

Montmort continues this way of reasoning up to s - 4f points. 
The above analysis of Montmort’s proof is essentially due to Henny (1975). 
It will be seen that Montmort uses what today is called the method of 

inclusion and exclusion in his proof. He does not single out this method in 
his reasoning but employs it as a matter of course; he also uses i t  in his proof 
of the number of coincidences, see $19.2 

Neither Montmort nor de Moivre discusses the properties of the function 
N(s; n, f )  apart from noting its symmetry around s = n ( f  + 1)/2. Montmort 
gives a complete table of the terms of N(s ;  8,6) from which the construction 
may be seen. The distribution is obviously a linear combination of [(s - n ) / f ]  
polynomials of degree n - 1 ,  a new term being added each time s increases 

As mentioned before, Montmort tabulates the distribution for 
n = 2,3,. . . , 9  and! = 6. He does not comment on the shape of the distribution 
for increasing values of n. Since this is one of the first numerical examples 

by f* 
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illustrating the central limit theorem (with hindsight)we have plotted four of 
Montmort’s distributions in Fig. 14.3.1. We have not normalized the graphs 
as we would d o  today by taking the standard deviation into account. 

De Moivre’s Algebraic Solution. Generating Functions 

De Moivre (1738, p. 37) writes, “Although. as I have said before, the 
Demonstration of this Lemma may be had from my Miscellanea; yet I have 

N 

N r  I 
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i 
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Fig. 14.3.1. Graphs of Montmort’s distributions of sums of points by throwing one, 
two, four, and eight dice; N indicates the number of chances. 
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thought fit, at the desire of some Friends, to transfer it  to this place.” He 
then proceeds to prove (1) by the method of generating functions, as we 
would say today. 

In the proof de Moivre considers a die with t faces marked 1, t 2  faces 
marked 2, and so on up to tf faces marked f ,  so that the total number of 
faces equals t + t 2  + + tf. Using the multiplication rule, the number of 
chances for the various outcomes of a throw with n dice is given by the terms 
of the product (t + t 2  + + tf)”. Since we are interested only in the sum of 
the points, we have to add all products with the same exponent, s, say, to 
find the number of chances of getting the sum s; that is, we have to find the 
coefficient of tS, which de Moivre does as follows: 

( t  + t 2  + . * a  + tf)” = t“(1 - tf)”(l - t)-“ 

The coefficient oftS is obtained by setting if + j = s - n, i = 0,1,. . . , [(s - n)/SJ, 
which gives 

!“‘;-I)=(“-”- ‘)=(”n”l’) 
s - i f  - n  

so that the number of chances becomes N(s;  n , f ) t s .  Setting t = 1, the proof 
is completed. 

It will be seen that ( t + t 2  +...+ tf)” for n = 2  and 3 and t =  1 is the 
algebraic equivalent of the algorithm given in Tables 14.3.1 and 14.3.2. 

De Moivre’s ingenious method was taken up by Simpson and Lagrange 
and used to derive the distribution of the sum of independent errors, each 
having a discrete probability distribution. 

Laplace gave the method its name and its modern formulation. Consider 
a series of real numbers, po,  pl , .  . . , and the corresponding power series 
g ( t ) = x p , t ” .  If the power series converges in an interval for r, then g( t )  is 
called the generating function of the series { p J .  Thus, there exists a 
one-to-one correspondence between the function g(t) and the series { p x } .  If 
p x  denotes the probability that a random variable takes on the value x and 
c p x  = 1, then g(t)  converges for ( t l <  1. Today t is considered a dummy 
variable and is not considered to be a number of chances (or a probability) 
as it was by de Moivre. 

From this definition it is easy to prove that the generating function of s,,, 
the sum of n independent random variables, equals the product of the 
generating functions of the n components. The proofiis essentially the same 
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as that given by de Moivre. Let X and Y be independent random variables 
with probability distributions p l x  and p2”, respectively, (x, y )  = 0,1,. . . , and 
the generating functions gl(t)  and g2(t). The probability that the random 
variable Z = X + Y takes on the value z is 

and the generating function equals g ( r )  = Cp,t’. It  follows that 

By induction i t  may be proved that 

The early history of generating functions has been recounted by Seal ( I  949). 

Generalizations 

Montmort ( I  7 13, pp. 52-55 )  derives an algorithm for finding the number of 
chances of throwing s points with n dice having different numbers of faces, 
f , , .  . ., f n .  This is an extension of the algorithm given in Tables 14.3.1 and 
14.3.2. De Moivre does not consider this problem; however, it is obvious 
that the number of chances may be found as the coefficient of tS in the 
expansion of the generating function 

n (t + t 2  + ... + t”),  
i=  1 

which corresponds to Montmort’s algorithm. 
Montmort and Bernoulli consider two other interpretations (applications) 

of the algorithm, namely, to find the number of combinations with restricted 
repetitions and the number of divisors of a given integer. 

Let u I , .  . . , [ I , ,  denote n different elements or n different prime numbers 
larger than I .  The number of m-combinations with repetitions wherein ai is 
restricted to occur at most f i  times may be found by the algorithm above. 
Bernoulli (1713, p. 123) gives a numerical example similar to that given by 
Montmort. 
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Let the given number be 

All divisors of N may be written in the same form as N withf i  replaced by 
di ,  say, 0 6 d i  6 j i  and E d i  = d. The algorithm then gives the number of 
divisors ofdimension d = s - n,  including the divisor 1 corresponding to d = 0. 

Bernoulli (1713, p. 135) also derives an algorithm for finding the number 
of m-permutations with restricted repetitions. The equivalent generating 
function is 

t 2  fi ( I  + t + 2! + ... + 
i =  1 

and the number of m-permutations is found to be the coefficient of t " / m !  in 
the expansion of the generating function. 

Finally, Montmort (1  71 3, pp. 59-62) considers the difficult problem of 
finding the number of chances for getting the sum s by drawing n cards 
without replacement from a pack of cards consisting of k suits with ,f cards 
numbered from 1 to f i n  each suit. He first gives an algorithm for solving 
this problem for a single suit, and then he shows by an example how to use 
this for three suits of ten cards each. He does not give a formula for the 
solution analogous to ( I ) .  A similar example is given by Bernoulli (1713, 
pp. 169- 174). 

14.4 
CHANCE OF GETTING AT LEAST c SUCCESSES. THE POISSON 
APPROXIMATION 

TO FIND THE NUMBER OF TRIALS GIVING AN EVEN 

The problem of finding the number of trials that gives an even chance of 
getting at  least one success had been discussed by Cardano, de Mere, Pascal, 
Huygens, Bernoulli, and Montmort, and the equation 4" = had been solved, 
first numerically for some important cases and later in general by logarithms 
giving n = (In 2)/( - In 4). 

Huygens and Bernoulli had also discussed the equation 

I 
4" + npq"- ' = - 

2' 

and obtained a numerical solution for p = f. 
Furthermore, Bernoulli ( 1  71 3, pp. 38-44) had considered the general 
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problem to determine t? such that Pr{.u >c!  = Pr{.u d c -  1 ) .  which means 
that the cquation 

has to be solved with respect to t i  for given c and p; however, Bernoulli did 
not attempt to solve this equation for c larger than 2. 

Independently, de Moivre (1712, Problems 5-7) had formulated the same 
equation and given an  approximate solution. 

De Moivre's Solution for p + 0 and np/q  = tn 

De Moivre remarks that the solution for p = 
from the symmetry of the binomial distribution for p = $. 

p / q  = I/r, he writes the equation as 

is t i  = 2c - I .  This follows 

De Moivre first considers the equation y "=  i for p-0. Introducing 

q -!I-( - I + -  I)' = I +  ( $ . - 1 + ( ; ) p +  . . .=  2.  

For p -+ 0 we have r'-+ GO, and ( 2 )  shows that n -+ 00. Setting n/r = ! t i ,  say, de 
Moivre finds 

ni 

2 !  
( 3 )  

The right-hand side is obviously equal to P"', but since this notation had not 
yet been invented, de Moivre had to write "the number of which the 
hyperbolic logarithm is in." In modern notation we get ~ " ' = 2 ,  with the 
solution 111 = In 2 = 0.693, as given by de Moivre. 

Proceeding similarly in the general case we have from ( I )  

which de Moivre writes as 



14.4 THE POISSON APPROXIMATION 

Rather than give the limiting form of (5 ) ,  

m2 inc- ’ 
e m = 2  1 +m+-++..+---- [ 2! (x - !)! 

de Moivre takes logarithms and gives the result as 

(c - I)! 
m = I n 2 + I n  l + m + -  +...+----- m2 [ 2!  
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(6) 

(7) 

He solves this equation numerically for c = 1 , .  . . , 6  as shown in the following 
table: 

De Moivre’s Table of m = n p / q  

C 1 2 3 4 5 6 

p , l  2 1 3 5 7 9 1 1  
p -+0  0.693 1.678 2.675 3.672 4.670 5.668 

Source: De Moivre ( 1  7 12, p, 225). 

De Moivre’s results for p 4 0  deviate at most 0.002 from the correct 
solution. He implies that m is an increasing function of p, so that the tabular 
values are the lower and upper limits for rn. 

From the table he concludes that m z c - + for large values of c. 
He gives some examples of applications to dice playing, all of the following 

type: “To find in how many throws of Three Dice one may undertake to 
throw Three Aces [at least] twice.”(Answer: m = n/215 = 1.678; i.e., ti = 360.7.) 

With small modifications the proof from 1712 is repeated in all three 
editions of the Doctrine of Chances (1718, Problems 5-7; 1738 and 1756, 
Problems 3-5). Some further examples (lottery drawings) and remarks have 
been added. 

Since de Moivre concentrates his exposition on the problem at hand, i.e., 
on the solution of (!), he does not explicitly state the result that 

‘tl ( : ) p ‘ q n - x 4 e - m  c -  ’ nix  -~--  for p 4 0 ,  n-+  00, tn = ‘V - ~ ,  (8) 
x = o  x = o  x! (I 

which follows immediately by comparison of ( 1 )  and (7). This result is known 
today as Poisson’s limit of the binomial distribution or the Poisson 
distribution. 
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Today it is well known that ( 1 )  has the asymptotic solution 

and that (6) has the corresponding solution rn - c - 5 and not c - $, as stated 
by de Moivre. 

Simpson (1 740, pp. 33-37) gives a more detailed analysis of (5). He finds 
an expansion of m - c in terms of c and tabulates m to four decimal places 
up to c = 10. From his table he concludes that m - c - 0.3 for p + O .  Since 
m = 2c - 1 for p = 4, he states that 

will be a good approximation to m for 0 6 p 6 i. 

Struyck’s Randomized Number of Trials 

In  the solution of a similar problem, Struyck (1716, p. 65; see also p. 94) finds 
that n = 3.2 and makes the following remark: “One may make the objection 
that it is impossible to make 1/5 trial. It is, however, possible to put 5 tickets 
in a bag, one of them being marked. After having made 3 trials the player 
draws a ticket at random from the bag and if he draws the ticket marked 
he is allowed to make another trial, otherwise he has to stop.” This idea is 
due to Montmort, see 418.5. 

De Moivre does not consider this artifice; he just chooses the nearest 
integer and says that the chance of winning then is slightly larger (smaller) 
than 4. 

It will be seen that Struyck is embedding the original experiment in a 
randomized (two-stage) experiment. His idea is the same as the technique 
used today for randomized critical regions in significance testing. In the 
present problem c is given, and we have to randomize for n; in significance 
testing IZ is given, and we have to randomize for c. 

Poisson’s Proof 

In his exposition of the limiting forms of the binomial distribution, Poisson 
first treats the case with fixed p and tt--+m, which leads to the normal 
distribution, as previously proved by de Moivre and Laplace. Using 
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waiting-time reasoning, as in (14. I .3), Poisson begins by proving the relation 

x = o  i ( x " ) p x q f l - x  = q f l - c  x = o  ( n - c : x - l  ) P X .  

because the negative binomial distribution on the right-hand side is a more 
convenient starting point for the mathematical technique he is going to use. 
After having carried out the proof for fixed p ,  he goes on to consider the 
case with p -+ 0, n + co, and m = n p  fixed (Poisson, 1837, pp. 205-207). 

For fixed c he finds 

(n  - c + x - I )(x) inX inx 
4- p" ~~~ x! x! '  

n 

so that 

This proof is in principle not different from de Moire's, which was (or 
ought to have been) known to Poisson. However, Poisson had the explicit 
objective ofderiving a limiting form of the binomial, he writes the distribution 
function explicitly, and he states that i t  gives the probability that an event, 
whose chance on each trial is the very small fraction m/n, will not happen 
more than c times in a large number n of trials. 

An English translation of the relevant pages from Poisson's book has been 
given by Stigler (1982). 

The same method of proof may be used directly on the binomial, which 
is the procedure commonly used today. 

Poisson does not give any applications apart from the one given by de 
Moivre for c = I ,  see Poisson (1837, pp. 40-41). The Poisson distribution 
was not much used before Bortkiewicz (1898) expounded its mathematical 
properties and its statistical usefulness. Uspensky (1937, pp. 135- 136) has 
given an evaluation of the error in using the Poisson distribution function 
as approximation to the binomial. A comprehensive survey of the Poisson 
distribution and its generalizations, including a section on its history, is due 
to Haight ( 1  967). 
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14.5 PROBLEMS 

1. Let 

denote the number of ni-combinations with repetitions among n elements, 
and let the n elements be divided into two groups of a and h elements, 
u f h = n. Prove by direct reasoning that 

Give an algebraic proof by comparing the coefficients oft“‘ in the two 
expansions of 

( I  + t ) - O ( I  + t ) - h = ( l  + t ) - “ .  

2. Use Montmort’s idea, indicated in 514.1, and the result in Problem 1 to 
prove that the expressions (14.1.1) and (14.1.2) are identical. 

3. Consider the relation between the number of successes, c, say, in a given 
time interval and the waiting time until the occurrence of the cth success. 
Use this relation to see that 

4. Prove that the positive integer s may be written as a sum of n positive 
integers in (:If) ways. Hint: Write s as a sum of 1’s. To break this sum 
into n parts we have to remove n - I plus signs among the s -  1. 

5. Generalize the Gambler’s R u i n  problem to three players, assuming that 
the winner of each game gets a counter from each of the losers. 

6. Tabulate the number of chances of throwing s = 8,9,, . . ,48 points with 
eight ordinary dice, see Montmort ( 1  7 13, p. 46). 
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7. Find the number of permutations with restrictions of the letters a4h3c* 
by the Bernoulli-Montmort algorithm and by a corresponding 
generating function, see Bernoulli ( I7 13, p. 135) and Montmort ( 1  7 13, 
p. 56). 

8. From 10 cards numbered 1,2, . . . ,  I0 are drawn n cards without 
replacement, ri = 1,2,..  ., 10. Find the number of chances of getting s 
points, s = n(n + 1)/2, n(n + 1)/2 + I , .  . . ,n(21 - 412, see Montmort (171 3, 
pp. 59-62). Generalize this problem and find the solution. 

9. From three suits of ten cards each are drawn three cards without 
replacement. Find the number of chances of getting s points, s =  
3,4, .  . . ,30, see Montmort (1  7 13, p. 62). Generalize this problem and find 
the solution. 

10. To find in how many throws of six dice one may undertake to throw 
fifteen points twice. Answer: About 45 throws, see de Moivre (1712, 
p. 224). 

11. I n  a lottery consisting of a great number of tickets, where the blanks are to 
the prizes as 50 to I ,  find how many tickets a person ought to take to expect 
at least five prizes? See Simpson ( I  740, p. 36). Answer: IZ = 239 according to 
Simpson's approximation. Compare with the exact solution. 



C H A P T E R  1 5  

James Bernoulli and 
Ars Conjectandi, 17 13 

T o  conjecture about something is to measure its probability. 
The Art of Conjecturing or the Stochastic Art is  therefore 
dejined as the art of rneasuring as exactly as possible the 
probabilities of things so that in our judgments and actions 
we can always choose or follow that which seems to be better, 
more satisfactory, safer and inore considered. In  this alone 
consists all the wisdom of the Philosopher and the prudence of 
the Statesman. 

- - J A M E S  BERNOULLI ,  1713 

15.1 JAMES, JOHN, AND NICHOLAS BERNOULLI 

Among the members of the Bernoulli family at Base1 were many prominent 
merchants, politicians, artists, jurists, mathematicians, and scientists. Four 
of them, James, John, Nicholas, and Daniel contributed to probability theory; 
we shall discuss the lives of the first three, and in particular that of James. 
A partial pedigree of the Bernoulli family is 

Nicholas Bernoulli 
1623-1708 

I 
7 - 1  

John 
I-- 

James Nicholas 
1654-1 705 1662.- 171 6 1667- 1748 

I I 
Nicholas Daniel 

1687- 1759 1700- I782 
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James (Jakob, Jacques) Bernoulli (1654- 1705) studied philosophy and 
theology at  Basel and got his degree in theology in 1676. At the same time 
he studied mathematics and astronomy. He then spent four years traveling 
as tutor and scholar in Switzerland and France. In Paris he studied the works 
of Descartes and his followers. It was possibly during his stay at Paris that 
he became interested in probability theory; it was only 13 years after the 
publication of Pascal's Traitk, and Huygens was still a member of the 
Academy of Sciences. After his return to Basel in 1681 he published a paper 
in which he tried to derive the path of a comet from fundamental laws and 
thus to predict its occurrences. This shows him taking sides with the 
astronomers against some theologians who viewed comets as warnings from 
God. 

He left Basel again and spent two years traveling in the Netherlands and 
England to study mathematics and science. He met Hudde in Amsterdam; 
Flamsteed, Boyle, and Hooke in England; and attended a meeting of the 
Royal Society in 1682. 

Returning to Basel in 1683 he lectured on experimental physics; perfected 
himself in the mathematics of Descartes, Wallis, and Barrow; and wrote some 
papers on mathematics to the Acta Eruditorum, among them the previously 
mentioned paper of 1685 on a problem in probability. 

In 1687 he became professor of mathematics at the university of Basel. 
He was an excellent teacher and had many students, among them his younger 
brother John and his nephew Nicholas. 

In 1684 Leibniz started to publish his papers on the calculus; they were 
difficult to understand because of the new concepts and their lack of clarity. 
Bernoulli worked hard to understand and master the new method, and from 
about 1690 he and his brother John made a large number of important 
contributions to the development of the calculus so that they, after Newton 
and Leibniz, may be regarded as the creators of the calculus. 

Starting about 1690 the Bernoullis corresponded regularly with Leibniz 
and Huygens. Together with Leibniz they developed the rules of differentiation 
and integration in the form used today. The mathematization of science going 
on from Galileo and Kepler to Huygens now got the tool it  needed for a 
unified treatment. The old problems of mathematical physics, which had 
been solved by ad hoc methods, could now be formulated as special cases 
of differential equations and solved by routine methods, and many new and 
more diEcult problems could be formulated and solved. 

James Bernoulli made important contributions to the theory of differential 
equations and mechanics, the calculus of variations, the theory of infinite 
series, and the theory of probability. To be more specific, James gave the 
formula for the radius of curvature in terms of the derivatives, and he 
developed a theory of evolutes. He studied many special curves corresponding 
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to physical problems, such as the cycloid, the catenary, the sail curve, the 
lemniscate, the “elastic” curve, and the caustic by refraction. Using polar 
coordinates he discussed the parabolic and logarithmic spirals, which led 
him to an elliptic integral for the curve length. He solved the differential 
equation y’ = j ( x ) v  + y(x)y”, which bears his name. In his works on the 
brachistochrone problem (the curve of the quickest descent) and the 
isoperimetric problem (the closed curve bounding the maximum area among 
curves with a given perimeter), he laid the foundation of the calculus of 
variation. All this work was carried out in strong competition with his brother 
John, Leibniz, and Huygens. We shall discuss his contributions to probability 
theory in the following sections. 

John (Johann, Jean) Bernoulli (1667- 1748) studied medicine in accordance 
with his father’s wishes and got his degree in 1690. A t  the same time he 
studied mathematics, guided by his brother. His paper in the Acta Eruditorum 
in 1691 on the catenary showed him to be an accomplished mathematician 
mastering the new calculus. During 1691-1692 he lived in Paris, where 
mathematicians not yet were fully acquainted with the calculus. Marquis de 
l’Hospital, one of the leading mathematicians, engaged Bernoulli to teach 
him the new methods, and based on these lessons and Bernoulli’s notes, de 
I’Hospital wrote the first textbook on the differential calculus, Analyse des 
Infiniment Petits ( I  696), which was widely circulated. 

In 1695 John became professor of mathematics at Groningen at the 
recommendation of Huygens. He remained there until 1705, when he 
succeeded James as professor of mathematics at Basel. 

For many years John worked on the same problems as James, and he 
often gave alternative and more elegant solutions. He wanted to prove his 
independence and superiority and was rather unscrupulous in his tactics, 
both in his published papers and in his private correspondence. James 
retaliated by pointing out the superficiality of some of John’s solutions, and 
the dispute became rather disgraceful and created great bitterness between 
the brothers. John was also deeply involved in the priority dispute between 
Newton and Leibniz, see Westfall (1980, pp. 760-776). In his later years John 
worked on problems in astronomy, mechanics, hydrodynamics, and 
experimental physics. He only made minor contributions to probability 
theory; we shall discuss his correspondence with Montmort in 5 18.4. 

A survey of the mathematical works of the brothers Bernoulli has been 
given by Fleckenstein (1949). Biographies have been written by K. Pearson 
(1978) and David (1962). 

Nicholas (Nikolaus) Bernoulli ( 1  687-1 759) studied mathematics and law 
at Basel. He was taught mathematics by his uncles, first by James until 1705 
and then by John. He took his master’s degree under James in 1704 on the 
theory of infinite series. In 1709 he got his doctor’s degree in law with the 
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thesis De Usu Artis Conjectandi in Jure, part of which we have already 
discussed in 58.2. During 17 12- 171 3 he traveled in England, the Netherlands, 
and France. In London he met de Moivre and Newton (see Westfall, 1980, 
pp. 741-744), and in Paris he met Montmort with whom he had been in 
correspondence on probability problems since 171 0. They became friends, 
and Nicholas spent three months at the country estate of Montmort working 
on the second edition of Montmort’s Essay ( 1  71 3). In 17 16 Nicholas became 
professor of mathematics at Padua. Returning to Basel he became professor 
of logic in 1722 and professor of law in 1731. He continued his mathematical 
work on infinite series and differential equations and corresponded with 
Leibniz and Euler. We shall discuss his work on probability theory, statistics, 
and life insurance mathematics in the following chapters. Biographies have 
been written by Fleckenstein (1973) and Youshkevitch (1986b). 

15.2 ARS CONJECTANDI 

James Bernoulli’s preliminary work on probability, which ultimately resulted 
in the Ars Conjectandi (The Art of Conjecturing, 1713), may be followed in 
his Meditationes between 1684 and 1690. He begins by solving Huygens’ 
problems; continues with some remarks and examples on the possibility of 
employing probability calculus to problems other than games of chance; and 
finally discusses the convergence of binomially distributed relative frequencies 
and proves his famous theorem. During the 1690s there are no notes on 
probability; presumably he was fully occupied with his mathematical work. 
It was, however, a long way from his notes in the Meditationes to the 
manuscript of the Ars Conjectandi. I t  can be seen from his correspondence 
with Leibniz that he worked on the manuscript during the last two years of 
his life. 

When Bernoulli died in 1705 the manuscript was nearly completed, but 
due to quarrels within the Bernoulli family it was not published until 1713. 
Leibniz advised the widow to let Jakob Hermann, a pupil of Bernoulli’s, sort 
out and order the manuscript. Through Hermann an outline of the main 
contents became known and was mentioned in the eulogies of Bernoulli, the 
best being the one by Saurin ( 1  706), who closed his eulogy by recommending 
that Ars Conjectandi should be published under the supervision of John 
Bernoulli. However, due to the widow’s mistrust of John this was out of the 
question. Montmort, who had published his Essay in 1708, wrote to John 
in 1710 and asked him to communicate an offer of publishing Ars Conjectandi 
at his expense, since he was interested in learning James’s results before 
publishing the second edition of his Essay. The offer was, however, rejected. 
Nicholas, who had read the manuscript when he studied under James, had 



224 JAMES BERNOULLI AND ARS CONJECTANDI, 17 13 

used it to his own advantage in his thesis, and he also profited from it in 
his discussions with Montmort. Under the pressure of Montmort and other 
mathematicians, Ars Conjectandi was finally published in Basel in 1713 with 
a short preface by Nicholas. The preface has been translated into English 
by David (1962). Nicholas writes that the printers asked him to complete 
the manuscript but that “I was too young and inexperienced to know how 
to complete it.. . . I advised the printers to give it to the public as the author 
left it.” More details on the publication history have been given by Kohli 
( 1  975a). 

Ars Conjectandi consists of four parts: 

1. The treatise De Ratiociniis in Ludo Aleae by Huygens with annotations 

2. The doctrine of permutations and combinations, pp. 72--137. 
3. The use of the preceding doctrines on various games of chance and 

4. The use and application of the preceding doctrines on civil, moral, and 

by James Bernoulli, pp. 2-7 1, 

dice games, pp. 138-209. 

economic affairs, pp. 210-239. 

An appendix contains the Lettre a un Amy, sur les Parties du Jeu de Paume 
(Letter to a friend on the points in the game of tennis), 35pp. 

Ars Conjectandi has been reprinted in 1968 in Editions Culture et Civi- 
lisation, and in 1975 in Die Werke von Jctkob Bernoulli, Vol. 3. A German 
translation with a good historical introduction and many special notes on 
historical and mathematical problems is due to Haussner (1899). Part 1 has 
been translated into French by Vastel ( 1  801) and into Italian, with many 
commentaries, by Dupont and Roero (1984). The first three chapters of Part 2 
have been reprinted and translated into English by Maseres (1795). Part 4 
has been translated into Russian by J. V. Uspensky, with a preface by Markov 
(1913), and into English by Bing Sung (1966), with a preface by Dempster. 
The Russian translation has been reprinted in 1986 with new commentaries. 

In the present chapter we shall discuss the contents of Ars Conjectandi, 
expect for Bernoulli’s proof of his main theorem, which is discussed in 
Chapter 16. When quoting from Ars Conjectandi we shall cite page numbers 
only; we have generally used the translation by Bing Sung. 

A t  the risk of some repetition later on, we shall begin with a survey of 
Bernoulli’s work. 

In the first three parts of Ars Conjectandi Bernoulli generalizes the doctrine 
of chances as previously developed by Pascal and Huygens. He presents an 
ingenious commentary on Huygens’ treatise and a unified, generalized 
treatment of combinatorics in the spirit of Pascal but with no reference to 
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Pascal’s treatise, which he presumably did not know. He clearly states the 
multiplication rule for the case of independence; he derives the binomial 
distribution; and he finds the probability of winning a game with a possibly 
infinite number of trials as the sum of an infinite series. Finally, he 
demonstrates the power of his methods by solving 24 problems taken from 
popular games of chance. The first 209 pages of Ars Conjectandi constitute 
an excellent textbook that consolidates and generalizes the existing calculus 
of chances. It is a pedagogical masterpiece with a clear formulation of theorems 
supported by elaborate proofs both in abstract form and by means of 
numerical examples. 

In Part 4, the last 30 pages of Ars Conjectandi, Bernoulli takes up new 
and fundamental problems of probability theory and its applications. Instead 
of the old concept of chance based on symmetry, he introduces a new concept 
of probability, defined as a measure of our knowledge of the truth of a 
proposition, “a degree of certainty.” This is a revolutionary step because 
probability in this sense relates to propositions and not directly to events. 
Bernoulli thinks that this subjective probability is universally applicable. He 
tries to give rules for the measurement and combination of such probabilities 
but does not succeed outside the already known fields of games of chance 
and stable relative frequencies. 

Bernoulli writes that i t  is a well-known fact that the relative frequency of 
an event will be nearer to the truth if based on many rather than few 
observations; however, no one has proved the corresponding property of 
relative frequencies in probability theory. He therefore proves “the law of 
large numbers,” which we shall present in a modern and slightly more general 
formulation that Bernoulli’s . 

Consider n independent trials, each with probability p of success, and let 
s, be the number of binomially distributed successes and h, = s,/n the relative 
frequency. Then for given positive numbers E and 6, 

which means that the absolute value of the difference h, - p will be smaller 
than E, with a probability tending to 1 for n tending to infinity. The name, 
the law of large numbers, is due to Poisson (1837, p. 7). 

This is the first limit theorem proved in probability theory, and i t  is of 
fundamental importance for statistical estimation theory. It was Bernoulli’s 
intention to derive an interval estimate of p, but he does not indicate how 
to use his theorem for this purpose. 

Bernoulli was a great probabilist and mathematical statistician, but he 
was no applied statistician. He never analyzed a set of observations nor did 
he comment on the analyses made by Graunt and Halley. 
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15.3 BERNOULLI'S COMMENTARY ON HUYGENS' TREATISE 

In Part 1 of Ars Conjectandi Bernoulli improves and supplements Huygens' 
reasoning, replaces Huygens' numerical results by formulae, generalizes the 
problems, and provide new methods of solution. The commentary is about 
four times as long as the original text. 

Considering the repetition of a game of chance, Bernoulli stresses that the 
probability of winning in a single game is constant, that is, independent of 
the outcomes of the previous games. In recognition of his achievements, 
repeated independent trials are today called Bernoulli trials when there are 
only two possible outcomes for each trial (success and failure) and the 
probabilities of these outcomes remain the same for all the trials. 

Bernoulli gives the following alternative proof of Huygens' basic 
Proposition 3. Suppose that a lottery consists of p tickets, each with the prize 
a, and q tickets, each with the prize b. Let p + q players each buy a ticket 
so that their total winnings are p a f q b .  Since all players have the same 
expectation, its value must be (pa + q b ) / ( p  + q).  

Bernoulli remarks that the word "expectation" is used in a technical sense 
in probability theory. He also states that the rule for finding the expectation 
is the same as the rule for finding the average price of a product obtained 
by mixing several components of different prices. 

In several instances Huygens finds the expectation of one player and 
obtains the expectation of the other by subtraction. Bernoulli points out that 
this is permissible only if the total stake is to be divided between the two 
players; that is, when the corresponding events are disjoint and 
complementary. As an example he supposes that two convicts, sentenced to 
death, are allowed to play with a die on their lives so that the one who 
throws the larger number of points will be reprieved and that both will be 
reprieved if they throw the same number of points. The expectation of each 
convict is 7/12 of a life, which shows that the expectation of the one cannot 
be found by subtracting the expectation of the other from unity. The reason 
is of course that there are cases in which both of them will be reprieved. To 
avoid such errors Bernoulli normally finds the probabilities of winning 
for both A and B and checks that PA + PR = 1.  He does not formulate 
the addition rule for probabilities explicitly but uses i t  as a matter of 
course. 

He formulates the multiplication rule for independent events as follows. 
Consider a series of trials with different probabilities of success, p 1 , p 2 , .  . . . 
The probability of getting a series of successes and failures in a given order 
is the product of the corresponding probabilities, p 1  p 2 p 3 q 4 q 5 p 6 . .  . , say. 

For a series of n trials with the same probability of success, p ,  say, the 
probability of m successes and n - nl failures in a given order thus becomes 
prnq"-'". If the order of successes and failures is immaterial, the probability 
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of m successes and n - m  failures becomes ( i )p"q"-" ,  since there are (;) 
different orders of m successes and n - m failures. Bernoulli's derivation of 
the binomial distribution is thus the one used today. 

In his generalization of Huygens' Propositions 10- 12, Bernoulli considers 
the probability of getting at least m successes in n trials. Let the number of 
successes be x and the number of failures y ,  x + y = n, and let A win if x 2 m. 
Let B's expectation (probability of winning) be e(m, n). Bernoulli finds e(m,n)  
by the recursion 

e(0, n) = 0, and e(n, n) = 1 - p" = ( p  + 4)" - p" .  He does not give this formula 
explicitly but tabulates the probabilities by recursion for n = 1,2,. . . ,6. He 
concludes (by incomplete induction) that 

He remarks that this result may also be obtained directly by adding the m 
probabilities of the outcomes in question. 

Let us introduce the notation 

b(x,n,p)= p"q"-", n =  1,2 ,..., x=O,1, ..., 11, O < p <  1, 

B(c,n,p) = b ( O , n , p )  + b(l,n,p) + .-.  + b(c,n,p) ,  

(3 
c = 0,1, ..., n. 

The formula above for B s  probability of winning may then be written 

1 - B(n - m, n, q )  = B(m - 1, n, p ) ,  

corresponding to y > n - m + 1 and x < m - 1, respectively. 
In his commentary on the problem of points, Huygens' Propositions 4-9, 

Bernoulli only extends Huygens' tabular solution. He returns to the problem 
in Part 2, pp. 107-1 12, but does not go beyond the solutions given by Pascal 
and Fermat. He refers to Pascal's letters to Fermat, published in 1679, and 
says that Pascal was not able to find the general solution. Had Bernoulli 
known of Pascal's treatise, he would have found there a solution with a 
proof more elegant than his own. I t  is strange that Bernoulli did not consider 
the problem of points for p #+. 

In connection with his discussion of Huygens' problems of dicing, Bernoulli 
gives an algorithm for finding the probability ofthe number of points obtained 
by throwing n dice, which has been presented in 814.3. 
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The most important of Bernoulli’s contributions to Part 1 is found in his 
comments on Proposition 14 about the possibly infinite series of trials in 
the order BA BA BA, etc. Making use of the addition and multiplication rules 
and the theory of infinite series, he gives an alternative to Huygens’ method 
and points out that his method is more general. He considers infinitely many 
players in succession, each having one throw. All even-numbered players 
have probability pI  of winning a throw, and the odd-numbered players have 
probability p2. The condition for player number 4, say, to win is that the 
preceding players have been unsuccessful and that he himself has a success; 
the probability of this event is q2qlq2p1.  Bernoulli then lists the probabilities 
of winning for each player as follows: 

The probability of winning for A is obviously the sum of the probabilities 
for the even-numbered players and analogously for B. Summing the two 
geometric series, Bernoulli finds 

I t  seems that Bernoulli has overlooked the relationship between his method 
and the method of recursion. The recursion formula (6.2.4) leads to an infinite 
series for e,, which is the same as Bernoulli’s result for PA given above. 

Bernoulli uses his method to solve the problem he posed in 1685 and 
Huygens’ Problems 1 and 2. He solves Huygens’ Problems 3 and 4 by 
combinatorial methods and discusses various interpretations. He states the 
solution of the Gambler’s Ruin problem without giving a satisfactory proof. 
All of these problems have been discussed earlier in 514.2. 

15.4 
FORMULA FOR THE SUMS OF POWERS OF INTEGERS 

BERNOULLI’S COMBINATORIAL ANALYSIS AND HIS 

Bernoulli mentions the importance of combinatorial analysis for many 
problems in philosophy, history, medicine, and politics; the solution of such 
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problems depends on conjecture, which in turn depends on a combination 
of causes, Great mathematicians, such as van Schooten, Leibniz, Wallis, and 
Prestet, have therefore worked on combinatorial analysis, and Bernoulli is 
now to supplement this work with his own contributions giving a systematic 
exposition of the whole theory, since this has not been done before. 

It is remarkable that Bernoulli does not mention Pascal, whose Traith 
(1665) contains what Bernoulli states is missing, see $5.2. On the other hand, 
even if Bernoulli had known of Pascal’s treatise, Bernoulli’s exposition is still 
worthwhile because it is more comprehensive and because his discussions 
on permutations, combinations, and figurate numbers are neatly integrated 
and given with elaborate explanations and improved notation. Bernoulli’s 
work became the most popular text on combinatorics in the 18th century. 

According to Haussner (1899) it was Bernoulli who introduced the term 
“permutation” in combinatorial theory. The term “combination” had been 
used by both Pascal and Leibniz; however, according to Stigler (1987) Strode 
used the word “permutation” in the title of his book in 1678. 

We shall use the following terminology. Let there be given n elements. A 
permutation is an ordered arrangement of the n elements. An rn-permutation 
is an ordered selection or arrangement of m of these elements. An 
m-combination is a selection of m elements without regard to order. Instead 
of m-permutations, Bernoulli uses the term m-combination with its 
permutations, which later became known as “variations.” Montmort (1708) 
used the term “arrangement” for permutation. We shall use the notation Ck 
for the number of m-combinations, n! for the product n(n - l ) . . .  1, and drn’ 
for the product n(n - 1)s. .(n - m + 1); Bernoulli does not use these 
abbreviations. 

Part 2 of Ars Conjectandi consists of nine chapters on the following topics: 
(1) Permutations. (2) The number of combinations of all classes. (3) The 
number of combinations of a particular class, the figurate numbers and their 
properties, the sums of powers of integers. (4) Properties of Ci ,  the hyper- 
geometric distribution, the problem of points for p = +. ( 5 )  Combinations 
with repetitions. (6) Combinations with restricted repetitions. (7) Variations 
without repetitions. (8) Variations with repetitions. (9) Variations with 
restricted repetitions. 

By induction Bernoulli first proves that the number of permutations of n 
different elements equals n! and that the number of permutations of n elements 
consisting of k classes with ri identical elements in the ith class equals 
n!/r,!.-.rk!, where r ,  + ... + r k = n .  He does not at this stage discuss the 
number of m-permutations but continues with the theory of combinations. 

Bernoulli begins by listing all the combinations of n = 1, .  . . , 5  elements, 
adding one element at a time, and counting the additional number of 
m-combinations for each n. We shall denote this number by anm. Here is 
an abridged version of Bernoulli’s table: 
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Table of Combinations 

m 

n 1 2 3 4 

1 a 
2 b ab 
3 c ac bc abc 
4 d ad bd cd abd acd bcd abcd 

Source: Bernoulli, Ars Conjectandi, p. 83. 

Table of an,: The Number of 
Additional Combinations 

n 1 2 3 4 

1 1 0 0 0  
2 1 1 0 0  
3 1 2 I 0 
4 1 3 3 1 

Source: Bernoulli, Ars Conjecraridi, p. 87. 

From this construction Bernoulli observes that a,, is given by 

n - 1  

anl = I ;  anm = O for n < m; a,, = 1 a,,,- (1 )  
i= 1 

He remarks that the theory of combinations thus surprisingly leads to the 
figurate numbers, which are defined by the relations above, and that these 
numbers have been previously studied by several mathematicians, among 
them Faulhaber, Remmelin, Wallis, Mercator, and Prestet, but they have not 
succeeded in giving satisfactory proofs of the properties of these numbers. 

From the construction of the table of combinations it also follows that 
the total number of combinations equals 

By inspection of the table of anmr Bernoulli records 12 “wonderful 
properties” of these numbers, among them the symmetry property, the 
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relation to the binomial coefficients, the recursion formula 

These properties are of course the same as those listed by Pascal (see $5.2). 
Like Pascal, Bernoulli notes that the crucial problem is to prove (4), which 

is the link between the additive and the multiplicative forms of the a's. 
Bernoulli first gives a rather lengthy proof; he then states that based on this, his 
brother John has constructed a more elegant proof of the following lemma. 

Lemma. Assuming that c;= I aim/nanm = I/r for all n, i t  follows that 

I n +  I 1 - 3 E ! - t l _ - . - . _  - 
i = l  ( n +  I ) U , , + ~ , , , + ~  r +  1 

In the proof Bernoulli makes repeated use of ( I )  combined with the 
assumptions given in the lemma, as shown here: 

nunm + ( n  - l )an- I , m  + ... + numm 
r 

- - _ ~ _ _  , from the assumption, 

Adding a, I on both sides the lemma follows. 
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For m = 1 the lemma is obviously true for r = 1. Bernoulli then proves 
by induction that r = m, so that 

and using (5) he obtains 

Repeated application of this result leads to 

By means of these results Bernoulli proves the properties of the binomial 
coefficients. 

Comparison with Pascal’s exposition (see $5.2) will show that Pascal bases 
his proof on recursion (3), whereas Bernoulli uses the more cumbrous 
recursion (l) ,  which makes Bernoulli’s proof more clumsy. 

Combining (1) and (8), Bernoulli gets the addition formula for the binomial 
coefficients 

He states that this relation may be used to find the sum of the powers of 
the natural numbers. Writing the binomial coeflicients as polynomials in i 
and n, respectively, he tabulates the power-sums as polynomials in n for 
rn = 1,2,. . . , 10 by recursion. It would have been simpler if, like Pascal, he 
had derived an explicit recursion formula. Bernoulli does not mention that 
Faulhaber had previously tabulated these polynomials up to the 17th degree, 
see 45.2. 

Studying the pattern of the coefficients of the polynomials, Bernoulli 
remarks that it is not necessary to continue the tabulation, since the general 
formula is obviously, 



15.4 BERNOULLI’S COMBINATORIAL ANALYSIS 233 

the series terminating with the last positive power of n, and B,, B,, , . . , 
denoting what de Moivre and Euler later called the Bernoulli numbers. 
(Bernoulli does not use the notation B,,  B,, B 6 , .  . .; rather, he uses 
A, B, C,. . . .) He gives the first of the coefficients as B, = 1/6, B,  = - 1/30, 
B6 = 1/42, B,, = - 1/30 and remarks that they may be found by recursion, 
since for each m the sum of the coefficients of the polynomial in question 
equals 1. Presumably he has obtained this relation by setting n = 1, which 
gives 

_ -  1 1  -- + f -!-( 2kI)B,i ,  
2 2k+1 i=12i 2i- 

k =  1,2 ,... . 

Bernoulli does not explain how he got the idea of introducing the binomial 
coefficients as factors in the expansion. 

As previously stated, the formula for the sums of powers of integers was 
an important tool for computing the areas of plane figures, i.e., for obtaining 
approximations to integrals. Bernoulli’s result was therefore a major 
achievement and marks the end of a long search carried on by many 
mathematicians. It was later derived as a special case of the Euler-Maclaurin 
formula. 

Finally, Bernoulli considers a generalization of the figurate numbers, which 
he obtains by repeated summations, starting from any number, d, say, in the 
first column and introducing successively the numbers c, b, and a in the 
following columns, so that the generalized figurate number of order 4 becomes 

un4 = a + ban, + can3 + dan4, 
or 

Bernoulli points out that the advantage of writing a polynomial of the third 
degree in this form is that the sum of any number of equidistant terms may 
be found by means of (9) so that 

He concludes that any series of numbers u , ,  u 2 , .  . . , having constant differences 
of order m, say, may be written in the form (12) so that the sum of the first 
n terms may be expressed in the form (13). 

Bernoulli does not mention that (12) is a special case of the 
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Gregory-Newton formula (see Q 1 1.3), which gives 

un = u 1 + ( n  ; 1) Au 1 + . . . + ( t1 - 1 ) A%,. 

Thus, only ( I  3) is new; however, Montmort had independently published this 
result in Journal des Spzoans (171 1 )  and in his Essay (1713, pp. 63-67) with 
a proof similar to Bernoulli's. 

Let the n different elements be divided into two groups of m and n - m 
elements, respectively, and let b elements be selected from among the n in 
such a way that a elements are selected among the m and b - a among the 
n - rn. Bernoulli formulates this problem and finds the corresponding number 
of combinations to be 

This result leads to the hypergeometric distribution (as it is called today), 
and Bernoulli uses it to solve Huygens' Problems 3 and 4. 

After his exposition of the theory of m-Combinations without repetitions, 
Bernoulli gives an analogous discussion of m-combinations with repetitions; 
i.e., each of the n elements is allowed to occur up to m times in a selection 
of m elements, and he proves that the number of m-combinations with 
repetitions equals 

To find the number of m-permutations, Bernoulli notes that for each 
m-combination there are m! permutations so that the number of 
m-permutations equals Cim! = n"? He does not, as does Montmort, mention 
that the first element may be chosen in n ways, the second in n - 1 ways, 
and so on. He remarks that the number of m-permutations of n different 
elements is equal to the number of permutations of n elements of which m 
elements are identical. He proves that the total number of permutations of 
order 1,2,. . . , n may be found recursively by the formula 

Further, Bernoulli notes that the number of m-permutations with repetitions 
equals nm, and their sum equals (nm - l)n/(n - 1). 
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He points out the importance of combinatorics for evaluating expressions 
of the form (al + ... + a,)'". The number of terms in the expansion equals 
the number of m-combinations with repetitions, i.e., 

( + ;- '), 
and the coefficient of any product of m factors equals the corresponding 
number of permutations so that 

and rl  + + r, = m. Such multinomial expansions had been discussed in 
other contexts in the 1690s by Leibniz, John Bernoulli, and de Moivre. 

Finally, Bernoulli also discusses the number of combinations and 
permutations with restricted numbers of repetitions, as indicated in 
414.3. 

It is easy to trace the influence of Part 2 of the Ars Conjectandi on the 
exposition of combinatorial analysis in modern textbooks on probability 
and mathematical statistics. 

Edwards (1 987) has discussed Bernoulli's combinatorial work in relation 
to previous results. 

15.5 BERNOULLI ON GAMES OF CHANCE 

In Parts 1 and 2 Bernoulli develops new tools for solving problems of games 
of chance and uses them in his analysis of the classical problems previously 
discussed by Pascal, Fermat, and Huygens. In Part 3 he solves a variety of 
problems of games of chance not previously analyzed in this way. He 
formulates and solves 24 problems related to popular games. Most of these 
problems are not particularly difficult for us and are not of much general 
interest, but they show the state of the art at the time. We shall limit our 
discussion to only 5 of the 24 problems in detail. Among the remaining 
problems we have used six of the most interesting as problems for the reader 
in Q 15.8. 

For the solution Bernoulli uses the addition and multiplication rules; 
enumeration of equally likely and favorable cases by combinatorial methods; 
calculation of expectations, making systematic use of conditional expecta- 
tions; and recursion. 
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Problems 14 and 15 

Problems 14 and 15 are two-stage dicing problems where the outcome at 
the first stage determines the game to be carried out at the second stage. A 
die is thrown, and the number of points obtained determines the number of 
dice to be used in the following game. Let the outcome of the first throw be 
x and the number of points obtained by throwing x dice be y,. The player 
gets nothing if y, -= 12; he gets half the stake if y ,  = 12; and he gets the whole 
stake if y, > 12. Find the player’s expectation. Let z be a random variable 
taking on the values O,$, and 1 corresponding to the three outcomes, so that 
Pr(z = 01x1 = Pr(y, < 12}, and so on. These probabilities are easily obtained 
from Bernoulli’s table of the number of chances of getting any number of 
points by throwing 1,2,, , . , 6  dice. For example, for x = 4 the number of 
chances for z = 0, $, and 1 are 310, 125, and 861, respectively, with the sum 
1296. Bernoulli thus finds that the conditional expectation is 

125 x $ + 861 x 1 1847 
1296 2592’ 

- -- 

Similarly, he finds the other five conditional expectations and finally the 
unconditional expectation by averaging over x, each x having the probability 
k, which gives E ( z )  = 15,295/31,104. Bernoulli, like Huygens, uses the formula 
E ( z )  = E E ( z J x )  as a matter of course. 

By the same method Bernoulli finds the expected number of points 
E ( y )  = 12;. He notes that it is difficult to explain why the player’s expectation 
is less than in view of the fact that the average number of points is larger 
than the critical value 12. We shall leave the explanation to the reader. 

Using the same method he solves two more problems of the same kind. 
In the first he uses the condition x + y,- , < 12 and in the second the condition 
y, < x2. 

Problem 16 

Cinq et neufis a dice game which may involve several throws depending on 
the outcome of the previous throws. Player A throws two dice; B wins if 5 
or 9 points are thrown; A wins if he throws 3 or 1 1  points or a doublet; for 
the remaining outcomes, A continues to play until either B wins by getting 
5 or 9 points, or A wins by getting the same number of points as made him 
continue. 

Considering the first throw, it is easy to see that B wins in 8 cases, A wins 
in 10 cases, and A continues to play in 18 cases of a total of 36 equally likely 
cases. 
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To find A’s expectation Bernoulli uses a conditional argument combined 
with the following lemma: Let A’s expectation at the beginning of a game 
be e, say. Suppose that there are three prizes a,b,  and e and that the 
corresponding number of chances are p ,  q, and r. Then, e = (pa + q b ) / ( p  + 4). 
The proof is straightforward. 

Bernoulli analyzes the continuation cases as follows. Suppose that A gets 
4 points in his first throw without getting the doublet (2,2). The play then 
continues until A throws either 5 or 9 points, which has probability 8/36, or 
A throws 4 points, which has probability 3/36. For all other outcomes A is 
back in the same situation as he was before his last throw. It follows from 
the lemma that A’s expectation equals (3 x 1 + 8 x 0)/11 = 3/11. In this way 
Bernoulli finds the following results: 

No. of points in first throw 4 6 7 8 1 0  
Probability of continuation 2/36 4/36 6/36 4/36 2/36 
Conditional expectation 3/11 5/13 317 5/13 3/11 

Bernoulli finally calculates A’s expectation as 

[ l o x  1 ~ 8 ~ 0 + 4 ~ 3 / 1 1 + 8 ~ 5 / 1 3 + 6 ~ 3 / 7 ] / 3 6 = 4 1 8 9 / 9 0 0 9 .  

Montmort (1708, pp. 109-1 13; 1713, pp. 173-177)discusses a slightly more 
general version of this game (Quinquenoue) and uses essentially the same 
method for its solution. 

Problem 19 

Problem 19 concerns the banker’s expectation in a series of m games in which 
the banker wins each game with probability p, p + q = 1, and p - q = r > 0, 
and the banker’s probability of continuing as banker in the next game is 
h, h + k = 1, and h - k = t > 0. The winner of each game gets the amount a 
from the loser. In the first game the banker’s expectation is pa + q( -a)  = ra. 
Hence in any game in which a player is banker, his expectation is ra, and if 
he is not the banker his expectation is (-ra). For the first two games the 
expectation of the player who was banker in the first game is 
ra i- h(ra) + k( -ra) = ra(1 + t ) .  Continuing in this way Bernoulli finds that 
the banker’s expectation is 

ra(l - t”) - - ra(1 - 2”)  
ra(1 + r + t 2  + ... + t m - 1 )  = 

l - t  2k 
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As a warning to the reader against erroneous reasoning, Bernoulli also 
gives the three wrong answers that he had considered before finding the 
correct one above. 

Problem 20 

Problem 20 is about the banker’s expectation in a card game named Bock. 
At the beginning of a game each player puts down his stake, and the banker 
then deals a card to each of the n - 1 players and to himself from a pack of 
N = sf cards consisting of s suits each having f face values marked from 1 
to f. If the face value of the banker’s card is larger than or equal to the 
punter’s (the banker’s adversary), the banker wins the stake; otherwise, he 
has to pay the same amount as the punter’s stake. The banker continues as 
banker until it happens that he loses to all the punters in a game. 

Bernoulli first finds the banker’s probability of winning over any punter. 
The banker wins if the two face values are equal or if he has a face value 
larger than the punter’s. Since the total number of cases equals (’l) and the 
number of cases with two equal face values equals (i)f, the difference of 
these numbers gives the number of cases with different face values, and half 
of that is the number of cases favorable to the banker. The number of 
favorable cases is thus equal to 

1 
(;)f + &f - 1) = 4 -sf (sf + s - 2). 

Dividing by the total number of cases, the banker’s probability of winning 
becomes +(sf + s - 2)/(sf - 1). 

The banker’s probability of continuing as banker depends on the number 
of players. For n = 2 it is equal to the probability of winning as found above. 
For n = 3 Bernoulli gives a detailed derivation, whereas for n = 4 he only 
indicates the proof and leaves the details to the reader. We shall give 
Bernoulli’s proof for n = 3 and s = 4 and like Bernoulli leave the general 
proof to the “industrious reader,” see Problem 5 in #15.8. 

The total number of cases, which equals (*{), is divided into three classes: 
first, the cases where the three cards have the same face value, which amounts 
to (:)f=4f cases; second, the cases where two cards have the same face 
value and the third a different value, which amounts to (:)f(4f - 4) = 24f2 - 
24f; third, the cases where the three cards have different face values, which 
amounts to the difference between the total number of cases and the two 
numbers just found and thus becomes ( 3 2 f 3  - 96f2 + 64 f ) / 3 .  

The next step is to find the probability that the banker continues as banker 
given that the outcome is a member of any of the three classes. In the first 
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class the banker always continues. Subdividing the second class into two 
according to whether the third card has a face value larger or smaller than 
the two having the same face value, Bernoulli notes that the banker always 
continues if the outcome is a member of the first subclass, whereas he only 
has probability 4 for continuing in the second subclass. In the third class the 
banker also continues with probability $ because four of the six permutations 
of the three different face values are favorable to the banker. Weighting the 
number of cases found above with these probabilities and dividing by the 
total number of cases, Bernoulli finds that the banker’s probability of 
continuation is (16f2-3f-4)/ (24f2 - 18s + 3). 

For once, the principle of Bernoulli’s proof is not completely clear because 
he gives the results as polynomials in f without stating the intermediate 
results in terms of binomial coefficients and number of permutations. It is 
therefore not completely trivial for the reader to derive the general result 
indicated in Problem 5, 8 15.8. 

After finding the two basic probabilities, Bernoulli considers a series of 
games and use the result from Problem 19 to find the banker’s expectation. 

Problem 21 

In Problem 21 Bernoulli discusses the banker’s advantage in the card game 
Bassette. We shall give a somewhat formalized description of the rules of 
the game. Consider a pack of 2n cards of which k are marked a and 2n - k 
marked 6, for example, for 2n = 52 and k = 4. Drawing two cards successively 
without replacement, the four possible outcomes are ab, ba, aa, and 66. In 
the first case the banker wins one from the punter; in the second cases he 
loses one, in the third case he wins one; and in the fourth case the play goes 
on with the banker drawing another pair of cards from the stock. This is 
the main rule; like Bernoulli, we shall discuss some modifications later. 

To find the banker’s expectation, Bernoulli states that we may disregard 
the outcomes ab with a gain of 1 and ba with a loss of 1 because they have 
the same probability of occurrence. He therefore considers only the number 
of chances for aa in a series of n drawings. 

For k = 1, a doublet is impossible, so that the number of chances for aa 
is zero. 

For k > 1 ,  the total number of permutations of the 2n letters is (v). The 
banker wins if the first drawing of two cards gives aa or if the second drawing 
gives aa and, so on. The corresponding numbers of permutations are 

2n-2 2n - 4 
( k - 2 ) ’  ( k - , ) ’ . ’ ‘ .  . 
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Hence Bernoulli finds that the banker’s expectation is 

(:I:)/( ;), k = 2,3  ,..., 2n. 
i =  1 

Bernoulli does not give the general formula but derives the results for k = 2 , 3 ,  
and 4 by reasoning as above. He also finds that the sums of the binomial 
coeficients are polynomials in n, see Problem 6, 415.8. 

To make the banker’s expectation positive for k = 1 as well, the main rule 
is amended so that the banker loses nothing if a occurs as the last card. 
Hence, of the 2n permutations, n -  1 pairs give no contribution to the 
expectation; one permutation gives a gain of 1; and one gives zero, so that 
the banker’s expectation becomes 1/2n. 

The second modification consists of a reduction in the banker’s gain from 
1 to 5 when u occurs as the first card at the beginning of the game. The 
reduction in the banker’s expectation thus amounts to 4 times 

which is the number of permutations with a in the first place. 

e,  = 1/3n and 
Denoting the banker’s expectation by ek, the result may be written as 

Bernoulli gives the results as 

He also derives the expectation corresponding to further modification of the 
rules; however, we shall ignore this because it does not involve any new 
probabilistic arguments. 

Bernoulli refers to the paper by Sauveur in Journal des Spmzns,  1679, 
containing the same results without proof. 

The banker’s expectation has also been analyzed by Montmort (1708, 
pp. 65--74; 1713, pp. 144-156), who derives the general formula both by 
combinatorics and by recursion, and by de Moivre (1718, pp. 32-39). 
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15.6 BERNOULLI’S LETTER ON THE GAME OF TENNIS 

In his Letter to  a Friend on the Game of Tennis, Bernoulli begins with a 
summary of his considerations in the Ars Conjectandi on the difference 
between games of chance and games that depend on the skill of the players, 
on the corresponding determination of probabilities a priori and a posteriori, 
and on the law of large numbers, which justifies the use of the relative 
frequency of winning as a measure of the probability of winning. Apart from 
this short introduction, the letter is really an exercise in probability theory 
and could well have been included in Part 3 of the Ars Conjectandi. 

Bernoulli writes that he will not explain the rules of the game because 
they are well known. The game is more complicated than tennis but with 
the same scoring rules; a detailed description of the game has been given by 
Haussner (1899). We shall disregard the rules related to a modification named 
“chase.” 

Bernoulli analyzes many problems of tennis. There are, however, no new 
methods used in his analysis; he keeps strictly to the methods used by 
Huygens, solving most of the problems by recursion between expectations. 
The letter is an imposing work, demonstrating Bernoulli‘s pedagogical 
qualities, his ability to systematize, and his thoroughness. We shall confine 
ourselves to a discussion of the main points, leaving out most of the details. 
It seems that Bernoulli’s results have been overlooked by modern writers on 
the game. 

For convenience we shall award a player one point for each play that he 
wins rather than using Bernoulli’s scoring system (0,15,30,45, game). Player 
A’s probability of winning a point will be denoted by p and player B s  
probability by q,p  + q = 1. We shall denote the state of a game by the number 
of points, (i, j), say, won by the two players. The game is won by the player 
who scores four points before the other player scores more than two points; 
furthermore, if the game reaches the state (3,3), the player who first wins 
two points more than his opponent wins the game. 

Using modern terminology, the play may be described as a random walk 
in two dimensions with absorbing barriers, see Fig. 15.6.1. The random walk 
starts at (0,O) and moves one step to the right, with probability p if player A 
wins, and one step up, with probability q if player B wins. In Fig. 15.6.1 we 
have cut off the continuation region at the score (7,7). 

Let g(i, j )  denote A’s probability of winning the game, given that the game 
is in state (i, j). Since A wins the next points with probability p and loses 
with probability q, we have 
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0 1 2 3 4 5 6 7 
Number of points for A 

Fig. 15.6.1. A random-walk diagram for a game of tennis limited to seven plays. 

This is the fundamental formula which Bernoulli derives and uses to tabulate 
g(i, j ) ,  with the modification that he uses n = p/q as parameter. 

Beginning with the state (3,3) and using the recursion two times, Bernoulli 
finds 

Since g(5,3) = 1, g(3,5) = 0, and g(4,4) = g(3,3), he gets 

P2 n2 
g(3,3) = -- = - 

p + q  n 2 + 1 ‘  

Using (1) again, he obtains 

and continuing in this manner, he finds g(i, j) for i < 3 and j < 3 and thus 
solves the problem completely. He tabulates g(i,j) as the ratio of two 
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polynomials of the same degree in n = p / q ,  as shown in the following example: 

n7 + 5n6 + 1 ln5 + 15n4 
n7 + 5n6 + 1 l n 5  + 15n4 + 15n3 + 1 In2 + 5 n T ’  

g(0, 0) = - (3) 

By means of these formulae, Bernoulli calculates all the values of g ( i , j )  for 
PI4 = 192,394. 

We note that (1) leads to 

( P 2  + q2)s( i , j )  = P 4 - Y 4 - j ( P , 4 ) r  (4) 

where f denotes a homogeneous polynomial in (p, q )  of degree 4 - j. For 
example, 

( p 2  + q2)g(0,0) = p4(p4 + 6p3q + 16p2q2 + 26pq3 + 15q4), ( 5 )  

in agreement with (3). We further note that (4) may be reduced to a simpler 
form by introducing x = 4 - i, y = 4 -j, and d(x ,  y) = ( p 2  + q 2 ) g ( i , j ) .  We shall 
leave that to the reader. 

Bernoulli uses his results to determine the size of handicaps to get a fair 
game. He first asks the question; How many points should be accorded the 
weaker player for the game to be fair? Suppose that p/q = 2. Then, Bernoulli’s 
table shows that g(O,2) = 208/405 = 0.514, so that a handicap of two points 
to B will nearly equalize their chances of winning. Considering the same 
problem for p / q  = 3, Bernoulli notes that g ( O , 2 )  = 891/1280 = 0.696 and 
g(O,3) = 243/397 = 0.612, so that handicaps of two and three are not enough 
to equalize the chances. He then finds that g( 1,3) = 81/160 = 0.506, which 
means that a game starting with one point for A and three points for B will 
be almost fair. 

He next solves the inverse problem: If B has been given a handicap of j 
points to make the game fair, what does that mean for the relative strength 
of the players? Obviously one has to solve the equation g(0,j) = $ with respect 
to n = p / q  for a given value of j. This leads to an algebraic equation in n. 
F o r j  = 2, say, corresponding to the first example above, Bernoulli solves an 
equation of the sixth degree and finds n = 1.946. 

Bernoulli also discusses the probability of winning a set of games. He 
states that because of notational difficulties he will only illustrate this problem 
by examples. As usual, however, his procedure is very clear and easy to 
translate to modern notation. Let s(u, u )  denote A’s probability of winning 
the set when A and B have already won u and u games, respectively. Bernoulli’s 
procedure corresponds to the recursion formula 

(6) s(u, u)  = g(O,O)s(u + 1 , u )  + [ 1 - g(O,O)]s(u, u + l), 



244 JAMES BERNOULLI AND ARS CONJECTANDI, 1713 

which is analogous to (1) with g(0,O) substituted for p. Bernoulli’s dificulties 
stem from the fact that he does not have a notation for the probabilities 
which we have denoted by g ( i ,  j )  and s(u, 0). 

Generalizing (6) to the case where the number of points is (i, j )  in game 
(u,  u), Bernoulli uses the formula 

to find A’s probability of winning the set. Bernoulli uses these formulae to 
discuss the problem of handicaps. We shall report only one of his examples. 

Suppose that B has a handicap of “half-45,” which in our notation means 
that in alternate games he has a handicap of two and three points, respectively. 
The problem is to find the value of n = p / 4  for which A’s probability of 
winning equals $. Considering two games in succession, A’s probability of 
winning the first and the second, respectively, equals g ( O , 2 )  = a/(a + b) and 
g ( O , 3 )  = c/(c + d), the ratios being Bernoulli‘s notation. His reasoning may 

(2,O) A wins 

\ d 

Continue 

Fig. 15.6.2. The possible states of two games of tennis, with the number of chances 
of winning and losing. 
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be illustrated by means of Fig. 15.6.2, where the states refer to the number 
of games. 

Let A’s probability of winning in the state (0,O) and therefore also in the 
state (1 , l )  be denoted by z.  By recursion Bernoulli finds that 

- a [ ( c  + dz) / (c  + d ) ]  + b[cz/(c  + d ) ]  
a + b  - z ,  

which leads to z = a c / ( a c + b d ) .  It will be seen that the method used by 
Bernoulli is the same that Huygens used in solving his fifth problem, see 
g6.3, Fig. 6.3.1. Setting z = i, Bernoulli finds that a/b = d/c so that 

an equation of the 11 th degree in n, which according to Bernoulli has the 
root n = 2.7. This root lies between the two roots n = 1.9 and n=4.2,  
corresponding to handicaps of two and three, respectively. 

Bernoulli also extends his model by taking into account the fact that the 
player who serves has a greater probability of winning a point than when 
he is not serving. Further, he discusses a game with three and four players. 

15.7 
HIS PROGRAM FOR APPLIED PROBABILITY 

BERNOULLI’S CONCEPT OF PROBABILITY AND 

After having discussed games of chance in the first three parts of Ars 
Conjectandi, Bernoulli turns to a discussion and extension of the probability 
concept and its applications in Part 4. To understand the following account 
of Bernoulli’s work, we shall comment on the various concepts of probability. 

As noted in Chapter 3 there are two types of probability: objective and 
subjective. Objective probabilities are used for describing properties of chance 
setups and chance events. We attempt to measure objective probabilities by 
calculating relative frequencies from experiments or observations, and for 
this reason objective probabilities are also sometimes called frequentist or 
statistical probabilities. Subjective probabilities are used for measuring the 
degree of belief in a statement or a proposition about things or events; they 
thus refer to our imperfect knowledge or our judgment and not directly to 
the things or events about which the statements are made. We attempt to 
measure subjective probability (at least since the 1920s) by finding the odds 
or the betting ratio at which the person in question is willing to bet on the 
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truth of the statement. It is, of course, confusing that the same word is used 
for two concepts so fundamentally different. 

In philosophical literature the two types of probability are also called 
aleatory and epistemic, respectively. 

The two main types of probability have been subdivided into several 
classes, according to the field of application considered and various 
philosophical opinions of induction, For more than a century there have 
been heated discussions among statisticians, probabilists, and philosophers 
about the correct definition of probability. 

It is important to note the distinction between probability and chance 
which was used in the 17th century and before. Probability was related to 
opinions, propositions, and beliefs, like subjective probability, whereas chance 
was used to mean objective probability. The distinction between objective 
and subjective probability was formulated clearly by Cournot (1843, 
pp. V-VII and 437-440) who also tried to revive the old usage, as is evident 
from the title of his book, An Exposition of the Theory 01 Chances and 
Probabilities. Poisson (1837, p. 3 1 )  also distinguished between chance and 
probability. 

From a mathematical point of view, however, i t  is not necessary or even 
desirable to define probability explicitly. According to the usual axiomatic 
procedure, probability is an undefined notion, a real number between 0 and 
1 satisfying certain rules of operation from which the calculus of probability 
is developed by deduction. From this point of view any interpretation of 
probability is admissible if only the axioms are satisfied. I t  is therefore the 
duty of the applied probabilist or the statistician to demonstrate that the 
objects under study obey the rules derived from the axioms. Since the number 
of chances by definition is additive and the corresponding probability is a 
proper fraction, and since objective probability is an idealized relative 
frequency, the axioms have been chosen, implicitly in the beginning and 
explicitly later on, such that probabilities satisfy the same basic rules of 
operation as relative frequencies. From the beginning the basic concepts have 
been additivity and independence. 

I t  is characteristic of games of chance that they may be resolved into a 
finite number of possible outcomes which are mutually exclusive and equally 
likely (probable) so that the probability of success may be found as the ratio 
of the number of favorable cases to the total number of cases. Of course, 
such calculation of the probability presumes an idealized chance mechanism 
that can only be approximated by the coins, dice, cards, urns, lotteries, 
roulettes, etc., actually used. From Cardano to Bernoulli this assumption 
has been expressed by phrases, such as equal conditions, honest dice, pure 
chance, equal ease of occurrence, and symmetry. 

After Graunt in 1662 had demonstrated the stability of statistical ratios 
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for some demographic phenomena and constructed his life table, the calculus 
of chances was extended to cover mortality problems, seemingly without any 
hesitation or qualification. Huygens and his contemporaries called the 
distribution of deaths according to age the chances of death, even if such 
chances could not be found a priori but had to be calculated from the 
observed death rates. 

We owe to Bernoulli the important distinction between probabilities which 
can be calculated a priori (deductively, from considerations of symmetry) 
and those which can be calculated only a posteriori (inductively, from relative 
frequencies). (This characterization has nothing to d o  with a priori and a 
posteriori distributions used in modern Bayesian terminology.) 

In the first chapter of Part 4 Bernoulli defines the concepts of contingency 
and probability. According to Hacking (197 l), similar ideas had previously 
been expressed by Leibniz; however, Bernoulli gave the first systematic 
exposition of these fundamental concepts, and his formulations and 
viewpoints have been influential ever since, as we shall indicate below. 

In his discussion it is the theologian and philosopher more than the 
mathematician who speaks. Like most of his contemporaries, Bernoulli 
considered the world to be deterministic. The omnipotent and omniscient 
God leaves nothing to chance; every event is determined by Him, normally 
by causal laws. Bernoulli therefore states that every event is objectively 
certain. He then turns to subjective certainty, which is certainty in relation 
to us and thus a measure of our knowledge. Bernoulli defines probability as 
follows: 

probability is a degree of certainty and differs from absolute certainty as a part 
differs from the whole. If, for example, the whole and absolute certainty-which 
we designate by the letter a or by unity-is supposed to consist of five probabilities 
or parts, three of which stand for the existence or future existence of some event, 
the remaining two against its existence, this event is said to have ( 3 1 5 ) ~  or 3/5 
certainty (p. 21 1). 

For this calculation Bernoulli presumably has Huygens’ definition of 
expectation is mind: There are three cases for a and two cases for zero, so 
that the expectation becomes $a. 

Likewise, what is considered contingent depends on our knowledge. 
Bernoulli illustrates this by means of three examples: (1) predicting the 
outcome of throwing a die, (2) forecasting tomorrow’s weather, and 
(3) predicting a planetary eclipse. He stresses that if we could measure the 
initial conditions accurately and if we knew the physical laws governing the 
motions involved, then we would be able to predict the happenings in 
the first two examples just as accurately as in the third. He writes, 
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experience has maintained that eclipses alone are calculated be necessity, but that 
the fall of a die and the future occurrence of a storm are calculated by contingencies. 
There is no reason for this fact other than that those data which are supposed to  
determine later events (and especially such data which are in nature) have 
nevertheless not been learned well enough by us. If they had been learned well 
enough by us, the studies of geometry and physics have not been well enough 
refined so that these effects can be calculated from data in the same way that 
eclipses can be computed and predicted from the principles of astronomy. Therefore 
just as much as the fall of a die and the occurrence of a storm, these very 
eclipses-before astronomy had advanced to such a degree of perfection-needed 
to be referred among future contingencies. Hence, i t  follows that what can seem 
to be to one person at  one time a contingent event may be at another time to  
another person (indeed, to the very same person) a necessary event after its causes 
have been learned (pp. 21 2-2 13). 

Laplace ( I  8 14, p. ii) held opinions similar to Bernoulli’s on determinism 
and contingency with the modification that he replaced God by “an 
intelligence which could comprehend all the forces of nature.” 

In the philosophical literature of today one also finds formulations which 
can be traced to Bernoulli. Popper (1959, p. 205) writes, 

One sometimes hears it  said that the movements of the planets obey strict laws, 
whilst the fall of a die is fortuitous, or subject to  chance. In my view the difference 
lies in the fact that we have so far been able to predict the movements of the 
planets successfully, but not the individual results of throwing dice. In order to 
deduce predictions one needs laws and initial conditions; if no suitable laws are 
available or if the initial conditions cannot be ascertained, the scientific way of 
prediction breaks down. 

Bernoulli also introduces the important concept of moral certainty. He 
writes. 

That is morally certain whose probability nearly equals the whole certainty, so 
that a morally certain event cannot be perceived not to happen; on the other 
hand, that is m o r d y  impossihle which has nearly as much probability as renders 
the certainty of failure moral certainty. Thus if  one thing is considered morally 
certain which has 999/1000 certainty, another thing will be morally impossible 
which has only 1/1000 certainty (pp. 21 1-212). 

Because it is still rarely possible to  obtain total certainty, necessity and use desire 
that what is merely morally certain be regarded as absolutely certain. Hence, it 
would be useful if, by the authority of the magistracy, limits were set up and 
fixed concerning moral certainty. I mean, if i t  were fixed whether 99/100 certainty 
would suffice for producing moral certainty, or whether 999/1000 certainty would 
be required. Note that then a judge could not be biased, but he would have a 
guideline which he would continually observe in passing judgment (p. 21 7). 



15.7 BERNOULLI’S CONCEPT OF PROBABILITY 249 

Today we use practically certain rather than morally certain. Most 
textbooks on statistics contain such considerations as given by Cramtr (1946, 
p. 149): “If E is an event of this type [i.e., having a small probability] and if 
the experiment d is performed one single time, i t  can thus be considered as 
practically certain that E will not occur”. 

R. A. Fisher (1925), the statistical magistrate of our time, has made 
Bernoulli’s 99 and 99.9% probability limits, supplemented by the 95% limits, 
popular among applied statisticians in testing and estimation problems. 

The art of conjecture, Bernoulli says, is the art of measuring as exactly 
as possible the probabilities of things. Furthermore, probability is a degree 
of certainty and as such a measure of our imperfect knowledge; probability 
is personal in the sense that it varies from person to person according to his 
knowledge, and for the same person it  may vary with time as his knowledge 
changes. We shall discuss Bernoulli’s attempt to measure this elusive quantity. 

According to Bernoulli, probability theory is applicable to all fields of the 
empirical sciences-physical, moral, and political-and to everyday life as 
well. All empirical knowledge is probable knowledge only. Examples of fields 
where certainty reigns are the Scriptures, logic, and mathematics. 

Bernoulli’s discussion of the measurement question is closely related t o  
his distinction between a priori and a posteriori probabilities. 

With respect to games of chance, Bernoulli states that experience has 
taught the inventors of such devices how to obtain physical symmetries in 
their constructions, and we may therefore calculate the probability of a 
specified outcome as the number of favorable cases divided by the total 
number of cases, since these are equally likely. 

In most other situations, however, it is impossible to apply this procedure 
because we are not able to find the number of equally likely cases. As examples 
Bernoulli lists the probability of dying at  a certain age, of contracting a 
certain disease, of changes in the weather, and of winning a game that depends 
on the intelligence or physical abilities of the players. The outcome of such 
events depends on causes that are completely hidden from us, and the many 
possible interactions of these causes will always deceive us. 

But indeed, another way is open to  us here by which we may obtain what is 
sought; ahd what you cannot deduce a priori, you can at least deduce a posteriori- 
i.e. you will be able to  make a deduction from the many observed outcomes of 
similar events. For it may be presumed that every single thing is able to happen 
and not to  happen in as many cases as it was previously observed to have happened 
or not to  have happened in like circumstances (p. 224). 

Bernoulli adds 

that this empirical way of determining the number of cases by trials is neither 
new nor unusual, for the celebrated author of the Ars Cogitandi [Arnauld’s Logic, 
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16621 a man of great insight and intelligence, prescribes a similar method in 
Chapter 12 & fl. of the last part of his work; and everyone constantly observes 
the same thing in daily life (p. 225). 

Bernoulli obviously considered the Ars Conjectandi (The Art of Conjecturing) 
an extension of the Ars Cogitandi (The Art of Thinking), the most popular 
textbook on logic at  his times. Bernoulli stresses that everyone uses the a 
posteriori method for estimating probabilities in daily life. In view of the fact 
that Graunt had published his Observations with its abundance of examples 
in the same year as Arnauld’s Logic, it is surprising that Bernoulli refers only 
to Logic, which contains only some naive reflections of a general nature 
about a posteriori probabilities without empirical examples of relative 
frequencies. 

How are we to determine the probability in the vast number of situations 
which do  not fall under the two categories mentioned above, for example, 
in situations in which no repetition is possible? 

Bernoulli states that “probabilities are estimated by the number and the 
weight of arguments” (p. 214) and that arguments are either intrinsic, 
depending on the thing or event itself, or extrinsic, depending on the authority 
and testimony of men. 

He then lists nine “general rules dictated by common sense”: 

1. One must not use conjecture in cases where complete certainty is 

2. One must search for all possible arguments or evidence concerning the 

3. One must take into account both arguments for and against the case. 
4. For a judgment about general events, general arguments are sufficient; 

for individual events, however, special and individual arguments have 
to be taken into account. 

5. In case of uncertainty, action should be suspended until more 
information is at hand; however, if circumstances permit no delay, the 
action that is most suitable, safe, wise, and probable should be chosen. 

6. That which can be useful on some occasion and harmful on no occasion 
is to be preferred to that which is useful and harmful on no occasion. 

7. The value of human actions must not be judged by their outcome. 
8. In our judgments we must be wary of attributing more weight to a 

thing than its due and of considering something that is more probable 
than another to be absolutely certain. 

9. This is the rule, already discussed, that states that moral certainty 
should in practice be considered absolute certainty. 

obtainable. 

case. 
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The nine rules are illustrated by examples. According to rule 1, an 
astronomer should not guess about eclipses when he can predict an eclipse 
with certainty by calculation. Rule 2 states that we must take into account 
all available information and the specific circumstances causing the event in 
question. Rule 4 is illustrated by the distinction between an age-specific death 
rate and the probability of dying for a specific person of that age, taking all 
information about his health into account. 

It is easy to agree with Bernoulli that these rules are reasonable, but it is 
difficult to see how they can be of much use in finding the numerical values 
of probabilities. 

Bernoulli goes on to discuss the classification of arguments and the 
determination of the probability corresponding to a combination of 
arguments. First, he distinguishes among three types of arguments: those 
that exist necessarily and indicate the thing contingently; those that exist 
contingently and indicate the thing necessarily; and those that both exist 
and indicate the thing contingently. He gives some examples, but it  is 
nevertheless difficult to understand his meaning. Shafer (1978) suggests the 
following explanation: 

If we think of an argument as consisting of premises and conclusion, then we 
surely come close to Bernoulli’s meaning if we say that the argument exists 
contingently when the premises do not necessarily hold, and that the argument 
proves contingently when the premises do not necessarily entail the conclusion. 

Another classification introduced by Bernoulli is between pure and rnixed 
arguments. A pure argument proves a thing with a certain’probability without 
giving a positive probability to the opposite thing, whereas a mixed argument 
proves a thing with a certain probability and proves the opposite with the 
complementary probability. Considering several arguments for proving the 
same thing, Bernoulli lists for each argument the total number of cases, the 
number of cases proving the thing, and the number of cases not proving (pure 
argument) or proving the opposite (mixed argument). He then derives the 
power of the proof of all the arguments combined by means of Huygens’ 
formula for expectations. If all the arguments are mixed, this procedure gives 
the usual result for the probability of a combination of independent events, 
whereas special results are obtained if some or all of the arguments are pure 
because the probabilities of such an argument and its opposite do not add 
to unity. Bernoulli’s discussion does not seem to have influenced 
contemporary probabilists. This section is rather difficult to understand and 
has only recently been analyzed in detail by Shafer (1978). 

Bernoulli does not, however, give a single example which convincingly 
demonstrates how to determine a subjective probability numerically. All his 
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examples are artificial and constructed in analogy with the classical definition; 
he speaks of probabilities instead of the number of chances. This is apparent 
in connection with his definition of probability: there are three cases for the 
existence of an event and two cases against, hence the probability of its 
existence is f .  In another example, Bernoulli discusses a murder case and 
attempts to combine the arguments for Gracchus being the murderer. He 
writes, 

From what has been said previously, it is clear that the power which any arguments 
has depends on a multitude of cases in which it can exist or not exist, in which 
it can indicate or not indicate the thing, or even in which it can indicate the 
opposite of the thing. And so, the degree of certainty or the probability which 
this argument generates can be computed from these cases by the method discussed 
in the first part just as the fate of gamblers in games of chance are accustomed 
to be investigated.. . . Moreover, I assume that all cases are equally possible, or 
that they all can happen with equal ease; for in other cases discretion must be 
applied, and any case which occurs rather readily must be counted as many times 
as it occurs more readily as others (pp. 218-219). 

I t  is little wonder that Bernoulli was unable to  solve this problem which 
has occupied philosophers ever since; however, his indication of a solution, 
as quoted above, had wide-ranging consequences because in the hands of 
Laplace, it led to the principle of insuflcient reason, which asserts that equal 
probabilities must be assigned to  each of several alternatives if there is no 
known reason for preferring one to another. 

How did the contemporaries and immediate successors of Bernoulli react 
to his definition of probability? Montmort, de Moivre, and Struyck limited 
themselves to discussions of games of chance and mortality statistics so it 
was not necessary for them to introduce a new concept of probability. How- 
ever, in the prefaces to their books, both Montmort and de Moivre made 
some remarks on the concepts of probability, to which we shall return. 

Bernoulli envisioned the application of probability theory to  “civil, moral 
and economic affairs,” as expressed in the title of Part 4, but he never 
succeeded in carrying out this program. It has been suggested that he did 
not complete the manuscript and publish the book because he wanted to 
include some numerical examples. He wrote to Leibniz and asked him for 
examples from jurisprudence and to send him a copy of de Witt’s treatise, 
but Leibniz did not help him. It is strange that Leibniz did not refer him to 
the paper by Halley (1694) with its statistical analysis of the Breslau mortality 
data and its evaluation of annuities on lives; perhaps Leibniz took it for 
granted that Bernoulli knew of Halley’s paper. Bernoulli might also have 
gotten the data he needed from Graunt’s book or by writing to Caspar 
Neumann at Breslau or by looking for bills of mortality analogous to the 
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London bills in his native Basel, or if not in Basel then in Geneva. For 
incomprehensible reasons he did none of these obvious things, so he never 
succeeded in getting a set of observations to illustrate his theory. 

During 1 7 0 3 - 1 7 0 5 ,  Bernoulli corresponded with Leibniz about the 
estimation of probabilities a posteriori and about his main theorem. In a 
letter dated 3 October 1 7 0 3 ,  Bernoulli explains his results in words nearly 
identical to those used in Ars Conjectandi. In his reply of 3 December 1703, 
Leibniz is somewhat skeptical. He says that in some political and legal 
situations, “there is not as much need for fine calculation as there is for the 
accurate recapitulation of all the circumstances.” Presumably, he means that 
his experiences as a diplomat and jurist show that in such situations i t  is 
not possible to find cases where the same circumstances prevail; therefore, 
a posteriori estimation is impossible. Furthermore, in other situations, even 
if repetition is possible, there is the difficulty “that happenings which depend 
upon an infinite number of causes cannot be determined by a finite number 
of experiments.” Mortality, he says, depends on an innumerable number of 
causes, and furthermore new diseases continually crop up and change the 
rate of mortality. In his reply of 20 April 1704, Bernoulli claims that 
probability theory is important to legal affairs with regard to insurance, 
annuities on lives, marriage contracts, and so on. He again explains that his 
theorem gives him the means to determine an unknown probability with 
moral certainty and that in principle there is no difference between the 
determination of an unknown ratio of white and black balls in an urn and 
an unknown rate of mortality. That the number of causes of death is very 
large or even infinite, whereas the number of balls in the urn is finite, does 
not matter because the ratio of two infinite numbers may be finite. If new 
diseases occur, the mortality rate changes, and new observations are necessary 
to estimate the new rate. 

They did not quite understand each other. Leibniz’s skepticism seems to 
be based on the practical difficulties of getting a sufficiently long series of 
observations under the same essential conditions, whereas Bernoulli’s main 
occupation was to explain his important theoretical result. 

In a letter from April 1 7 0 5 ,  four months before Bernoulli died, Leibniz 
refers to Pascal’s Traitt; Bernoulli did not respond to this letter, neither did 
he mention Pascal’s Traitt in his book. 

Without mentioning Leibniz’s name, but under the guise of objections 
from “some learned men,” Bernounlli recounts the discussion in Ars 
Conjectandi, pp. 227-228. 

Most of the correspondence has been translated into English by Bing 
Sung (1966) as an appendix to his translation of Ars Conjectandi and into 
German by Kohli (1975c), who has also given a detailed commentary. 

The ideas of subjective probability and the applicability of the calculus 
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of probability to other fields than games of chance had previously been 
indicated by Locke (1690), Arbuthnott (1692), and Hooper (1700) as 
mentioned in Q 12.2. Bernoulli does not refer to these authors. Bernoulli’s 
discussion is much clearer and more comprehensive than the previous ones. 

In addition to the papers previously mentioned, we refer to Hacking (1971, 
1975), Schneider ( 1  972, 1984), and van der Waerden (1 975b, 1975~). 

15.8 
BERNOULLI’S LETTER O N  TENNIS 

PROBLEMS FROM ARS CONJECTANDI AND 

Problems from Ars Conjectandi, Part 3 

1. Six persons participate in a play consisting of five successive games. In 
the first game, A ,  play against A,; the winner plays against A, in the 
second game, and so on, until the winner of the fourth game plays against 
A, in the last game. After the first game, where the chances of winning 
are equal for A,  and A,, any player playing against his second opponent 
has odds 2: l  of winning, against his third opponent 4:1, and so on. 
Prove that the number of chances of winning for the six participants are 
7680: 7680:5440:4488:4250:4887 (Bernoulli’s Problem 4). 

Generalization. Let p i j ,  i c j, denote the probability that Ai defeats A, 
in a single game so that the probability that A j  defeats Ai is qi j  = 1 - p i j .  
Find the probabilities of winning for the six players. 

2. A pack of 20 cards contains 10 court cards. Three players draw at random 
seven, seven and six cards, respectively. The one who gets the largest 
number of court cards wins. If two of the players get the same number 
of court cards, which is larger than the number obtained by the third 
player, they divide the stake equally. Show that the number of chances 
of winning are 142,469: 142,469:84,574 (Bernoulli’s Problem 9). 

Generalization. Let the pack contain n cards that are distributed 
randomly among the three players with n, ,  n,, and n ,  cards, respectively. 
Let the number of court cards be m. The player who gets the largest 
number of court cards wins. If several players get the same and largest 
number of court cards, they divide the stake equally. Find the probability 
of winning for the three players. 

3. Throwing a die six times find the probability of getting (a) six different 
faces (Bernoulli’s Problem 11); (b) an ace in the first throw, a deuce in 
the second, and so on (Bernoulli’s Problem 12). 



15.8 PROBLEMS FROM ARS CONJECTANDI 255 

4. An urn contains 32 tickets, four marked 1, four marked 2, and so on, 
until four marked 8. Four tickets are drawn without replacement. Find 
the number of chances of getting the different possible sums between 4 
and 32 (Bernoulli's Problem 17). 

5. Generalization of Bernoulli's Problem 20. A random sample of n cards is 
selected from a pack of N = sf cards. The composition of the sample is 
given by 

where ni denotes the number of cards having the same face value and k 
the number of different face values. Further, let ak denote the number of 
permutations of ( n l , .  . . , nk). 

As pointed out by Haussner (1899), the basic identity to be used for 
solving Bernoulli's problem is 

where the summation is over all values of (n , ,  . . . , n k )  and k, satisfying 
the relations above. 

Let dk denote the number of permutations of ( n 2 ,  ..., n k )  for n ,  = 1, 
and let dk = 0 for n, > 1. Prove that the banker's expectation equals 

(see Haussner, 1899). 

6. Prove that 

( 2i 2 ') = -!(4n3 - 9n2 + 5 n )  
i =  1 

(part of Bernoulli's Problem 21). 

7. Suppose that A's probability of winning in a single trial is p and that he 
has to pay the amount 1 to B for each trial. If A wins he gets the amount 
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m from B, and if  he loses a given number of consecutive trials, n, say, he 
gets the amount n back from B. Prove that A's expectations is 

1-4" 
m ( 1 -  4") - ( - nq") 

(Bernoulli's Problem 22). 

Problems on the Game of Tennis 

8. Use the recursion formula (6.1) to find the polynomials &,(p,q) 
defined by (6.4). 

9. Write d(x, y) defined in 915.6 in the form 

derive a recursion formula for a,(x, y) and tabulate these functions. 

10. Prove directly that 

2 0 ~ 5 ~ 3  g(o,o) = p4(1 + 4q + ioq2) + ----. 
1 - 2Pq 

Show that this result is identical to (6.3) and (6.5). 

11. Let (u, u)  = (1,2); ( i , j )  = (1,3); and p/q = 2. Show that A's probability of 
winning the set equals 19,031,3 14,432/23,643,278,649 (see Bernoulli's 
Letter, p. 1 1 ) .  

12. Suppose that B's handicap is j points in each game, j = 1,2,3; however, 
A prefers to play with B without any handicap in each game and instead 
to give B a handicap expressed as a number of games, x - 1 ,  say, so that 
A wins the set if besides the x - 1 games, he wins two games in succession. 
Let P denote A's probability of winning a single game. Show that A's 
probability of winning the set equals 

px-lp2 
PZ+Q2'  P + Q = I ,  

and find the value of x, making this probability equal to $ for j = 3. 
Bernoulli finds x = 38 (see his Letter, pp. 23-26). 



CHAPTER 16 

Bernoulli’s Theorem 

Therefore, this is the problem which I have decided to publish 
here after 1 have pondered over it for twenty years. Both its 
novelty and its great utility, coupled with its just as great 
diflculty, exceed in weight and value all the other chapters of 
this doctrine. 

--JAMES BERNOULLI in Ars Conjectandi, 1713  

16.1 BERNOULLI’S FORMULATION OF THE PROBLEM 

In Bernoulli’s time i t  was recognized that the equally large (a priori) pro- 
babilities attributed to the outcomes of a game of chance constitute a 
mathematical model from which the probabilities of compound events 
resulting from the combination of several games can be calculated, essentially 
by combinatorial methods. When this calculus of chances was applied to 
other fields, for example, to vital statistics and insurance, relative frequencies 
were used as estimates of probabilities. As noted by Bernoulli, it is impossible 
in these applications to identify the number of equally likely cases. Therefore 
it  is necessary to establish a new justification for applying the calculus of 
chances outside the field of games of chance. 

Considering the relative frequency of an event, calculated from 
observations taken under the same circumstances, Bernoulli states as a 
fundamental empirical fact that “the more observations that are taken, the 
less the danger will be of deviating from the truth” (p.225). He adds that 
this is well known and that everyone knows that it is not enough to take 
one or two observations but that a large number must be taken to determine 
the probability of the event in this way. 

257 



258 BERNOULLI’S THEOREM 

Bernoulli continues: 

Something further must be contemplated here which perhaps no one has thought 
about till now. It certainly remains to be inquired whether after the number of 
observations have been increased, the probability is increased of attaining the true 
ratio between the number of cases in which some event can happen and in which 
it cannot happen, so that this probability finally exceeds any given degree of 
certainty; or whether the problem has, so to speak, its own asymptote-that is, 
whether some degree of certainty is given which one can never exceed (p. 225). 

However, lest these remarks be misunderstood, it must be noted that I d o  not 
wish for this ratio, which we undertake to  determine by trials, to be accepted as  
precise and accurate (for then the contrary would result from this, and it would 
be the more unlikely that the true ratio has been found the greater the number 
of observations made); but rather, the ratio is taken in some approximation, i.e. 
it is bounded by two limits. Moreover, these limits can be set up as close together 
as one wishes (p. 226). 

In other words, Bernoulli formulates the fundamental question, Does there 
exist a theoretical counterpart to the empirical fact mentioned above? If so, 
then we may safely apply the calculus of chances to the fields where stable 
relative frequencies exist. Hence, Bernoulli approaches the question on the 
relation between observations and models in statistics in much the same 
spirit as Newton approached the correspondence between astronomical 
observations and celestial mechanics. 

Let us first formulate Bernoulli’s theorem in modern terminology and 
notation so that it becomes easier to point out the restrictions imposed by 
Bernoulli. Consider n independent trials, each with probability p for the 
occurrence of a certain event, and let s, denote the number of successes. 
According to probability theory, s, is binomially distributed. The question 
is now, What does probability theory tell us about the mathematical object 
h, = s,/n, the relative frequency. Let E denote the event { Ih, - pI d E}. Then 
it can be proved that Pr { E }  > 1 - 6 for n > n ( p , ~ ,  d), where E and 6 are any 
given small positive numbers. This is also expressed by saying that h, 
converges in probability to p for n + oc). Of course, this property of h, is a 
purely algebraic property of the binomial distribution, namely, that the ratio 
of the body (defined by E) to the tail (defined as the complement to E) of 
the distribution tends to infinity. Hence, the theorem is valid for any 
interpretation of the probabilities involved provided that the probability 
concept in question satisfies the axioms leading to the binomial distribution. 

In the proof Bernoulli considers a trial with t = r + s  equally likely 
outcomes of which r are favorable so that p = r / ( r  + s). He proves that h, 
converges in probability to p or, in his terminology, that we can be morally 
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certain that h, does not deviate greatly from p if n is sufficiently large. He 
also states that h, is an estimate of p that is just as good as the a priori value 
if n is infinitely large. Without further discussion he proposes to use the 
relative frequency of an event as an estimator of p in other fields of 
application as well, even if this a posteriori calculation of p has been justified 
only for trials with a finite number of equally likely outcomes. 

According to the Meditationes, Bernoulli proved his theorem between 
1688 and 1690. He began with a numerical example for p = 3, continued with 
a general proof for p =+, and finally developed the proof for p = r / ( r  + s) 
essentially in the form given in the Ars Conjectandi (pp. 228-238); for details 
of the early proofs we refer to van der Waerden (1975b). 

Bernoulli’s own formulation of the theorem is as follows: “It  must be 
shown that so many observations can be made that i t  will be c times more 
probable than not that the ratio of the number of favourable observations 
to the total number of observations will be neither larger than (r + l)/t nor 
smaller than (r - I)/t(p. 236).” Note that the inequality 

may be written Ih, - pI < l/t. Bernoulli’s I/t corresponds to E and I/(c + 1) 
to 6. 

Comparing Bernoulli’s formulation of the theorem with his previous 
statement (quoted above) that the ratio is bounded by two limits which can 
be set up as close together as one wishes, i t  must have been natural for him 
to chose the limits as close together as possible, that is, (r - l)/t and (r + l)/t, 
since r and t are integers. If he could prove his theorem for these limits, then 
obviously a similar and stronger result would hold for a set of wider limits; 
i t  is also obvious how to modify his proof to cover the case with limits equal 
to ( r  & a)/t ,  a = 1,2,. . . . Stigler (1986, p. 67) correctly points out that 
“Bernoulli’s E was not an arbitrary positive number; it was always taken as 
l/(r + s),” but then he goes on to the dubious conclusion that “His estimation 
was essentially an attempt to identify adiscrete r and s with ‘moral certainty’.’’ 

16.2 BERNOULLI’S THEOREM, 1713 

Bernoulli’s Theorem. Let r and s be two positive integers and set p =  
r/(r + s) and t = r + s. For any positive real number c,  we have 
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for n = kt  sufficiently large, i.e., for k 2 k ( r , s , c )  v k(s , r , c ) ,  where k ( r , s , c )  is 
the smallest positive integer satisfying 

m ( r + s +  1 ) - s  
k( r ,  s, t )  >, -__--, 

r + l  

and m is the smallest positive integer satisfying 

Remarks. For given p we may chose t as large as we like so that the 
interval for h, becomes arbitrarily small. Apart from rounding to integers, k 
and thus n are linear functions of Inc, which means that the left-hand side 
of (1 )  tends to 1 when c, and thus n, tends to infinity. 

Bernoulli’s proof is rather lengthy because he does not use indices to 
indicate the successive terms of a series; he also writes the binomial coeflicients 
as ratios of two products, and he evaluates the tail probabilities both for the 
left and the right tail, even when one follows from the other. We shall follow 
Bernoulli’s proof closely but take advantage of modern notation. 

Proof.  Bernoulli chooses n as a multiple of t ,  n = kt ,  k = 1,2,  ..., which 
makes the proof very neat. The expansion of ( p + q ) ”  contains 
n + 1 = kr + k s  + 1 terms. The expected number of successes n p  = kr is 
the “central term”; to the left, there are kr terms and to the right, ks terms. 

Setting h, = s,/n, we have to find n such that 

or, equivalently, such that Pk/( 1 - pk) > c. 

shall set 
Since (p + 4)” = ( r  + s)”t-“, we need only consider the terms of ( r  + s)”. We 

say, where 

fi=( k r +  ks ) r k r + i  s k s - i  , i = - k r , - k r + l ,  ..., ks.  
kr + i 
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Sincef-, for i = 0, 1, . . . , kr is obtained fromfi for i = 0, 1, . . . , ks by interchange 
of r and s, results proved for f, also hold for f - i ,  and we shall therefore only 
give the proof for the right tail. 

To prove that pk, the central term of the series plus k terms to each side, 
is larger than c times 1 - P k ,  the sum of the k(r - 1) terms of the left tail and 
the k(s - 1) terms of the right tail, it is sufficient to prove that 

k k s  

1 k + l  
c f i  2 c c f i ,  (4) 

for k 3 k(r,  s, c). 
Bernoulli first investigates the ratio 

> 1, i = O , l ,  ..., ks-  1. (5 )  fi (kr  + i + 1)s rs + (i + l )s/k - -= - 
f i + l  (ks - i)r rs - ir /k 

From this expression it follows that 

(a) f, is a decreasing function of i for i 2 0; 

(c) fi/f,+ is an increasing function of i for i 2 0; 
(b) fo = max MI;  

(d) . f o / f k  < f i / f k  + i for i 2 1. 

Partitioning the tail probability into s - 1 sums each containing k terms 
and using property (a), Bernoulli gets the upper bound 

ks 2k 

k +  1 k + l  

and combining this with property (d), he gets 

k I 

fo lh  >-. 
s - 1  

To prove (4) it is thus sufficient to prove that 

fo 2 c(s - 1). 
f k  

It will be seen that Bernoulli has reduced the problem to evaluate the 
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ratio of two terms of the binomial instead of two sums, or  in geometrical 
terms, the ratio of two ordinates instead of the ratio of two areas. 

From (5) it follows that 

rs + s rs + s - ( s / k )  

rs - r + ( r /k)  rs - r + (2r /k)  

rs + ( s /k)  

rs  
...___- f L l  - - - ~_____ 

f k  

To find a lower bound for this ratio, Bernoulli states that the k factors 
lie between ( rs  + s ) / ( r s - - r )  and 1 and that we can therefore choose 
any fixed number between these limits, ( r +  l)/r, say, so that the first of 
the factors are larger than this number and the following smaller. By 
suitable choice of k ,  the mth factor, 1 < m d k ,  becomes equal to ( r  + l ) / r ;  
that is, 

rs + s - (m - l)(s/k) 

rs - r + ( m r / k )  
r + 1 

r 
__--- - - - - 

which gives the relation between k and m as 

Hence, for this value of k the ratio f o / f k  consists of 111 factors larger than or 
equal to ( r  + I)/r and k - m factors larger than I so that 

and i t  is thus sufficient to find m from the inequality 

Solving for m we obtain (3), and by means of (7) we get (2). Finally, k is 
found as the larger of the two integers k ( r , s , c )  and k(s , r ,c ) ,  and 11 is found 
as k t .  This completes Bernoulli's proof. 

Bernoulli gives just one example. Consider t i  drawings with replacement 
from an urn with white and black balls in the ratio 3:2. In the theorem we 
may chose ( r ,  s) as (30,20), (300,200), etc., depending on what limits for It,, 

we want to have. Bernoulli chooses r = 3 0  and s = 2 0  so that 



16.2 BERNOULLI’S THEOREM, 17 1 3 263 

29/50 < h, < 31/50. Choosing c = 1000, which gives a moral certainty of 
1000/1001 for the inequality to hold, Bernoulli finds for the right tail m = 301, 
k = 495, and n = 24,750, and for the left tail m = 21 1 ,  k = 51 1, and n = 25,550. 
Hence, for 25,550 observations, i t  is at least 1000 times more probable that 
h, will fall inside the interval specified than outside. 

Bernoulli ends the Ars conjectandi by the philosophical remark, inspired 
by his law of large numbers, that if all events were observed thoughout 
eternity one would find that everything in the world occurs according to 
certain causes and laws so that we are bound to recognize a certain necessity 
even in the seemingly most accidental events. 

Bernoulli’s theorem is of fundamental importance for statistical estimation 
theory by giving a theoretical justification for using h, as estimator of p .  He 
observed that it  is necessary to consider an interval, Ih, - pI < lit ,  since the 
probability of getting h, = p tends to zero. He does not, however, indicate 
how to use the theorem to find an interval for p from an observed value of 
h,. The theorem assumes that p is known, and the necessary number of 
observations, n(p,t ,c) ,  say, depends on p .  I f  n and h, are known and p is 
unknown, one may of course solve the equation n(h,, t ,  c) = n with respect to 
c and thus get an approximation to the lower bound c/(c + 1) for the 
probability that Ih, - p J  < l / t  and then solve this inequality for p ;  but there 
is no hint that Bernoulli had this in mind. The difficulty of formulating a 
theory of interval estimation may have been one of Bernoulli’s reasons for 
not completing the manuscript. 

Bernoulli’s proof is remarkable, not only for giving the first limit theorem 
in probability theory, but also for being completely rigorous. Because of the 
crude evaluation of the tail probability and of the ratio l o / f k ,  the lower 
bound to Pk is rather unsatisfactory and leads to a number of observations 
much too large. That Bernoulli accepted this is perhaps due to the fact that 
his main objective was to prove that h, converges in probability to p and 
only afterward was he led to the extension which requires a determination of 
n. This is indicated in the Ars Conjectandi where he first gives an unsatisfactory 
proof of the convergence and after this gives the correct proof reported above. 
His proof was worked out at the latest in 1690. I t  must have seemed rather 
unsatisfactory, to Bernoulli himself as well, when he included i t  in the 
manuscript 15 years later in view of the fact that the integral calculus had 
been developed in the meantime. In 1705 it would have been natural to 
evaluate the areas (sums) by means of integrals instead of limiting ordinates, 
see g16.5. The need for a revision of the proof may have been another reason 
for Bernoulli’s hesitation to publish. 

Bernoulli’s theorem may be considered to give a lower bound to P ,  or 
an upper bound to 1 - P ,  for given n; we only have to solve (2) for given 
k = n / t  with respect to c. 
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Corollary to Bernoulli’s Theorem. For k = n / t  we have P ,  > c(k) / [c (k)  + I], 
where c(k)  = c(r, s, k) A c(s, r, k), and 

k(r+ l ) + s  r +  1 
In c(r, s, k )  = __-~__  In--ln(s- 1). 

r + s +  1 r 

Since In c is a linear function of n, it follows that the tail probability tends 

In modern notation Bernoulli’s theorem is as follows: for given p, t > O  
to zero, at least exponentially when n tends to infinity. 

and c > 0, we have P,, > c/(c + I )  for n 2 n ( p ,  t, c) v 4 9 ,  t, c), where 

(91 
(1 +t)rn-q  

4 P  + €1 
In C4q - € ) / E l  n(p, 6, c) 2 --, m > -_ 
’ ln C(P + €)/PI ’ 

and cn(p,c,c) and m are the smallest positive integers satisfying the 
inequalities. 

16.3 NICHOLAS BERNOULLI’S THEOREM, 1713 

Occasioned by a discussion of the variations in the ratio of male to female 
births in London, Nicholas Bernoulli wanted to test the hypothesis that the 
true value of this ratio is as 18:17. He therefore needed an approximation 
to the tail probability of the binomial better than the one provided by James 
Bernoulli’s theorem. His results are to be found in a letter of 23 January 
17 13 to Montmort ( 1  71 3, pp. 388-394). In the same letter he informed 
Montmort that Ars Conjectandi was in the press at Basel. His proof is based 
on James’s proof; he simply sharpens two of the inequalities involved. 

We shall use the same notation as used in $16.2 and set 

where d is a positive integer. 

Nicholas Bernoulli’s Theorem. For any d > 0, 

-->min( p* s o  -, -)- fo 1; 

1 - P d  f d  f - d  

that is, 



16.3 NICHOLAS BERNOULLI'S THEOREM, 17 I3  

For large values of n in relation to d,  we have 

kr -+ d kr + 1 k s r 2  

265 

(3) 

and f,/ f - d  is obtained from (3) by interchange of r and s. 

Proof. As above we need only consider the right tail because the results for 
the left are obtained by interchanging r and s. Let us define consecutive sums 
of length d of terms of the binomial by 

From the properties offi, i t  follows that 

A M  3 f m d + l  > - -  f 0  

fmd+d+l f d '  

so that 

Hence we have 

( 5 )  
S O  - > - - I .  A0 

+ ". + A [ k s / d ]  f d  

Noting that t"Pd equals A, plus the corresponding sum to the left plus So, 
it follows that ( I )  holds and thus (2). 

I t  will be seen that ( 5 )  is Nicholas' improvement of James's lower bound 
(2.6). It is obtained by using the terms of the geometric series (4) as upper 
bounds for the consecutive sums. 

Like James, Nicholas has reduced the problem to evaluate f o / . f d .  Instead 
of seeking a lower bound to this quantity Nicholas finds an approximation. 
Using (2.5) he first gets 

f o -  k r + d  k r + d - 1  k r + l  ks 

k s - d + l k s - d + 2  ks 
--- .+) . 

He notes that for large values of n, that is, of k r  and ks, in relation to d the 
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first d ratios do not difler much. Taking logarithms and replacing the sum 
of the d logarithms by d times the average value of the first and the last 
terms, he obtains 

which gives (3). This completes Nicholas Bernoulli’s proof. 

It will be seen that Nicholas Bernoulli’s theorem consists of two parts, 
the first giving a lower bound to p d  and the second an approximation to 
this lower bound. However, the approximate lower bound will normally also 
be a true lower bound because the difference between Pd and the lower bound 
is usually much larger than the error of the approximation (3). 

Taking n = 14,000 as the yearly number of births in London and p = 18/35, 
we have k = 14,000/35 = 400, kr = 7200, and ks = 6800. To find a lower bound 
to Pd for d = 163, Nicholas computes 

= 1.6507, 
log f o  - --log 163 (7363 _-___ 7201 6800) 

, f d  6638 7200 7200 

so that ,fo/h 2 44.74. Similarly, he finds jb/,f-d 2 44.58 and thus P d  > 0.9776. 
De Moivre’s (1733) approximation by means of the normal distribution gives 

To compare with James’s theorem, which Nicholas does not do, let us 
disregard the requirement that r and s should be integers. Setting k =  163, 
we find t = n/k  = 85.89 and r = 44.17, which leads to c = 0.15647 by means 
of(2.8) and thus P,  > 0.1353. This clearly demonstrates the great improvement 
obtained by Nicholas Bernoulli. 

Nicholas’ approximation to hg(fo/fd) is very easy to compute so that 
there was no reason for him to investigate the approximation further. 
Nevertheless, if he had gone one step further and used the logarithmic series 
for each of the three factors of (3), he would have found that 

P d  = 0.9942. 

which converges to d2 /2npq  if only d is of the order of 4% and n -+ 00, a 
result that was first found by de Moivre (1733) by another method of proof. 

Returning to James Bernoulli’s proof, it is clear that he realized that the 
ratio fi/.fi+, is the only manageable quantity for the evaluation of Pk. He 
evaluated the ratio Pk/( 1 -- Pk) by means of fo/fk, which he expressed as the 
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product of the k ratios fi/ f j +  i = 0, I , .  . . , k - 1. He really evaluated 

fo so h- I log =log-- + *.. +log---, 
h fl sk 

by noting that by a suitable choice of k, the first m terms are ail larger than 
log[(r + l)/r] and the last k - m terms are all larger than zero. Nicholas 
approximated this sum by the number of terms times the average value of 
the first and the last terms. It is strange that they did not try to approximate 
the sum by an integral, a procedure that was well known at the time. They 
had every means for reaching the integral of the normal distribution, but i t  
did not occur to them to work in that direction. We shall return to this 
problem in 416.5. 

The exposition in $816.2 and 16.3 is based on the paper by Hald (i984). 
Let us finally consider how Nicholas’ result may be used to solve James’s 

problem, namely, to determine n = kt such that I - Pk < I/(c + I ) .  Looking 
at the right tail only, i t  follows from ( 2 )  that we have to solve the inequality 
f k / f o  < l/(c + 1). The only change necessary in James’s proof is thus to replace 
c(s - 1) by c + 1. Nicholas did not himself formulate this obvious corollary. 

Corollary to Nicholas Bernoulli’s Theorem. James Bernoulli’s theorem 
holds for 

(6) 
In (c+ l )  r + s +  I s 

in[(r+ l)/r] r + 1 r +  1 
k ( r ,  s, c) 2 _ _ - ~  --__ - -- . 

An approximate value of k may be found by using (3) to solve the equation 
f o / f k  = c + 1 ,  which leads to 

Returning to James Bernoulli’s example with r = 30, t = 50, and c = 1000, 
James’s theorem gives n 2 25,550, the corollary above gives 17,350, and the 
approximation (7) gives 8400. The value found from de Moivre’s theorem is 
6500. 

16.4 
AND K. PEARSON 

SOME COMMENTS BY MARKOV, USPENSKY, 

The importance of Bernoulli’s theorem was immediately recognized by 
his contemporaries, as is evident from several eulogies on Bernoulli. 
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Twenty years after the publication of the two proofs of the Bernoullis, de 
Moivre showed that the normal distribution gives a good approximation to 
the binomial for large values of n; his proof was published in the second 
edition of the Doctrine of Chances (1738), see 924.5. De Moivre’s proof in the 
form given by Laplace became a standard item in textbooks on probability, 
and since Bernoulli’s law of large numbers is easily obtained as a corollary 
to de Moivre’s theorem, Bernoulli’s proof has but seldom been reported. 
Exceptions are the books by Markov (1924) and Uspensky (1937). 

In I91 3,200 years after the publication of the Ars Conjectandi, a translation 
of Part 4 into Russian by J. V. Uspensky, edited by A. A. Markov, was 
published in St. Petersburg. 

Markov (1924, pp. 43-53) writes that he will first report James Bernoulli’s 
proof and then give a modernized version without the restrictions on p ,  E ,  

and n imposed by Bernoulli. However, without referring to Nicholas 
Bernoulli, Markov first uses Nicholas’ results to prove (3.6) and in two 
footnotes he points out how this proof differs from James Bernoulli’s. 
He then goes through the same steps again in modernized form. 

Uspensky (1937, pp. 96-101) writes, “Several proofs of this important 
theorem are known which are shorter and simpler but less natural than 
Bernoulli’s original proof. I t  is his remarkable proof that we shall reproduce 
here in modernized form.” He then gives Markov’s modernized version of 
the combination of the proofs due to James and Nicholas, mentioning neither 
Nicholas or Markov. Whether the modernized proof is due to Markov or 
Uspensky and whether they knew Nicholas’ theorem, we do not know. 

In one respect Uspensky goes one step further than his predecessors; his 
lower bound for n is independent of p. He notes that 

r + l  1 
In __ > 

r r + l ’  

which combined with (3.6) gives 

and using the right-hand side as m is (2.7) i t  follows that James Bernoulli’s 
theorem holds for 

k 2 1 + ( t  + I)ln(c + I ) .  ( 1 )  

Uspensky’s version of Bernoulli’s theorem is as follows: For given p , ~  > 0, 
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and 6 > 0, 

I + €  1 1 
P r { l k , - p l d E } > 1 - 6  for n>----ln-+-. 

EZ 6 E 

This result is obtained from (1) for E = l / t  and 6 = l/(c + 1). In Bernoulli’s 
example, (1) gives n b 17,700 compared with 17,350 from (3.6). 

Markov (1912, pp. 135-141; 1924, pp. 104-115) offers a method for 
computing the tail probability with known limits of error. He uses Stirling’s 
formula for evaluating the bounding ordinate and a continued fraction for 
the ratio of the tail to the bounding ordinate. He demonstrates his method 
on Bernoulli’s example for p = and setting n = 6520, he finds that 

0.999028 < Pr 1 h, - p I < ~- < 0.999044. i :o) 
K. Pearson (1925) has given a detailed discussion of Bernoulli’s proof. He 

points out that an upper bound for the tail probability may be found by 
means of a dominating geometric series. Fundamentally he uses the same 
idea as Nicholas Bernoulli but applies i t  to the individual terms. In our 
notation this analysis may be written as follows: 

ks 

which gives 

Pearson gives this result only for d = k. In modern notation Pearson’s 
inequality becomes 

which is obtained from (3) for d = m - kr = m - np. 

numbers. 
Finally we shall indicate two simple proofs of Bernoulli’s law of large 
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For the right tail probability, we have 

according to (3). The ratio of the two sums is therefore larger than k/ (s  - I)p, 
which in turn must be larger than or equal to c to satisfy Bernoulli’s 
requirement. It follows that k 2 c(s - 1)p v c(r - l)q. The crude evaluation of 
the two sums thus leads to a value of n proportional to c instead of Inc, as 
in Bernoulli’s proof. 

Another proof is based on the Bienayme-Chebychev inequality, which 
applied to the binomial yields 

2 P 4  c Pr Ih, - p (  6 - 3 1 - I  - > ---, { k t  c + l  

so that k 2 tpq(c  + 1). This proof depends only on the mean and the variance 
of the binomial distribution. At the time of the Bernoullis, however, the 
variance was an unknown concept. 

After completion of the present chapter, Uspensky’s 1913 translation of 
Part 4 of Ars Conjectandi has been reprinted in J .  Bernoulli: On the Law of 
Large Nlrrnhers ( In  Russian), edited by Yu. V. Prohorov (1986). In  addition 
to the translation, this book contains many notes on Ars Corljectandi. a paper 
by Sheynin on “J. Bernoulli and the beginnings of probability theory,” a 
paper by Prohorov on “The law of large numbers and the evaluation of the 
probability of large deviations,” and a “Biography of J. Bernoulli” by 
Youshkevitch. Prohorov’s paper contains a detailed discussion of Bernoulli’s 
proof and some remarks on later developments; for example, he points out 
that Pearson’s result (3) was found by Chebychev in 1846, see also Maistrov 
( 1  974, p. 196). 

16.5 A SHARPENING OF BERNOULLI’S THEOREM 

We shall show that we can sharpen the results of the Bernoullis by using 
only the elementary mathematics known at their time. Like Bernoulli, we 
shall assume that np is an integer, but otherwise we shall make no restrictions. 
This assumption makes the notation simpler without essentially affecting the 
result. Bernoulli disregarded the central term of the binomial in his proof; 
we shall include it taking one-half to each side. We shall only give the 
theorem and the proof for the right-hand side, the results for the left-hand 
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side are obtained by interchange ofp and q,  Hence, we consider the inequality 

2 fi - 
2 f i  

0 
R = ____ > c ,  d =  1,2 ,..., n q -  I .  

d +  1 

Like Bernoulli, we introduce fo/ f d  and write 

d +  1 

The problem is to find lower bounds for the two factors in the numerator 
and an upper bound for the denominator. We shall denote the “generalized 
variance” by 

s2 = npq - dp ,  

Theorem. R > AB/C, where 

A =  ( I + -  n;)np+d(  I - &)nq+l - d (  1 + ;) - d ,  

and C = s2/d. 

Proof. As previously noted, the fundamental quantity is 

q ( n p  + i + 1) 1 + ( i  + l ) / n p  = ln ___ A ui = In __ = In 
A+ 1 p ( n q  - i )  I - i / n q  

Considering the slope ui - ui- ,, i t  is easy to prove that ui is positive and 
increasing and that ui is first concave and then convex if p < 3, whereas ui is 
convex if p >/ ). Setting 

- t i  
- ui = ln(1 - t i )  > __ 

1 - t i  
for 0 < t i  < 1, 
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it follows that 

BERNOULLI’S THEOREM 

( 1 )  

The first problem is to find a lower bound for 

f o  d - l  

In-= 1 ui. 
f d  0 

From the properties of ui,, i t  follows that 

d -  1 d -  1 

- 1  

+(nq+ 1 -d)In 

-dln 1 + - -  , ( 3 
which equals In A. This result is due to Kiefer (1961). 

A sketch of the relations between the various bounds and approximations 
has been given in Fig. 16.5.1 for p > 4 and d = 12. The sum of the 12 u’s is 

I 

t I I 12 i 

Fig. 16.5.1. Lower bounds and approximation to u,, + ... + u l , .  
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represented by the areas of the corresponding rectangles. James Bernoulli’s 
lower bound is given by the area below the dashed horizontal line through 
0,; Nicholas Bernoulli’s approximation by the area below the straight line 
joining uo and ul 1; the lower bound A by the area below the continuous curve 
from the abscissa - 1 to 11. 

To find a lower bound for cd,fl/jo, we first consider 

where we have used (1) in the evaluation of the lower bound. It follows that 

Since this function is decreasing, we have 

Setting x = us - $, we get 

Replacing the factor exp($s2) by 1 and introducing the standard notation 
for the normal distribution, the lower bound B follows. 

The upper bound C follows directly from Pearson’s inequality (4.4). This 
completes the proof. 

The three factors are rather easy to calculate. It is, however, not possible 
to give an explicit solution of the equation AB/C = c with respect to n, so n 
has to be found numerically. For Bernoulli’s example, we find n = 6660 
compared with Bernoulli’s 25,550 and de Moivre’s 6500. 

The normal distribution is not introduced as the limit of the binomial for 
large n but occurs quite naturally in the derivation of the lower bound. Of 
course, the Bernoullis did not know the normal distribution function, but they 
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could calculate the integral involved by numerical integration according to 
Newton’s method. 

It should be noted that the lower bound has been derived without any 
restrictions on d in relation to n. For this reason the “standard deviation” s 
depends on both n and d. It is interesting to analyze the lower bound in the 
three cases with d = nE (Bernoulli’s case), d = u f i n “ ,  where u and a are 
constants, u > 0, and 0 < a < 4, (the case of large deviations), and d = u& 
(de Moivre’s case, the normal distribution). We shall leave this to the reader, 
who should also try to improve the three bounds by using more advanced 
mathematical methods. 



CHAPTER 17 

Tests of Significance Based on 
the Sex Ratio at Birth and the 
Binomial Distribution, 1712-1 7 13 

This Equality of [adult] Males and Females is not the Effect of 
Chance but Divine Providence. 

- J O H N  A R B U T H N O T T ,  1712 

The point is tofind out how much one ought to bet against 
one that what has happened at London would not have 
happend if the births had depended on chance. 

- G .  J .  $ G R A V E S A N D E .  1712  

There is no reason to be surprised at the fact that the 
number of infants of each sex do not differ more [than observed]. 

- N I C l l O L A S  B E R N O U L L I .  1713 

17.1 ARBUTHNOTT’S STATISTICAL ARGUMENT FOR 
DIVINE PROVIDENCE 

The data and ideas in Graunt’s Observations (1662) inspired mathematicians 
to construct probabilistic models to describe and explain the phenomena 
recorded. We have previously discussed the probabilistic interpretation of 
Graunt’s life table in Chapter 8. Just as Huygens likened the chances of death 
derived from Graunt’s life table to the chances in a lottery, so Arbuthnott 
compared the yearly number of male and female births in London with the 

275 
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outcome of a number of throws with a two-sided die. This binomial model 
led to the first tests of significance. 

In his youth, John Arbuthnott (1667-1735) earned his living as a teacher 
of mathematics in London. At that time he translated Huygens’ treatise into 
English under the title On the Laws of Chance (1692), see 512.2. He 
then studied medicine and received his degree in 1696. He became a man of 
wide-ranging learning, a fashionable physician, a scientist, a literary wit, and 
a political satirist. He was a collaborator and friend of Jonathan Swift, 
Alexander Pope, and John Gay. In 1710, when he read his paper to the 
Royal Society, he gave his title as “Physician in Ordinary to Her Majesty, 
and Fellow of the College of Physicians and the Royal Society.” Short 
biographies have been written by Allan Birnbaum (1967)and Pearson (1978). 

The title of his paper is An Argument for Divine Providence, taken from 
the constant Regularity observed in the Births of both Sexes, read 1710, 
published 1712. Graunt (1662) had published the yearly number of 
christenings of males and females in London for the period 1629-1660 and 
noted that there were about 14 males born for 13 females (see $7.6). Arbuthnott 
publishes the observations for the period 1629-1710 without reference to 
Graunt. 

Arbuthnott’s Data on the Yearly Number of Male and 
Female Christenings in London from 1629 to 1710 

YEAR MALE FEMALE I YEAR MALE FEMALE 

1629 
1630 
1631 
1632 
I633 
1634 
1635 
1636 
1637 
1638 
1639 
I640 
1641 
1642 
1643 
1644 
1645 

5218 
4858 
4422 
4994 
5158 
5035 
5 I06 
491 7 
4703 
5359 
5366 
5518 
5470 
5460 
4793 
4107 
4047 

4683 
4457 
4102 
4590 
4839 
4820 
4928 
4605 
4457 
4952 
4784 
5332 
5 200 
4910 
461 7 
3997 
3919 

1646 
647 
648 
649 
650 
65 1 
652 

1653 
1654 
I655 
1656 
1657 
1658 
I659 
I660 
1661 
1662 

3768 
3796 
3363 
3079 
2890 
323 1 
3220 
3196 
344 I 
3655 
3668 
3396 
3157 
3209 
3124 
4748 
5216 

3395 
3536 
3181 
2746 
2722 
2840 
2908 
2959 
3179 
3349 
3382 
3289 
3013 
278 1 
3247 
4107 
4803 

(Continued) 
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YEAR MALE FEMALE 

1663 5411 
1664 6041 
1665 5114 
1666 4678 
1667 5616 
1668 6073 
1669 6506 
1670 6278 
1671 6449 
1672 6443 
1673 6073 
1674 6113 
1675 6058 
1676 6552 
1677 6423 
1678 6568 
1679 6247 
1680 6548 
1681 6822 
1682 6909 
1683 7577 
1684 7575 
1685 7484 
1686 7575 

4881 
568 1 
4858 
4319 
5322 
5560 
5829 
5719 
606 1 
6120 
5822 
5738 
5717 
5847 
6203 
6033 
604 1 
6299 
6533 
6744 
7158 
7127 
7246 
71 19 

YEAR MALE FEMALE 

1687 7737 
1688 7487 
1689 7604 
1690 7909 
169 1 7662 
1692 7602 
1693 7676 
1694 6985 
1695 7263 
1696 7632 
1697 8062 
1698 8426 
1699 7911 
1700 7578 
1701 8102 
1702 8031 
1703 7765 
1704 6113 
1705 8366 
1706 7952 
1707 8379 
1708 8239 
1709 7840 
1710 7640 

7214 
7101 
7167 
7302 
7392 
7316 
7483 
6647 
6713 
7229 
7767 
7626 
7452 
706 1 
7514 
7656 
7683 
5738 
7779 
7417 
7687 
7623 
7380 
7288 

Source: Phil. Trans., 171 2, Vol. 27, 189- 190. 

Arbuthnott does not comment on the quality of the data and considers the 
number of christenings to be proportional to the number of births. He neither 
gives the totals of the numbers of males and females nor the ratio of these 
numbers; he merely notes that the number of males exceeds the number of 
females, 

in almost a constant proportion for each of the 82 years. [He says that] lo judge 
of the wisdom of the Contrivance, we must observe that the external Accidents 
to which Males are subject (who must seek their Food with danger) do make a 
great havock ofthem, and that this loss exceeds far that of the other Sex, occasioned 
by Diseases incident to  it, as Experience convinces us. To repair that Loss, 
provident Nature, by the Disposal of its wise Creator, brings forth more Males 
than Females, and that in almost a constant proportion. 

So much for the data and his theological explanation. There is really no 
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reason to go further with the statistical analysis; anyone who looks at the 
data will be convinced, like Graunt and Arbuthnott, that the chance of a 
male birth is greater than that of a female birth. Nevertheless, Arbuthnott 
continues with a probabilistic “proof” of this assertion, and herein consists 
the originality of his paper. 

He begins by stating that the number of chances of the different outcomes 
by throwing n two-sided dice is given by the coefficients of the binomial 
expansion of (M + F)”. For an even value of n he finds that the probability 
of getting as many M’s as F’s tends to zero as n tends to infinity; however, 
what we have to investigate is not “Mathematical but Physical” equality of 
males and females, which means that we have to include some terms next 
to the middle one. If chance governs, i.e., if the probability of a male birth 
equals 4, then in a given year the probability of more males than females is 
smaller than or equal to i. He then refers to the data and writes, “Now, to 
reduce the Whole to a Calculation, I propose this Problem. A lays against 
B, that every year there shall be born more Males than Females: To find 
A’s Lot, or the Value of his Expectation.” 

To get an upper bound for A’s probability of winning, he sets the 
probability that in each year there shall be born more males than females 
equal to f. It follows that the probability of more males than females every 
year for 82 years becomes (i)82, which equals 1 divided by 4.836 x 

Not being satisfied with this small probability he continues: 

But if A wager with B, not only that the Number of Males shall exceed that of 
Females, every Year, but that this Excess shall happen in a constant Proportion, 
and the Difference lye within fixed limits, and this not only for 82 Years, but for 
Ages and Ages, and not only at London, but all over the World,. . . then A’s Chance 
will be near an infinitely small Quantity, at least less than any assignable Fraction. 
From whence it follows that it is Art, not Chance, that governs. 

In modern terminology Arbuthnott wants to test the hypothesis that the 
probability, p ,  say, of a male birth equals i against the alternative that p > i. 
By means of the binomial distribution he first proves that for any number 
of births Pr { M > F l p  = 4) 6 4, and next he uses this result to transform the 
original hypothesis and its alternative to the hypothesis that Pr { M  > F }  < 
and the alternative Pr { M > F }  > for the yearly number of births. In that 
way he avoids the difficulties stemming from the varying numbers of births 
and reduces the comparison of the 82 binomial distributions to a simple sign 
test. 

Hacking (1965, pp. 75-81) has discussed Arbuthnott’s test in relation to 
modern testing theory. 

Despite the brevity and simplicity of Arbuthnott’s paper, i t  greatly 
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influenced contemporary statisticians and theologians. The dispute among 
statisticians will be discussed in the following sections. 

Pearson (1978) has described the influence of the works of Graunt and 
Arbuthnott on the clergyman and scientist William Derham (1657- 1739, 
who collected and analyzed a great amount of population statistics in his 
Physico-Theology: A Demonstration of the Being and Attributes of God from 
His Works of Creation (1713). Derham and other theologians considered the 
regularity of statistical ratios as a proof of Divine Design. 

The following discussion is to a large extent similar to the one given by 
Shoesmith (1985, 1987); however, Shoesmith offers more details on the 
theological background, whereas we present a statistical analysis based on 
a reconstruction of Nicholas Bernoulli's calculations. 

17.2 'sGRAVESANDE'S TEST OF SIGNIFICANCE 

The Dutch scientist, W. J. 'sGravesande (1688-1742), who later became 
professor of mathematics, astronomy, and philosophy at Leiden, presented 
an improvement of Arbuthnott's test in 1712 in a paper Dimonstration 
Mathkmatique du soin que Dieu prend de diriger ce qui se passe dans ce monde, 
tirle du nombre des Garcons et des Filles qui naissent journellement (A 
mathematical demonstration of the care, which God takes in governing that 
which happens in this world, drawn from the daily numbers of male and 
female births), which he circulated among his friends. The main results of 
his analysis were published in 1715 by B. Nieuwentyt in Het regt gebruik 
der Wereldbeschouwingen, translated into English as The Religious 
Philosopher: Or, the Right Use of Contemplating the Works of the Creator, 
see Pearson (1978) for a detailed description of this work. 'sGravesande's 
paper is published in his Oeuvres (1774, Vol. 2, pp. 221-236), which also 
contains a short exposition of elementary probability theory (pp. 82-97). 

In 1712 Nicholas Bernoulli met 'sGravesande in The Hague on his tour 
to the Netherlands, England, and France. They discussed Arbuthnott's paper, 
and a correspondence ensued which is published in the Oeuores (1774, Vol. 2, 

In his test Arbuthnott uses only the fact that for each of the 82 years, the 
number of males is greater than the number of females. 'sGravesande further 
makes use of the fact that the relative number of male births varies between 
7765115,448 = 0.5027 in 1703 and 474818855 = 0.5362 in 1661. Because of the 
different yearly number of births, the numbers of males are not directly 
comparable, and 'sGravesande therefore transforms the observations above 
by multiplying the relative frequencies by the average number of births for 
the 82 years, which he finds to be 11,429. This gives him a fictitious minimum 

pp. 236-248). 
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and maximum number of male births: 5745 and 6128. He then considers the 
data as 82 observations from the same binomial distribution with n = 11,429 
and all the observations contained in the interval [5745, 6128). 

To find the probability of this event under Arbuthnott's hypothesis, he 
calculates the terms of the binomial for p = and n = 11,429 and sums the 
384 terms corresponding to the interval in question. Actually, he uses the 
recursion 

and tabulates 

from x = 5715 to 5973, after which the tabular values become smaller than 
$. He finds that 

Pr { 5745 < x < 6128 I p = $ }  = 3,849,150/13,196,800, 

and remarks that he has added a small amount to the numerator to make 
sure that the probability is not undervalued because terms in the tail smaller 
than $ x 10- have been neglected. ('sGravesande probability equals 0.292, 
and the normal approximation gives 0.287.) 

Under the hypothesis, the probability of the observed event becomes the 
82nd power of the probability above, which gives 1 divided by 7.5598 x 104j 
('sGravesande gives all 44 digits), which is only a small fraction of the 
probability found by Arbuthnott. 

17.3 
OBSERVED DISTRIBUTION WITH THE BINOMIAL 

NICHOLAS BERNOULLI'S COMPARISON OF THE 

During his stay in London in 1712, Nicholas Bernoulli discussed Arbuthnott's 
paper with other Fellows of the Royal Society; he explained his views in a 
letter to the mathematician Burnet and sent a copy to 'sGravesande. This 
letter contains the proof of Nicholas Bernoulli's theorem (see $16.3) but was 
not published until 1774 in 'SGravesande's Oeuvres. However, Bernoulli gave 
the proof in essentially the same form in his letter to Montmort (1713, 
pp. 388-393). He derived his theorem to obtain a general formula for the 
tail probability of the binomial and thus avoid the heavy computational 
work which had been necessary for 'sGravesande. 
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Bernoulli does not seem much interested in the theological debate; his 
attitude is pragmatic, like that of a modern statistician. The main points of 
his letters are (1) to estimate the probability of a male birth from the 
observations; (2) to compare the distribution of the observations with the 
binomial distribution to determine whether the observed variation can be 
explained by this model; and (3) to provide the mathematical tool of this 
comparison by finding an approximation to the binomial for large n. 

Let mi and f i ,  i = 1 , .  . ; ,82, denote the yearly number of male and female 
births, respectively, and set ni = mi + fi and hi = rni/ni.  The relative frequency 
of male births for the whole period is 

- E m i  - 484,382 
h = -  -- = 0.5163, 

c n i  938,223 

and the average yearly number of births is 11,442. 
From the observed values of hi, Bernoulli calculates the number of male 

births under the assumption that the yearly number of births is constant 
and equal to 14,000. He wants to show that the 82 values of x i =  14,000hi 
can be considered observations from a binomial distribution. He finds 
2 = 7237, xmin = 7037, and x,,, = 7507, and using (16.3.3) with kr = 7237, 
ks = 6763, and d = 7237 - 7037 = 200, he gets 

= 0.5169. 
303 7237 

~ , = P r { 7 0 3 7 < x < 7 4 3 7 } > -  for p = -  
304 14,000 

He does not comment on the four observations larger than 7437. Noting 
that (303/304)*00 z 1000/1389, he concludes that the variation observed may 
be explained by the binomial distribution if only the correct value is chosen 
for the probability of a male birth. These results are to be found in his letter 
to Burnet and 'sGravesande. 

In his reply, 'sGravesande acknowledges Bernoulli's proof but says that 
Bernoulli has misunderstood Arbuthnott, who only intends to prove that p 
is larger than i. Bernoulli replies that Arbuthnott's paper also implies that 
the variation in the number of male births is smaller than could be expected, 
and it is only this assertion that he has tried to refute. It is difficult to see 
that Arbuthnott asserts what Bernoulli postulates. 

In his letter to Montmort, Bernoulli chooses another value of p, 
presumably to obtain agreement with the assumptions of his theorem, which 
require that p = r / ( r  + s )  and n = k(r  + s) ,  where r, s, and k are integers. Since 
14,000 = 24 x 53 x 7, it seems reasonable to choose r + s = 35, and since 
35 x 0.5169 = 18.1, we are led to r = 18, so that p = 18/35 = 0.5143. Bernoulli 
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does not explain his choice of p = 18/35; he merely notes that the observed 
ratio of males to females is a little larger than 18/17. He also does not explain 
the choice of n = 14,000 rather than a value in the neighborhood of the 
average. Instead of Arbuthnott’s two-sided die, he explains his model by 
referring to a die with 35 sides, 18 being white and 17 black. 

Bernoulli divides his investigation into two parts. First, he calculates the 
probability of an observation within a rather large interval covering the main 
part of the observed distribution; next, he finds the probability of the 1 1  
“outliers” among the 82 observations. 

For 11 = 14,000 and p = 18/35, he finds that the expected number of male 
births is 7200, the distance to xmin is d = 7200 - 7037 = 163, and 

P ,  = Pr { 7037 d x < 7363) > 0.9776, 

as shown in $16.3. 
Outside this interval, i.e., larger than 7363, there are 1 1  observations. (The 

corresponding number in his letter to ’sGravesande is only four because there 
he considers an interval about the mean, 7237.) Using 1 - Pd < 0.0224, 
Bernoulli states that the probability of obtaining 2 outliers at most among 
the 82 observations is larger than $ and the probability of 10 outliers at most 
is larger than 226/227 = 0.9956. He does not explain how he has calculated 
these probabilities. I t  is easy to check that the probabilities in question 
become 0.72 and 0.999997 if we use a binomial distribution with n = 82 and 
p = 0.0224. 

Bernoulli concludes that “there is a large probability that the numbers of 
males and females fall within limits which are even closer than those 
observed,” see Montmort (1713, p. 388). According to our standards this 
would lead to rejection of the hypothesis because the observed variation is 
larger than expected; Bernoulli, however, seems to be satisfied with his model 
because it explains the greater part of the variation. 

One reason that Bernoulli does not note the discrepancy between the data 
and the model may have been that his formula gives too large a value of the 
tail probability. As noted in 816.3, 1 - Pd = 0.0058, whereas he presumably 
uses 1 - P ,  = 0.0224. Another and more important reason is that he stresses 
only the large probability of getting an observation between the chosen limits 
without also considering the corresponding small probability for observations 
outside the limits. From his own calculations it  follows that the expected 
number of observations outside the limits is at most 82 x 0.0224 = 1.8, so 
that the probability of getting 1 1  (or more) outliers is extremely small. 

Last, let us compare Bernoulli’s results with a modern analysis. Bernoulli 
notes that one may make more comparisons of the data and the model by 
using other values of d. To do so in a comprehensive manner we have found 
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the standard deviation of Bernoulli’s observations, x i  = 14,000ki. For the 
variance we have 

which gives a standard deviation of 65. We have then computed 

Under the hypothesis, the two last-mentioned quantities should be nearly 
normally distributed with mean 0 and standard deviation 1. The grouped 
distributions of the three standardized deviations are shown in the following 
table: 

Distribution of Standardized Deviations from Arbuthnott’s data 

Deviations from 

Standardized 7200/14,000 7237/14,000 0.5163 Expected from 
deviation Number of observations normal distribution 

( - 5)-( -4) 
( - 4)-( - 3) 
( - 3 H  - 2) 
(-2)-(- 1) 
(- 1)-0 

0- 1 
1-2 
2-3 
3-4 
4-5 

Total 

0 
0 
1 

14 
17 
20 
16 
7 
4 
3 

82 

0 
1 
3 

18 
23 
19 
8 
6 
2 
2 

82 

0 
1 
2 

18 
23 
19 
9 
8 
2 
0 

82 

0.0 
0.1 
1.8 

11.1 
28.0 
28.0 
11.1 

1.8 
0.1 
0.0 

82.0 

Under the binomial hypothesis, x u , ”  should be distributed as x 2  with 81 
degrees of freedom. We find, however, that xu,” = 169.7, which shows that 
the observed variation is significantly larger than the binomial. This is also 
obvious from a comparison with the expected numbers according to the 
normal distribution and from Fig. 17.3.1. The distribution of Bernoulli’s 
observations about the mean, 7237, gives nearly the same result as the 
distribution of the ui’s, whereas the distribution about 7200 results in too 
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Fig. 17.3.1. Graph of the standardized deviations ui from Arbuthnott’s data. 

many positive deviations (the 11 outliers) because Bernoulli’s choice of 
p = 18/35 leads to an expected number that is too small, with about half a 
standard deviation. 

To reject the hypothesis of a binomial distribution of the number of male 
births based on the above analysis of the number of male christenings 
presupposes that the yearly number of male and female christenings have 
the same proportion to tahe yearly number of male and female births and 
that there are no recording errors. The number of christenings recorded in 
1704 is conspicuously small; Struyck (Oeuures, p. 185) points out that parish 
records generally are unreliable and as an example he states that the correct 
numbers for 1704 are 8153 and 7742 instead of Arbuthnott’s 6113 and 5738. 
This means that the relative number of males becomes 0.5129 instead of 
0.5158. Graunt points out that the number of christenings in relation to the 
number of births decreases drastically after 1642 (see 47.4). From Arbuthnott’s 
data it  will be seen that the yearly number of christenings before 1642 is 
about 10,000. In the 1650s it decreases to about 6000 and then steadily 
increases to about 15,000 in 1700. The turning point is about the Restoration, 
and it is worth noting that the three largest positive values of u occur in 
1659-1661, see Fig. 17.3.1. The smallest negative value occurs in 1703. These 
four observations contribute 43.6 to the x 2  value of 169.7. It seems safe to 
conclude that the variability of the sex ratio at birth is considerably smaller 
than that of the sex ratio of the christenings. 

Bernoulli’s results were not appreciated by his contemporaries, perhaps 
because his mathematical and statistical arguments were new and difficult 
to follow (the Ars Conjectandi had not yet been published), and perhaps 
because he found Arbuthnott’s statistical analysis incomplete and thus 
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indirectly criticized the religious argument. It was not yet understood that 
Bernoulli’s analysis should be considered an extension of Arbuthnott’s. 

De Moivre (1756, pp. 252-253) replied to Bernoulli’s criticism of 
Arbuthnott in much the same way as ’sGravesande and concluded that “if 
we were shewn a number of Dice, each with 18 white and 17 black faces, 
which is Mr. Bernoulli’s supposition, we should not doubt but that those 
Dice had been made by some Artist; and that their form was not owing to 
Chance, but was adapted to the particular purpose he had in View.“ It may 
have been the authority of de Moivre that led Todhunter (pp. 130-131, 
197- 198) to underrate the contributions of Nicholas Bernoulli. 

17.4 A NOTE ON THEOLOGY AND POLITICAL ARITHMETIC 

As related in 811.1, many natural scientists in the latter half of the 17th 
century and the beginning of the 18th interpreted the newly found natural 
laws as evidence of Divine Design and the existence of God. They were now 
joined by social scientists, in many cases represented by theologians, who 
used the regularities observed in population and vital statistics to the same 
end. These authors contributed to statistics in the form of political arithmetic 
by collecting, tabulating, and comparing data from different countries, 
stressing the similarities and glossing over the discrepancies. 

Pearson (1978, Chap. 9) has given a lively account of the life and works 
of Derham, Nieuwentyt, Sussmilch, and Struyck. Westergaard (1932) 
discusses the same period in his Chap. 7 and writes (p. 72), “But even though 
quite naturally we are induced to take notice of deviations from the average, 
and to ask how these irregularities can be explained, it  is just as natural that 
our predecessors first of ail were struck by the regularity and cared less for 
the deviations.” 

This line of thought culminated with the publication in 1761 of the second 
edition of Die gottliche Ordnung in den Veranderungen des menschlichen 
Geschlechts aus der Geburt, dem Tode  und der Fortpflanzung desselben erwiesen 
(The divine order in the changes of the human race demonstrated from the 
birth, the death, and the reproduction of the same) by the German theologian 
J. P. Sussmilch (the first edition had been published in 1741). 



C H A P T E R  18 

Montrnort and the Essay 
d’Analyse sur Ees Jeux de Hazard, 
1708 and 1713 

I very willingly acknowledge his [Montmort’s] Solution to be 
extreamly good, and own that he has in  this, as well as in a 
great many other things, shewn himself entirely master of the 
doctrine of Combinations, which he has employed with very great 
Industry and Sagacity. 

-De M O I V R E ,  1718 

18.1 

Pierre Remond de Montmort (1678-1719) was born into a wealthy family 
of the French nobility. As a young man he traveled in England, the 
Netherlands, and Germany. Shortly after his return to Paris in 1699 his 
father died and left him a large fortune. He studied Cartesian philosophy 
under Malebranche and studied the calculus on his own. For some years he 
was a canon of Notre Dame. In 1704 he bought the estate of Montmort, 
and in 1706 he resigned‘ his canonry and settled at Montmort, where he 
stayed for the rest of his life, interrupted only by visits to Paris and London. 
He seems to have lived a happy life as a country gentleman, occupied by his 
interests in natural philosophy and mathematics. On a visit to Paris he 
contracted smallpox and died at the age of 40. 

The main source for an account of the life of Montmort is the eulogy by 
Fontenelle (1 72 l ) ,  see also David (1962). 

Montmort corresponded with Leibniz whom he greatly admired. He was 
also on good terms with Newton whom he visited in London. In 1709 he 
printed 100 copies of Newton’s De Qitadratura at his own expense. As noted 

286 

MONTMORT AND THE BACKGROUND FOR HIS ESSA Y 

History of Probability and Statistics and Their Applications before 17.50. 
Anders Hald 

Copyright 0 1990 John Wiley & Sons, Inc. 
ISBN: 0-471-50230-8 



18.1 MONTMORT AND THE BACKGROUND FOR HIS ESSAY 287 

earlier, through John Bernoulli, he also offered to print Ars Conjectandi. He 
was on friendly terms with Nicholas Bernoulli and Brook Taylor. He kept 
his balance in the priority dispute between Newton and Leibniz and their 
followers. 

Besides his work on probability theory he worked on the summation of 
infinite series and was working on a history of mathematics when he died. 

The Essay d’Analyse sur les Jeux de Hazard (Analytical Essay on Games 
of Chance) was published in 1708. I t  consists of a preface and three parts on 
card games, dice games, and some further problems of games of chance, 
respectively. A second edition was published in 171 3. Neither edition contains 
the author’s name on the title page nor in the text. In the second edition the 
name Montmort occurs only as a place name in letterheads. 

The prefaces to the two editions are identical apart from the section in 
which the contents are briefly mentioned. An Auertissement of 18 pages was 
added to the second edition. The section on combinatorics in the first edition 
is much expanded and was made into the first part of the second edition; 
then follow the three parts from the first edition with additions and 
generalization and, finally, as the fifth part, 132 pages of letters between 
Montmort and John and Nicholas Bernoulli. A survey of the contents is 
given below. 

Table of Contents of the Essay by Montmort, 1708 and 17 I3  

PAGES 

TOPIC 

1708 1713 
EDITION EDITION 

Preface 
Avertissement 
On combinations 
On card games 

Pharaon, lansquenet, treize, bassete, piquet, 
triomphe, I’ombre, brelan, imperiale, quinze 

On dice games 
Quinquenove, hazard, esperance, trictrac, 

trois dez, passe-dix, raflle, jeu des noyaux 
Solutions of various problems on games 

of chance 
Huygens’ five problems, de Merir‘s problem, 

the problem of points, Robartes’ problem, 
the lottery of Lorraine, the duration of play 

Four problems for solution 
Letters between Montmort, John Bernoulli, 

and Nicholas Bernoulli 

111-XXIV 

79- 100 
1-108 

- 

109-155 

156-185 

185-189 

- 

I l l -XXIV 
x x v - X L I I  

13- 112 
1-72 

173-215 

2 16- 277 

278-282 

283-414 
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M o n t m o r t  was  inspired by  what  he had read a b o u t  James Bernoulli’s 
work. T h e  most precise description of the conten ts  of Ars Conjectandi known 
in 1708 is the  one given by  Saurin (1706), from which we quote:  

The author there determines and reduces to a calculus the different degrees of 
certainty or probability of conjectures which one may make on matters dependent 
on chance, and he extends the same to civil life and private affairs.. . . It is in the 
fourth part that the author extends his method and his reasonings, as we have 
already said, to matters regarding civil life and private affairs. The fundament of 
this part is an important problem, which he first solves, and which he considers 
more important than the quadrature of the circle. It is the question to determine 
whether an increasing number of observations of an event at the same time leads 
to a corresponding increase of the degree of probability of finding the true ratio 
of the number of cases where the event may occur and the number where it may 
not occur; in this way one can finally reach a degree of probability larger than 
any given degree, that is, veritable certainty. 

No indication of Bernoulli’s method of proof is given. 
We shall let M o n t m o r t  himself relate t h e  background story of his book 

by giving a free translation, somewhat  condensed,  of the  most impor tan t  
points of his preface to the first edition. 

Mathematics has been of great importance for the development of the natural 
sciences. I t  would be even more glorious for mathematics if it could be used to 
set up rules for the judgments and actions of man in practical matters of life. 
Bernoulli has done so in his Ars Conjectandi, but his premature death prevented 
him from completing his work. Fontenelle and Saurin have both given short 
descriptions of his work in their eulogies of 1705 and 1706, respectively. In the 
first three parts of his book Bernoulli gives the solutions of several problems of 
games of chance, using infinite series and combinatorics, and he also gives the 
solution of Huygens’ five problems. In the fourth part he applies the methods 
developed in the first three t o  the solution of moral, political, and civil problems. 
We d o  not know what problems in games of chance and what political and moral 
problems Bernoulli has discussed but we are confident that he has solved the 
problems perfectly. 

Several of my friends have for a long time asked me to try to determine the 
advantage of the banker in the play Pharaon by means of Algebra. I should not 
have dared to embark on this project had i t  not been for the success of the late 
Bernoulli, which I heard about. For  some years 1 have worked on this problem 
and I have been more fortunate than 1 could hope. Not alone have I solved the 
problem of Pharaon but I have also discovered some general principles for solving 
similar and more difficult problems. I realized that it is possible to proceed rather 
far into this country where nobody yet has been; 1 hoped that one could there 
make an ample harvest of new and interesting results, and this induced me to  
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seek to  the bottom of this matter in a desire to compensate the public for the loss 
of the excellent work of Bernoulli. Various reflections have also confirmed me in 
this plan. 

Players are superstitious in many ways, in particular they believe (wrongly) that 
the outcomes of previous games influence the future outcomes. One could say 
nearly the same about the conduct of people in all the situations of life in which 
chance plays a part; it is the same kind of prejudices that govern their actions. I 
therefore think that i t  will be useful not alone for players but also for people in 
general to learn about the rules for events depending on chance. For players it 
will be useful to  be able to judge whether a game is fair or not. We d o  not know 
the future but we may know that some events are more probable than others. It 
seems that before now it has not been apprehended that it is possible to give 
infallible rules for calculating the differences which exist between various 
probabilities. We attempt to give in this book an exposition of this new art, 
applying Analysis to matters that until now have been considered obscure and 
unfit for such a treatment. 

M o n t m o r t  then gives a shor t  account  of the contents  of his book for 
which we refer to the  previous table. He continues, 

Contrary to Bernoulli I shall not add a fourth part but limit myself to applications 
of the methods developed to games of chance. What has kept me back is the 
difficulty that I have found in making the hypotheses which could lead and support 
me in this research, and since I am not satisfied I think it will be better to  leave 
this work to another occasion or  leave it to another person more able than me. 
I shall, however, first make some brief remarks on the relationship between games 
of chance and these other matters and on  the necessary points of view for reaching 
a solution. 

Precisely speaking, nothing depends on chance. Everything is determined by the 
Creator by exact laws, but if the causes are unknown to us we may regard the 
events as dependent on chance. According to this definition one may say that 
human life is a game ruled by chance. Like in games of chance one should in 
practical problems count the number of cases for and against the happening of 
an event, or to speak in mathematical terms, one should determine the possible 
advantage of a decision by multiplying what we hope to obtain by the degree of 
probability of obtaining it and subtract the stake. Continuing this comparison we 
note two reasons for our ignorance of future events. First, our uncertainty about 
the actions to  choose, and second, that the number of causes and comparisons to  
make is so large that it is impossible for us to keep track of them. The prudence 
of man is insufficient to penetrate into the future. 

After a long discussion in the same vein on the  similarities of games of 
chance a n d  problems in civil life, M o n t m o r t  concludes with t h e  following 
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two rules for delineating the problems from real life that may be treated by 
methods from games of chance. 

To end this analogy between the problems of games of chance and the questions 
that may be proposed on economical, political and moral matters one should 
observe that in both cases there is a type of problem which may be solved by 
observing the following two rules: (1) limit the question, which one takes up, to 
a small number of suppositions established on facts that are certain, (2) disregard 
all circumstances in which freedom (free will) of man, that eternal obstacle to  our 
understanding, might have a share. One would believe, that Bernoulli has taken 
such rules into regard, and it is certain that with these two restrictions one will 
be able to treat several political and moral matters with the exactness of 
mathematics. 

As an “admirable example” Montmort then discusses Halley’s paper 
(1694) and also mentions Petty’s work on political arithmetic. 

Finally, Montmort gives a short account of the history related to de Mtre, 
Pascal, Fermat, and Huygens. 

It will be seen that Montmort is motivated partly by what he has read 
about Bernoulli’s book and partly by problems on games of chance raised 
by his friends. He expresses views on determinism and chance similar to 
Bernoulli’s. However, most practical problems are so complicated that it is 
impossible to evaluate the number of chances for and against the happening 
of an event and thus calculate its probability, and he therefore limits himself 
to problems on games of chance. Nevertheless, he tries (not very successfully) 
to formulate restrictions on those problems amenable to probabilistic 
analysis. In that respect he is more sensible than Bernoulli. 

The Essa)~ (1708) is the first published comprehensive text on probability 
theory, and it  represents a considerable advance compared with the treatises 
of Huygens (1657) and Pascal (1665). Montmort continues in a masterly way 
the work of Pascal on combinatorics and its application to the solution of 
problems on games of chance. He also makes effective use of the methods 
of recursion and analysis to solve much more difficult problems than those 
discussed by Huygens. Finally, he uses the method of infinite series, as 
indicated by Bernoulli (1690). 

When the Essay was written, card games had become very fashionable, 
and this is reflected in the prominent place occupied by the probabilistic 
analysis of such games. Also with respect to dice games Montmort’s analysis 
is much more extensive and general than previous discussions. 

Montmort’s pioneering work had three features: (1) It demonstrated the 
four methods of solution mentioned above; (2) i t  gave the solutions of many 
important new problems; and (3) it .inspired Nicholas Bernoulli and de 
Moivre to generalize these problems and develop new methods of proof. 
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Pioneering works are often difficult reading, and the Essay (1708) is no  
exception. In many places it is also tedious because of numerous details. 
These difficulties are enhanced by Montmort’s decision to present the 
solution of the most interesting problems by numerical examples only and 
state the general solution without proof. However, in the Avertissenlent of 
the second edition, Montmort ( 1  7 13) explains that he omitted some proofs 
in the first edition to  stimulate the curiosity of the reader-he certainly 
succeeded with respect to Nicholas Bernoulli and de  Moivre. He adds that 
he has now included these proofs at  the request of some friends. 

In the Auertissement Montmort mentions the publication of De Mensurn 
Sortis by de  Moivre in 1712 and  quotes from the preface: 

Huygens was the first that I know who presented rules for the solution of this 
sort of problems, which a French author has very recently well illustrated with 
various examples; but these distinguished gentlemen do not seem to have employed 
that simplicity and generality which the nature of the matter demands; moreover, 
while they take up many unknown quantities, to represent the various conditions 
of gamesters, they make their calculation too complex; and while they suppose 
that the skill of the gamesters is always equal, they confine this doctrine of games 
within limits too narrow. 

It is of course a great injustice to characterize Montmort’s work by the 
remark that he has well illustrated the rules developed by Huygens with 
various examples. Montmort vigourously refutes the critical remarks by de  
Moivre, and on pp. 361-370 he gives a “review” of De Mensura Sortis and 
a comparison with his own work (we shall return to this in 522.2). De Moivre 
regretted his remarks, and in the preface of the Doctrine of Chances (1718) 
he wrote, 

However, had I allowed my self a little more time to consider it, I had certainly 
done the Justice to its Author, to have owned that he had not only illustrated 
Huygens’s Method by a great variety of well chosen Examples, but that he had 
added to it several curious things of his own Invention. “‘Since the printing of 
my Specimen [De  Mensura Sortis], M r .  de Monniort, Author of the Atialyse des 
jeux de Hazard, Published a Second Edition of that Book, in which he has 
particularly given many proofs of his singular Genius, and extraordinary Capacity; 
which Testimony I give both to Truth, and to the Friendship with which he is 
pleased to Honour me. 

The remaining part of the Auertissement is taken up  by a history of 
probability theory before 1713, which we have discussed in $12.2. 

The second edition of the Essay (1713) is a greatly improved version of 
the first, not only because Montmort collected the combinatorial theorems 
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in an introductory part, but also because he added various proofs and 
generalizations and his correspondence with the Bernoullis. There is no doubt 
that Montmort was much influenced by Nicholas Bernoulli and that the 
improvements owe much to collaboration with him. 

In publishing his correspondence with the Bernoullis, Montmort 
carefully left questions of priority to his readers. 

The correspondence with Nicholas Bernoulli is fascinating reading. It has 
the form of a series of friendly challenges of increasing difficulty. I t  usually 
begins with a problem set by Montmort, who illustrates the solution by a 
numerical example without disclosing his proof; Nicholas Bernoulli then 
provides a proof not only of the original problem but also of a generalization. 

We have discussed some of Montmort’s results in $914.1 and 14.3. Today 
he is mostly known for his solution of the problem of coincidences, which 
we shall discuss in Chapter 19. He also formulated the problem of the dura- 
tion of play and gave the solution for some special cases, as related in 8820.2 
and 20.4. In the remainder of the present chapter we shall discuss the other 
problems treated in the Essay. 

Judging from the number of references to the three books, Montmort’s 
Essay never came to enjoy the popularity of Bernoulli’s Ars Conjectandi and 
de Moivre’s Doctrine oj‘ Chances. One reason for this is that the second 
edition of the Essay is a combination of a textbook and a scientific 
correspondence on the further development of the most important problems 
in the text, so it  is rather diflicult for the reader to follow the solution of a 
given problem because i t  is treated in many different places of the book. 
Another reason may be that Bernoulli and de Moivre were renown 
mathematicians so that other mathematicians would naturally turn to their 
works instead of to the work of an “amateur.”The contributions of Montmort 
(and of Nicholas Bernoulli) have therefore been overlooked or undervalued 
by many authors. There exist, however, two comprehensive expositions of 
Montmort’s work, namely, by Todhunter (Chapter 8) and by Henny (1979, 
on which we shall draw in the following. 

18.2 
OCCUPANCY DISTRIBUTION 

MONTMORT’S COMBINATORIAL ANALYSIS AND THE 

Montmort writes that Pascal (1665) has given the best and most 
comprehensive exposition of combinatorics. As related in 85.2, Pascal’s work 
consists of separate sections on the binomial coefficients, the figurate numbers, 
the binomial expansion, combinations, and the sums of powers of integers, 
respectively, which entail many repetitions. Montmort gives an integrated 
theory of these topics, much like Bernoulli’s, but for some results with simpler 
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proofs following Pascal. We shall not repeat these results, which may be 
found in $5.2 and $15.4. The reader who wants to compare the expositions 
of Bernoulli and Montmort should note that Montmort defines the figurate 
numbers slightiy differently than Bernoulli, namely, as 

compare with ( 1  5.4.1). It is, however, remarkable how closely the choice of 
topics, proofs, and examples agree. 

Montmort does not arrive at Bernoulli’s formula for the sums of powers 
of integers. On the other hand, Bernoulli does not go as far in the analysis 
of the occupancy problem as Montmort. 

Montmort introduces the symbol 

fi 
m 

for the binomial coefficient; however, we shall retain the modern symbol 
introduced by Euler. 

Let us first consider Montmort’s results for the multivariate hypergeo- 
metric distribution and the multinomial distribution. Let N elements be 
divided into f classes, with N i  elements in the ith class, N ,  + ... + N, = N. 
The number of ways in which n elements may be selected without replacement 
among the N elements such that n, elements are selected from the ith class, 
n = n,  + + nl, equals 

This is the number of chances of getting the specified outcome. Dividing by 
the total number of chances (:) results in what today is called the multioariate 
hypergeometric distribution. 

Consider next n independent trials with f equally likely outcomes in each 
trial, for example, n throws of a die having f faces. The number of ways of 
getting ni outcomes of a specified kind, for example, ni throws each with face 
number i ,  n ,  + ... + n, = n, equals 

Dividing by f ”, we get the multinomial distribution. 
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The proofs of ( 1 )  and (2) are done by straightforward combinatorial 
reasoning using successive conditionings. 

Montmort presents three interpretations of the multinomial coefficient (2), 
namely, as the number of combinations, as the number of permutations, and 
as a coefficient in the multinomial expansion. 

In the subsequent discussion Montmort uses three examples: 

1. Drawings without replacement from a pack of cards (random sampling 
from a finite population). 

2. Throwing a number of dice each having f faces (random sampling 
from an infinite population or sampling with replacement from a finite 
population). 

3. The coefficients in the multinomial expansion (ar + ... + ( I , )” .  

Today, many more examples of this kind have been analyzed, e.g., the 
sampling of populations classified into several categories; the distribution of 
the number of accidents over the days of the week; and the distribution of 
a number of particles into compartments, usually discussed in terms of a 
random distribution of balls into cells, for which reason these problems are 
called occupancy problems. 

Consider a two-dimensional array of elements (aij),  say, for example, a 
pack of cards, where i = 1 , .  . . , f denotes the face value a n d j  = 1, .  . . , s denotes 
the suit number, so that the total number of elements equals N = fs. 

Suppose that n elements are drawn without replacement from the N 
elements and that we count the number of elements in the sample for each 
face value, disregarding the suit numbers. This leads to the occupancy 
distribution, n, ,  . . . , i i f ,  where ni denotes the number of elements with face 
value equal to i , n ,  + ... + nf = n, ni = 0, I , .  . ., s, and 0 Q n, < n. According to 
( l ) ,  the corresponding probability distribution is 

To find the distribution of the n;s according to size, we have to count the 
number of face values for which the occupancy numbers equal 0, 1, ..., s, 
respectively. Let the resulting distribution be 

Value of ni k, k2 *.. k ,  
No. offace values r ,  r2  ... r, 
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where 

C C 

0 < k ,  < k ,  < ... < k ,  < s, r j  = f, and k j r j  = n. 
1 1 

For the pack of cards, this distribution gives the number of face values 
missing in a hand, the number of singletons, the number of doubles, etc. In 
the example of the balls, the distribution gives the number of empty cells, 
the number of cells singly occupied, doubly occupied, etc. 

With this notation (3) may be written 

However, this expression does not give the number of chances of getting the 
distribution in question because we have not taken into account the fact that 
the face values are to be disregarded. We are interested only in the number 
of triples, say, occurring in the sample, not in their face values. The number 
of chances above must therefore be multiplied by the number of ways in 
which the given number of face values may be chosen among 
values; that is, by 

so that the final result becomes 

This is Montmort's result given in 1708, Proposition 14, without 
in 1713, Proposition 15, with a proof similar to the one above. 

Let us next consider the throw of ii dice, each having f faces 

the f face 

(4) 

proof, and 

numbered 
from 1 to f. This setup is analogous to the previous one, with the modification 
that the s suits have been replaced by n dice and that the outcome for each 
die is independent of the outcomes of the other dice, corresponding to 
drawings with replacement instead of without replacement. Disregarding the 
numbering of the dice, the distribution of the n outcomes according to face 
value is given by ( n l , . .  ,,fly), n,  = O , l ,  . . . ,  t i ,  and n ,  + ... + n - t i .  The 
corresponding probability distribution is obtained by dividing the 

47 
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multinomial coefficient (2) by the total number of outcomes f ” .  It should be 
noted that for drawings without replacement, we consider the (t) samples 
equally likely, whereas for drawings with replacement, we have f” equally 
likely samples. 

As before we now disregard the face numbers and consider the distribution 
of the n,’s according to  size. Using the same notation, except that k , < n  
instead of k, d s, the number of chances for the given occupancy distribution 
becomes 

where the multinomial coefficient (2) has been written in terms of the k’s and 
r’s and then multiplied by the number of ways in which the given number 
of face values may be chosen among the f face values. This is Montmort’s 
result given in 1708, Proposition 30, without proof, and with a printing error 
in the formula, but with the correct formula used in the numerical examples, 
and in 1713, Proposition 15, with the proof as given above. For the use of 
dice players, Montmort provides a table of the values of (2) and (5) for f = 6 
and n = 2 ,..., 9, see 1708, pp. 138-140, and 1713, pp. 200-202. Montmort 
returns to a discussion of ( 5 )  and its applications (1713, pp. 353-355) and 
claims priority for this formula. 

A similar discussion of Montmort’s results has been given by Henny (1975). 
For a throw with n dice Montmort notes that the total number of different 

results when order is taken into account is f ”, whereas the number of different 
results is only 

when order is ignored (see 1708, Proposition 32; 1713, Propositions 10 and 
11).  He also proves that the number of chances of getting k aces, say, is 

(;)o - I r k .  

Finally, he finds the distribution of the total number of points by throwing 
n dice, as discussed in $14.3. 

We have discussed Montmort’s formula for the summation of a series 
having constant differences of a certain order in connection with (15.4.1 3). 
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In further work on infinite series he proved !hat 

if the series converges for 1x1 < 1, see Chrystal (1900, Vol. 2, 405-408). 
There is no sharp distinction between combinatorial and probability 

problems in Montmort’s book; many problems treated later could have been 
included in Part 1, and some of the problems in Part 1 could have been 
treated as card or dice games. 

Montmort’s combinatorial analysis is deeper and more comprehensive 
than Bernoulli’s and requires more perseverance of the reader because of its 
greater difficulty. Furthermore, because Montmort does not write in the 
elaborate pedagogical style of Bernoulli, his text did not become as popular 
as Bernoulli’s. 

18.3 MONTMORT ON GAMES OF CHANCE 

To demonstrate Montmort’s methods of proof we shall discuss two card 
games, Pharaon and Lansquenet, and a game of bowls, Robartes’ problem, 
in which he uses combinatorics, recursion, conditional probabilities, and 
summation of figurate number to find the expectations of the players. The 
excitement that followed Montmort’s work can be seen in the discussion 
inspired by his derivation of the banker’s expectation in Pharaon, which led 
to contributions from John and Nicholas Bernoulli, Struyck, de Moivre, 
Daniel Bernoulli, and Euler. 

Montmort begins by defining the expectation of a player as e = ps, where 
p is the probability of winning and s is the total stake. Considering a game 
with two players, he defines the game as fair if the ratio of the stakes of the 
players equals the ratio of their expectations. He defines the advantage of a 
player as his expectation minus his stake. Assuming that the probability of 
winning is proportional to the number of chances favorable to the player, 
he proves that the player’s expectation equals e = (ms + n x O) / (m + n)  if there 
are m cases for getting s and n cases for getting 0. He thus finds the probability 
of winning as the number of favorable cases divided by the total number of 
possible cases. He does not state explicitly that all the cases have to be 
equally likely, but it is clear from the context that this is what he has in mind. 

Pharaon 

Pharaon is played with an ordinary pack of 52 cards. At the beginning of 
the game, the banker’s adversary, the punter, stakes the amount 1 on one 
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of the 13 face values. The banker begins by drawing two cards in succession. 
If the first card drawn has the same face value as the punter’s, the banker 
wins the punter’s stake. If the second card drawn has the same face value as 
the punter’s, the banker has to pay 1 to the punter. If both cards have the 
same face value as the punter’s, the banker wins half the punter’s stake. If 
both cards differ from the punter’s, the game continues with the remaining 
50 cards, the punter choosing a face value, the banker drawing two cards, 
and so on. These general rules are amended by a rule to the advantage of 
the banker, namely, that the secondcard in the last drawing does not count. 

Montmort analyzes a case in which the stock consists of p cards, p being 
even, and the punter’s card occurs q times in the stock, 1 < q < p .  We shall 
denote the cards by a,, . . . ,a,; b , ,  . . . , bP-,. Montmort considers the p !  equally 
likely permutations and notes for each whether the banker gets the amount 
2 , 0 ,  or t ,  or equivalently, whether his gain is 1, - 1, or 3. The corresponding 
averages give the banker’s expectation ep(q) and the banker’s advantage 
up(q)  = e,(q) - 1. The formula for up is simpler than that for ep because the 
cases with + 1 and - 1 balance each other. 

Montmort begins with a detailed discussion of the permutations for p = 2,  
4, and 6 and calculates the corresponding values of ep(q) .  He notes that when 
a permutation begins with two b’s, ep may then be expressed by means of 
ep-2, so that the problem may be solved by recursion. Turning to the general 
case he derives a recursion formula, as indicated in the following table. 

DERIVATION OF RECURSION FORMULA 

Outcome ab ba aa bb 
No. of chances 4 ( P  - 4 )  (P - 414 4(4  - 1) (P - 4)(P - 4 - 1) 

ep- 2 ( d  Prize 2 0 2 

Gain 1 - 1  i up-  2(4) 

3 

1 

- 

The total number of chances is p ( p  - 1). For q > 2 it follows that 

For q = 1 Montmort considers the p !  permutations of a l , b l , . .  . , b p - l .  If 
a, occurs at  an odd place, the banker gets 2; if a, occurs at  an even place, 
the banker gets 0, except for the case where a, occurs last, which gives 1. 
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Hence, 

299 

(3) 

so that up( 1) = l / p .  
For q = 2 the only contribution to up comes from the p / 2  cases, where the 

banker draws u1 and a2 together. The p / 2  - 1 cases give the banker $, and 
the last case gives 1. Hence, 

. . ( 2 ,= { ; ( ; -  ,>, 1 1  2 ! ( p -  2)! = p +  2 

P !  2P(P - 1) 
(4) 

Montmort does not derive up(2 )  directly as we have done above, but he 
gets the same result by a modification of the formula for up(q) for q > 2 ,  
which we are going to prove. 

By successive substitutions in ( 2 )  Montmort finds that 

Multiplying the numerator and denominator by ( p  - 2 - 2 i ) (9 -2 -2 ’ ) ,  he 
obtains 

Noting that up(q)  depends on the sum of alternate figurate numbers of 
order q - 1, Montmort states that such sums may be found by means of his 
summation formula (15.4.13) but that he will use a more direct method “based 
on a curious property of the figurate numbers.” 
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Montmort defines the kth figurate number of order m by the recursion 

k 

j =  1 
(9) f ; :=  cfi"-', f : = 1 ,  m = 2 , 3  ,..., 

so that 

f = ( + - 2). 
m- 1 

Denoting the sum of alternate figurate numbers by F r ,  we have 

the last term being f ;  = m for k even and f y  = 1 for k odd. 
From the definitions it follows that 

Adding the last two equations and dividing by 2, Montmort gets the recursion 

which leads to 

1 1 1 1 

2 4 8 
Fk" = - f ;+ 1 + -fk" + - f y -  1 + . . . + $ f ;  + Ck) ,  (12) 

where ck = 0 for k even, and ck = 1 for k odd. 
For later use Montmort also proves that 

which leads to 

where d,,, = 0 for k + m even, and d k + ,  = - 1 for k + m odd. 
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Writing (8) in the form 

it follows from (12) that 

u,(q)= {yp- 1 )  +-( 1 p - 2  ) + ...}/ 2(;) 
2 q - 1  4 q - 2  

where gq = 1 for q even, and gq = 0 for q odd. By means of this formula, 
Montmort tabulates u,(q) for q = 3,4,. . . , 8; the first two results are 

2p - 5 

2(p2 - 4p + 3,' and u,(4)= 
3 

4(P- 1) 
u,(3) = ___ 

By means of (13), Montmort obtains the alternative form 

Of the results given above the following appear in the first edition (1708): 
the recursion (1)  for e,(q); the general solution (8) in terms of figurate numbers 
is given without proof on p. 23; the lemma about the sum of alternate figurate 
numbers is indicated without proof on pp. 24-25; and the values of u,(q) for 
q = 1,. , . , 8  are given on pp. 24-25. 

Having obtained u,(q) in the form (8) by a combination of combinatorial 
reasoning and recursion, it is curious that Montmort did not derive this 
result afterward by a direct combinatorial argument. However, this was done 
by John Bernoulli in his letter to Montmort (1713, pp. 284-287). Bernoulli 
points out that the proof becomes simpler if one considers only the (i) 
permutations of qa's and p - qb's rather than the p! perniutations of p 
different elements. He demonstrates this for p = 4  and 6 and then states 
without proof that 

u, (q)={  1 +(;)+( 4 + 2  ) + + * * + (  P - 2  )}/(;I 
P - 4  
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for q even, and gives a similar formula for 4 odd. Bernoulli writes that 
Montmort will find that this formula gives the same particular results, i.e., 
u,(q) for q = 1,. . . ,8, as stated in his book; Bernoulli seems (like Todhunter) 
to overlook the fact that Montmort has given the general formula (8) and 
that (17) is only slightly different in form. The interesting question is what 
kind of combinatorial reasoning John Bernoulli used. It is tempting to suggest 
that John had his result from James, who used combinatorics to solve a very 
similar problem in the card game Bassette; see 915.5. 

In his reply, Montmort (1713, pp.303-304) points out that he has for a 
long time known of formula (5 ) ,  which differs only slightly in its form from 
Bernoulli’s. 

Formula (16) is given without proof by Nicholas Bernoulli in a letter to 
Montmort (1713, p. 299) and proved by Montmort on p.99 by means of (13). 
Presumably, Nicholas understood Montmort’s indication of the proof of (12)  
and then derived (13) for use in his own proof. 

Referring to Montmort’s Essay (1713), Struyck (1716, pp. 104-107) gives 
a purely combinatorial proof. He notes that any permutation begining with 
a may be decomposed into two beginning with ab and aa, respectively, and 
that the corresponding probabilities are 

Comparison with permutations beginning with ba, which have a probability 
of (p - q)q/p(p - l),  will show that the banker’s advantage may be expressed 
in terms of the difference of these probabilities. 

Ignoring the rule that the last card does not count, Struyck states that 
the winner of the game is the one who  first draws an a from a bowl containing 
q a’s and p - q b’s, the banker and the punter drawing alternately. This 
problem is, however, the same as Huygens’ second problem generalized to 
drawings without replacement; see 9: 14.2. Hence, the banker’s probability of 
winning is 

4 (P - d2’ 4 ( P  - qY4’ 4 p ,  =-+-----+----- + ... 
P P‘2’  p - 2 p‘4’ P - 4  

and the punter’s probability is similarly, 



18.3 MONTMORT ON GAMES OF CHANCE 303 

The banker’s advantage, depending on his priority, is thus f ( P ,  - P 2 ) .  Since, 

the banker’s advantage becomes 

in agreement with (8). 
De Moivre (1718, pp. 40-44, 55-58) derives u,(q) for q = 1,. . , , 4  by a 

combinatorial argument similar to that used by Struyck. In his preface (1718, 
p. XI), de Moivre writes that “I own that some great Mathematicians have 
before me taken the pains of calculating the Advantage of the Banker.. . But 
still the curiosity of the Inquisitive remained unsatisfied; The Chief Question, 
and by much the most difficult, concerning Pharaon or Bassette, being what 
it is that the Banker gets per Cent of all the Money adventured.” He then 
goes on to make q a random variable. He imagines that m times in succession 
the punter puts his stake on a face value chosen at random, his first choice 
being made before the first drawing. The average advantage of the banker 
becomes 

where the factor to upVz i (q )  equals the probability that q of the four cards 
remains in the stock. De Moivre reduces this expression to a polynomial in 
p and m divided by P ‘ ~ ’ .  For p = 52 and in = 23, he finds ii = 0.0299, which 
means that the banker’s average advantage is about 3% of the stake. In his 
preface de Moivre is very enthusiastic about this solution. As noted by 
Todhunter (p. 152), de Moivre’s idea is rather unrealistic from a gambler’s 
point of view. Today the idea is interesting mainly as an early example of a 
randomized procedure. 

According to Henny (1975, p.486), the game of Pharaon has also been 
discussed by Daniel Bernoulli in 1724 and by Euler in 1764 without essential 
new results. 

Montmort’s discussion on the card game Bassette is similar that on 
Pharaon, and we have discussed Bassette in 5 15.5. 

Lansquenet 

Lansquenet is a card game with n players placed at  random at a round table. 
From an ordinary pack of cards the banker deals a card to each of the n - 1 
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players and then to himself. Each player stakes the amount 1, except for the 
banker, who stakes n - 1. Turning the remaining cards successively, the 
banker wins if the card has the same value as the player’s, and he loses his 
own stake if the card has the same value as his own. The game stops when 
the banker has won all the stakes or lost his own. Although these general rules 
seem to make the game a fair one, all participants having the expectation 
zero, there are some supplementary rules that depend on the occupancy 
numbers, i.e., the number of singletons, doublets, etc., that  give the banker 
an advantage. Further, the rule of continuation, also depending on the 
occupancy numbers, gives the banker a certain probability for continuing 
as banker. The banker’s total advantage thus depends on his expected gain, 
g say, in a single game, and his probability of continuing as banker, p, say, 
so that the total advantage becomes 

9 u = g + p g  + p 2 g  + p 3 9  + * - *  = -. 
1 - P  

The problem is to determine g and p. 
Montmort (1708, pp. 30-53; 1713, pp. 105-129) calculates these quantities 

for n = 3,4,. . . ,7. Even the patient Todhunter (p. 91) says of Montmort’s 
discussion that “It does not appear to present any point of interest, and i t  
would be useless labour to verify the complex arithmetical calculations which 
it involves.” It seems that Todhunter has overlooked the fact that Montmort, 
after having derived the results for n = 3 and 4 by simple enumeration, points 
out for n = 5 that the general solution is obtained by means of the occupancy 
distribution, which he then goes on to apply. We shall indicate Montmort’s 
general method and use the case n = 4 for illustration. 

The occupancy distribution of n cards [see (2.4)] is 

( ; ) r o  (;)“ (:>” . . . 
where cri = 13, Iir, = n, ro is the number of face values missing among the 
n cards, rl the number of singletons, rt the number of doublets, etc. We shall 
denote the number of chances given by the numerator by N i  corresponding 
to vector number i in a given ordering of the vectors (ro,rl,rz, ...). 

To find the banker’s expected gain in a single game, Montmort considers 
the occupancy distribution for the n - 1 cards, and for each outcome he 
calculates the expected gain according to the special rules of the game. Finally 
he obtains g as the average of the conditional gains, as shown in the following 
table. 
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Montmort's calculation of the expected gain in a single game with four players 

EXPECTED 

i EXAMPLE" ro r l  r2 r3  NJ52 GAIN, gi 

1 abc 10 3 0 0  352 631245 
2 aab 1 1  1 1 0 72 1971245 
3 aaa 12 0 0 1 1 2 7 5/24 5 

Total: 425 

'a ,  6, and c denote dilferent face values. 

The total number of chances equals (':) = 22,100; dividing by 52 we get 425, 
as shown in the table. It follows that 

x N i g i -  7327 
g=--- 

C N ,  20,825' 

To find the probability of continuation, Montmort considers the 
occupancy distribution for n cards, and for each outcome he calculates the 
probability of continuation according to the special rules of the game. Finally 
he obtains p as the average of the conditional probabilities as shown in the 
following table. 

Montmort's calculation of the probability of continuation in a game with 
four players 

Probability 
i EXAMPLE" ro r1 r2 r3 r4 Ni/13 Pi 

1 abed 9 4 0 0 0 14,080 20180 
2 aabc 1 0 2 1 0 0  6336 29/80 
3 aabb 1 1 0 2 0 0  216 40180 
4 aaab 1 1 1 0 1 0  192 50180 
5 aaaa 1 2 0 0 0 1  1 80180 

Total: 20,825 
__ ~~ ~ ~~~ ~~ 

' a ,  b. c, and d denote different face values. 

It follows that 

x N i p i  30,229 p = - = -  
Z N ,  104,125' 



306 MONTMORT AND THE ESSAY D’ANALYSE SUR LES JEUX DE HAZARD 

The banker’s total expected gain thus becomes 

9 . -  36,635 
I_ - 
1 - p  73,896 

Montmort ends his analysis by giving examples of the calculation of the 
expected loss of each player using the same method as above. 

In his letter to Montmort (1713, pp.287-289) John Bernoulli points out 
that a more realistic analysis should be based on the assumption that the 
players successively become banker, so that when the banker loses his stake, 
the player on his right takes over as banker. Bernoulli analyzes this problem 
for two players. Let the outcome be aa with probability p and a6 with 
probability q = 1 - p .  In the first case the banker gets the amount 2, in the 
second case he gets nothing. Hence his expected gain in a single game is 
g = 2 p  - 1 = p - q, so that his total expected gain according to Montmort’s 
assumption becomes g/( 1 - p )  = ( p  - q)/q. Let u denote the banker’s total 
expected gain under Bernoulli’s assumption. Bernoulli then solves the 
problem by means of the equation 

u = p(l + u) + q( - 1 - u), 

which reflects the fact that the two players change roles with probabilities p 
and q. The solution is u = ( p  - 4)/2q, just half of the previous result. 

It will be seen that John Bernoulli’s result is a special case of the result 
given by James in his Problem 19, see g15.5. 

In Nicholas Bernoulli’s brief remarks to Montmort (1 71 3, pp. 299-301), 
he generalizes to n players and a finite number of games, m, say. Let the 
players A,, . . . , A,, have the expected gains g l , .  . . , gn, c g i  = 0, in a single game 
in which A,  is banker, and let p be the probability of continuing as banker 
for each player. Player A, sits to the left of A, ,A,  to the left of A,, and so 
on, until A,,, who sits to the right of A, .  When A,  loses the game, A,, becomes 
banker, so that A ,  now has the same position in relation to the banker as 
A, had before, which means that his expected gain now is g,..Since the game 
is “circular,” we have g i  = g,,+ = g2,, + = . .. if more than n games are involved. 
Without proof Nicholas Bernoulli gives the expected gain of A ,  as 

the series containing m terms. Analogous expressions hold for the other 
players. The proof is straightforward. In the first game, A,’s gain is 9,. If he 
wins he continues as banker and gets 9 , ;  if he loses, A, becomes banker, and 
A , %  gain is g,, and so on. Without proof Bernoulli then gives another form 
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of this expression. We shall indicate one proof; another is given by Todhunter 
(pp. 116-1 19). 

We have 

after changing the order of summation. 
Note that 

is the probability of getting the (i + 1)st failure at the last trial in k + i + 1 
trials, i.e., the binomial waiting time distribution (14.1.3). To reduce the sum 
of such terms to a sum of binomial probabilities we note that 

2 ( fl)qlpn-x = 5 (Y  ; ' ) q c +  L p y - c -  I ,  

x = O  x y = n +  1 

because the left-hand side gives the probability of at most c failures in n 
trials, which is the same as the probability that the (c + 1)st failure occurs 
at the (n + 1)st trial or later, as given by the right-hand side. It follows that 

1 - B(c, n, q) = qc + 

y = o  

By substitution we obtain 

which is Bernoulli's result. 
As explained in 514.1, Montmort knew the relation between the binomial 

and the negative binomial distributions in 1713 but presumably not in 1708. 
Whether Nicholas Bernoulli made use of this relation we do not know. 

Finally Bernoulli gives the solution for m -+ co as 

(n - l)g, 4 (n - 2192 + . * *  I- 9,- 1 
.______ u1 =-- 
nq 

We shall leave the proof to the reader. Besides Todhunter, Henny (1975) has 
discussed Bernoulli's results. 
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Other Games 

The card game Treize is discussed in Chapter 19. 
After having discussed the games Pharaon, Lansquenet, Treize, and 

Bassette, which are pure games of chance, Montmort turns to some other 
card games that also depend on the knowledge and decisions of the players. 
He states that it is impossible to give a complete discussion of such games 
and proceeds to discuss some special situations that may be solved by simple 
combinatorial methods. 

The next part of the Essay is on dice games. We have discussed the game 
Quinquenove (Cinq et neuf) in $15.5. The most important result for dice games 
is Montmort’s formula for the number of chances of getting s points by 
throwing n dice each having f faces and the corresponding table, which we 
have discussed in $14.3. 

In the following part Montmort solves Huygens’ five problems, (see 814.2) 
and the problem of points (see $14.1). 

On pp. 248-257 and p. 366 of the second edition, there follows an analysis 
of the problem of points in a game of bowls. According to de Moivre (Preface, 
1712 and 1718), this problem was posed to him by Francis Robartes, and 
de Moivre gave the solution of a special case in De Mensura Sortis (1712, 
Problems 16 and 17). Robartes’ problem was generalized by Montmort as 
follows: 

Players A and B play a game of bowls, A with m bowls and B with n. 
The skill of A is to the skill of B as r to s. In each game the winner gets a 
number of points equal to the number of his bowls that are nearer to the 
jack than any of the loser’s. If the play is interrupted when A needs a points 
and B b points in winning, how should the stake be divided equitably between 
them? 

Montmort explicitly defines “skill” by referring to a game with one bowl 
for each player. Player A’s skill, r / ( r  + s), is then A’s probability of getting 
nearer to the jack than B. He also points out that for m = n = 1 ,  we have 
the classical problem of points. 

Montmort assumes that the total stake is 1 so that A’s expectation, e(a, b), 
say, equals his probability of winning the stake. 

To solve the problem Montmort introduces an urn with mr white chips 
and ns black chips, representing A’s and B’s chances of winning. The total 
number of chips is t = mr + ns. 

Let Pi be A’s probability of getting at least i points, i.e., the probability 
of getting a run of i white chips by drawings without replacements from the 
urn. It follows that 

m r m r - r  m r - ( i -  l)r 
t t - - r  t - ( i - 1 ) r  

, i = 1 , 2  ,..., m. p i  = --... 
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Let p i  be A’s probability of getting exactly i points, i.e., the probability of 
getting a run of i white chips followed by a black. Hence, 

m r m r - r  m r - ( i - 1 ) r  ns 
Pi = , i = 1 , 2  ,..., m. 

t t - r  t - ( i - 1 ) r  t - i r  

Pi and pi are defined as zero otherwise. 
The corresponding probabilities for B will be denoted by Qi and qi,  i = 

1,2, .  . . , n, and they are obtained from P i  and p i  by interchanging (m, I )  and 
(n, 4. 

Note that pi = Pi - P i +  , and that 

m 

1 1 
pi + qi = P ,  + Q , = 1. 

Montmort gives the solution as the recursion 

a =  1,2, ..., 
6 =  1,2, ..., 

0 - 1  b - 1  

e(a, b) = Pa + 1 p a -  ie(i, b)  + qie(a, 6 - i), 
i =  1 i =  I 

and e(a,O) = e(0, b) = 1. The proof follows directly from the addition and 
multiplication theorems. 

If the players have only one bowl each, then P ,  = p1 = r / ( r  + s), Q1 = q1 = 
s / ( r  + s), and 

e(a, 6) = p1 e(a - 1,6) + q ,  e(a, 6 - I) ,  

which is the recursion for the classical problem of points. 
Montmort states that similar results hold for any number of players and 

gives a numerical example for three players. 
In his formulation and discussion of Robartes’ problem, de Moivre ( 1  712) 

assumes that the players are of equal skill and have the same number of 
bowls. He then derives the formulae for e(2,l)  and e(3, l )  and states that the 
general formula may be found by the same method. In the Doctrine ofchances 
(1718, Problems 27 and 28), de Moivre acknowledges Montmort’s general 
solution and derives e(a, b) for m = n. 

In modern terminology, Robartes’ problem may be described as a random 
walk in two dimensions, the horizontal steps being of length 1 or 2,. . . , or 
m, and the vertical steps being of length 1 or 2, ..., or n. Using the same 
graph as in Fig. 5.3.1, A wins if the random walk crosses the vertical line 
through (a, 0) before crossing the horizontal line through (0, b). 

In 1711 Montmort published a paper in Journal des Spzuans containing 
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a problem on the Loterie de Loraine, giving his own solution in the form of 
an anagram. He argued that this was another example of the usefulness of 
mathematics in civil affairs and urged the magistrates to consult 
mathematicians before making decisions on such matters. The rules of the 
lottery are much to the disadvantage of the owner. This lettter is reprinted 
together with a discussion of the solution in the Essay (1713, pp.257-260, 
313, 326, 346). in another example, Montmort considers the problem of 
choosing between two candidates for an office by majority voting (1713, 
pp. 260-261). These problems are not particularly difficult, and we have used 
them as problems for the reader in $18.7. 

18.4 THE CORRESPONDENCE OF MONTMORT WITH 
JOHN AND NICHOLAS BERNOULLI 

Montmort sent a copy of his Essay to John Bernoulli who responded with 
a letter of 17 March 1710. Bernoulli writes that the Essay contains many 
beautiful, interesting, and useful results and goes on with many detailed 
remarks on the games Pharaon, Lansquenet, and Treize; on Huygens’ 
problems; on the multinomial coefficient; the problem of points; and the 
duration of play. Except for the statement on the solution of the problem of 
points (see §14.l), there are no essential contributions in the letter; we have 
discussed most of the remarks in connection with the topics in question. 

Bernoulli ends by praising Montmort’s deep insight and indefatigable 
patience in carrying out long and laborious calculations. He expresses his 
hope that Montmort will continue his work and produce a more ample and 
rich book, and he points out that there are many more problems to 
investigate, in particular moral and political matters, which his brother James 
had begun to discuss in a book that, apparently, will never be published. 

I t  must have been greatly encouraging for Montmort, who was rather 
unknown, to receive such a letter from a famous mathematician. In his reply 
Montmort thanks Bernoulli for the honor he has shown him by reading his 
book and for his many learned and judicious remarks. He replies to the 
various remarks and adds two new results on the probability of getting a 
given sum of points by throwing n dice (see 514.3) and on the duration of 
play (see $20.4), respectively. 

John Bernoulli lent his copy of the Essay to his nephew Nicholas, who 
wrote some important remarks which were sent to Montmort together with 
John’s letter. A correspondence ensued of which the Essay contains seven 
letters from Nicholas and six from Montmort. In one of the letters, Montmort 
(1713, p. 322) asks the Bernoullis’ permission to include their letters in the 
new edition of the Essay which he is planning. 
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The correspondence between Montmort and Nicholas Bernoulli is a 
paragon of a friendly scientific correspondence, showing the creativity and 
ingenuity of each and how they inspirated one another to formulate and 
solve ever more difficult problems and thus develop probability theory from 
an elementary level to a discipline on a par with other branches of 
mathematics. 

The results obtained are too extensive and important to be discussed in 
a single section; the more important topics are therefore treated separately: 
Pharaon, Lansquenet, and Robartes’ problem in 5 18.3; the game of tennis 
in 5 18.5; the strategic game Her in $ 18.6; the problem of coincidences (Treize) 
in $19.3; the duration of play in 520.3; and Waldegrave’s problem in 521.2. 
We have discussed Nicholas Bernoulli’s approximation to the binomial in 
516.3 and his analysis of the ratio of male to female births in 517.3. A n  
account of Montmort’s and Bernoulli’s discussion of de Moivre’s De Mensura 
Sortis is given in 522.2. 

On 26 February 171 1, Nicholas Bernoulli mentions that he has submitted 
Montmorts’ offer to print the manuscript of Ars Conjectandi to his cousin, 
James Bernoulli’s son, who is in posession of the manuscript, and that he 
has also written to Hermann, asking him to see that it is printed quickly but 
that so far he has not had any reply. He also writes that it is desirable that 
someone complete the last part of the book and that he knows of no one 
more capable of succeeding than Montmort. Montmort, however, briefly 
outlines the difficulties of such a project and declares himself insufficient to 
this task. 

In his last letter Bernoulli writes that in return for the many problems 
posed by Montmort he shall now pose five problems for Montmort to solve. 
We have used the first three as problems for the reader in $18.7. The fourth 
problem is as follows: Player B throws successively with an ordinary die and 
gets x crowns from A if a 6 occurs for the first time at the xth throw, 
x = 1,2,. . .; find B’s expectation. Obviously, B’s expectation is six crowns; 
we shall leave the proof to the reader. [Todhunter’s solution (p. 134) is 
wrong]. 

The fifth problem, known today as the Petersburg problem, is obtained 
from the fourth by letting the prize increase in geometric progression, for 
example, as 2‘-’. This leads to an infinite expectation. Reviews of the history 
of this problem have been given by Jorland (1987) and Dutka (1988). 

Montmort replies that he has not yet solved the two first problems, that 
he has generalized and solved the third, and that the two last problems do 
not present any difficulty, since the solution is obtained as the sum of an 
infinite series. He does not mention that the second sum is infinitely 
large. 

The last of the published letters is from Montmort to Bernoulli and dated 
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15 November 1713. Montmort writes that his friend, Mr. Waldegrave, is 
taking care of the printing of the new edition of the Essay and that it is 
nearly finished. 

18.5 MONTMORT AND NICHOLAS BERNOULLI 
ON THE GAME OF TENNIS 

The problem of points for the game of tennis is discussed in the 
correspondence between Nicholas Bernoulli and Montmort (1 71 3, pp. 333- 
334, 349-350, 352-353, 371). The background for their discussion is the 
solution of the classical problem of points for two players, which we have 
given in $ 14.1, and James Bernoulli’s discussion on tennis (see $ 1  5.6). 

Nicholas Bernoulli, who knew the content of James Bernoulli’s Lettre 
before it was published in 1713, writes in a letter of 10 November 171 1 to 
Montmort that James has solved many interesting and useful problems on 
the game of tennis. He quotes four of the problems without giving the 
solutions or indicating James’s method of solution and asks Montmort to 
solve the problems for comparison with James’s solutions. In his reply of 1 
March 1712, Montmort does live up to the challenge; he gives an explicit 
formula for A’s probability of winning when A lacks a points and B lacks 
b points to win. 

Montmort considers the problem as a generalization of the classical 
problem of points. He first refers to the solution of this problem in terms of 
the binomial distribution, see (14.1.1), and without further comment he notes 
that the corresponding formula for the problem of points under the rules 
valid for tennis becomes 

e,(a,b)= ‘+f-’( a i - b - 2  ) p i q a + b - 2 - i  

i = a  a-  I 

In the ordinary game of tennis, a = 4 - i and b = 4 -j, but the formula holds 
for any other number than 4. 

I t  will be seen that Montmort’s elegant result comprises all the formulae 
which James Bernoulli laboriously derived by recursion, since 

g ( i , j )  = e,(4 - i ,  4 - j ) .  

Montmort says that e,(a, b) is obtained from e(a, b), replacing a + b - 1 
by a +  b - 2 and multiplying the last term by p 2 / ( p 2  + q 2 ) .  This is also the 
proof of the formula, since the first term gives A’s probability of getting a 
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points before B gets b - 1 points, and the last term gives the probability of 
winning after a deuce. 

Noting that the first term of e,(a, b) equals e(a, b - l),  Montmort's formula 
may also be written in the form 

For example, 

2 0 ~ 5 ~ 3  

p2 + q2' 
e,(4,4) = p4(1 + 4q + 10q2) + _I_ 

Montmort does not mention this alternative form of his formula in the 
published part of his letter, but according to Henny (19754, the corresponding 
form of e(a, b) is given in the letter. Presumably Montmort left it out of the 
letter and transferred it to his general discussion of the problem of points 
(1713, pp. 245-246) for systematic reasons. 

To solve the problem of handicaps for a given relative strength of the 
players, Montmort solves the equation 1 - e,(a, b) = with respect to 
m = a + b - 2 for given values of a and p/q. He considers the example with 
a = 4 and p/q = 2. First, he solves the corresponding equation for the problem 
of points; as pointed out by Todhunter (p. 125), the equation given by 
Montmort (1713, p.342) is wrong, but the root is correct so that he must 
have had the correct equation. For the game of tennis Montmort just gives 
the solution that B's handicap should be j=2&,  without giving the 
equation, which obviously is 

1 + 2( 7 )  + 4( y )  + :( y )  = :, 

or 

8m' + 36m2 + 16m + 3 0  = 5 x 3"' ', 
with the approximate solution m = b + 2 = 3%. 

As a check Montmort inserts a = 4  and b =  1% in the equation 
e,(a, b) = i, which leads to a homogeneous algebraic equation of the sixth 
degree in p and q from which he finds that p/q = 2. 

Since the handicap will normally lie between two integers, Montmort 
states that the solution requires randomization to be carried out in practice. 
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In the example above a chip is drawn from a bag with 213 white and 1 1  
black chips, and if the chip drawn is white B gets a handicap of 2 points, if 
black only I point. 

In  his reply Nicholas Bernoulli acknowledges Montmort’ solution and 
makes a further generalization. He assumes that A’s probability of winning 
a point in odd- and even-numbered games equals p1 and p z ,  respectively, 
thereby taking into account the fact that A’s probability of winning depends 
on whether he is serving or not. Let (I + h - 1 = m + n,  m = n if m + n is even, 
and in = 11 + 1 i f  in  + n is odd. Bernoulli then gives A’s probability of winning 
for the problem of points in the form 

He adds that for the game of tennis, m + n should be replaced by rn + n - I 
and that the term for i = b - 1 should be multiplied by p l p 2 / ( p 1 p z  + q l q z ) .  

18.6 THE DISCUSSION OF THE STRATEGIC GAME 
HER AND THE MINIMAX SOLUTION 

For two players, A and B, the card game called Her may be described as 
follows. Player B holds a pack of cards consisting of four suits, the cards 
being numbered from 1 to 13. Player B draws a card at  random, which he 
gives to A, and afterward he draws a card for himself; the main object of 
the game is to obtain the higher card. However, if A is not content with the 
card received, he may compel B to exchange cards with him, unless B has 
a 13. If B is not content with the card first obtained or with the card that 
A has compelled him to take, he may change it  by drawing a card at random 
among the 50 cards remaining in the pack; but if he draws a 13, he is 
not allowed to change his card. The players then compare cards, and the 
player with the higher card wins; if they have cards of the same value, 
B wins. 

The game is described for four players and used as a problem for the 
reader by Montmort (1708, pp. 185-187). The description is repeated for 
three players by Montmort ( 1  71 3, pp. 278-279) and again posed as a problem. 
It  is discussed and solved for two players in the correspondence with Nicholas 
Bernoulli, see Montmort (1713, pp. 321, 334, 338-340, 348-349, 361-362, 

I t  will be seen that the game consists of three steps. The first is the drawing 
376-378, 400, 403-406,409-412,413). 
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of two cards at random, and the outcome thus depends on chance only. The 
second step depends on A’s decision whether to use his right to exchange 
cards with B or not. The third step depends on B’s decision whether to use 
his right to exchange his card with a card from the pack or not. Since A’s 
probability of winning depends not only on chance but also on the decisions 
made by the players, the game is called a strategic game in today’s 
terminology. In the first letter in which Montmort mentions this game he 
writes that “The difficulties of this problem are of a singular nature.” 

Dresher (1961, pp. 6-7, 59-60) has used Her as an example of a strategic 
game but without historical comments; Henny (1975) has given a complete 
account of the history of Her and elucidated the solution by means of modern 
game theory. We shall make use of both these expositions. 

It is intuitively clear that a good strategy consists in changing cards of 
low value and retaining cards of high value and, furthermore, that the line 
of demarcation between low and high must be about 7. Without discussion 
Montmort and Bernoulli concur in the opinion that A always should change 
cards of value less than 7 and retain cards of value higher than 7; his decision 
with regard to 7 depends on the strategy chosen by B. Further, they agree 
that a similar rule holds for B but with 7 replaced by 8. The evaluation of 
the effect of these rules on A’s probability of winning depends on calculations 
which are published by Montmort as an appendix to his last letter “to spare 
the reader for the trouble to do it himself.” We shall begin by explaining 
these calculations; similar explanations have been given by Trembley ( 1  804), 
Todhunter (pp. 106-1 lo), Fisher (1934), and Dresher (1961). 

In each game there are at most three cards involved, their values being 
i, j ,  and k, say, such that A gets i, B gets j ,  and if the game ends with B 
drawing a card from the pack, he gets k .  Player A’s probability of winning 
may be written as 

where p(i,j) is the probability of getting the values ( i , j )  of the two cards 
drawn, and c ( i , j ; S )  is the number of cards among the remaining 50 cards 
which makes A win, given that the players use the strategy S. Assuming that 
the stake is unity, A’s expectation equals his probability of winning. 

Obviously, p ( i , j )  equals (4/52)(4/51) for i # j  and (4/52)(3/51) for i = j .  To 
illustrate the calculation of c(i, j ;  S), we have (like Dresher) considered the 
case where A retains cards of value 7 and above and changes cards of lower 
value, and B retains cards of value 9 and above and changes cards of lower 
value. The results are shown in the accompanying table. 
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B changes 

i\ i I 2 3 4 5 6 7 8 

TABLE OF c( i , j ;  S )  

B retains 

9 10 I 1  12 13 c(i;S) 

A changes 
1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 

A retains 

Total 

0 7 11 15 19 23 27 31 
0 0 I 1  15 19 23 21 31 
0 0 0 15 19 23 27 31 
0 0 0 0 19 23 27 31 
0 0 0 0 0 2 3 2 7 3 1  
0 0 0 0 0 0 2 7 3 1  

27 27 27 27 27 27 24 24 
31 31 31 31 31 31 31 28 
35 35 35 35 35 35 35 35 
39 39 39 39 39 39 39 39 
43 43 43 43 43 43 43 43 
47 47 47 47 41 47 41 47 
50 50 50 50 50 50 50 50 

35 39 43 47 0 297 
35 39 43 47 0 290 
35 39 43 47 0 279 
35 39 43 41 0 264 
35 39 43 47 0 245 
35 39 43 47 0 222 

0 0 0 0 0  204 
0 0 0 0 0  238 
0 0 0 0 0  280 

50 0 0 0 0 362 
50 50 0 0 0 444 
50 50 50 0 0 526 
50 50 50 50 0 600 

425 1 

The combinations of i and j for which A loses, c = 0, and A wins, c = 50, 
follow immediately from the rules of the game. Consider next one of the 
combinations which has 1 < i < 6 and i < j < 13. For i < 6, A compels B to 
exchange cards, whereafter B has a card of value i ,  and he knows that A has 
a card of value j larger than i. Player B therefore draws a card from the pack 
and gets a card of value k. Player A wins if k < j or k = 13, and the number 
of cards satisfying this condition is 

For 7 < i < 12 and 1 ,< j ,< 6, a similar argument gives c(i, j ;  S) = 4i - 1. We 
shall leave it to the reader to check the remaining values. 

For a given value of i A’s probability of winning becomes 

2c(i; S )  

13 x 5 1  x 25’ 
p(i; S )  = 1 p(i, j ;  S )  = - 

i 

where 

3 
c(i; S )  = 1 c(i, j ;  S )  + --c(i, i; s). 

j#i 4 
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The total probability of winning for A then becomes 

For the strategy, defined in the table above, 

= 0.5129. 
2 x4251 2834 

5525 
- - -- 

’(’)= 13 x 51 x 25 

Montmort does not explain these rather simple calculations; he just 
provides a table with the values of 2c(i; S) for the four strategies in question. 

MONTMORT’S TABLE OF 2c(i; S) AND A’S PROBABILITY OF WINNING 

A changes 7 and under A retains 7 and over 

Value of B changes 8 B retains 8 B retains 8 B changes 8 
A’s card and under and over and over and under 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

594 
580 
558 
528 
490 
444 
390 
476 
560 
724 
888 

1052 
1200 

594 
580 
558 
528 
490 
444 
390 
434 
590 
746 
902 

1058 
1200 

594 
580 
558 
528 
490 
444 
360 
434 
590 
746 
902 

1058 
1200 

594 
580 
558 
528 
490 
444 
408 
476 
5 60 
724 
888 

1052 
1 200 

Strategy CC CR R R  RC 

Source: Montmort (1713), p. 413. (C) change; (R)  retain. 

We have added the decimal fractions for p ( S )  and labeled the strategies 
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in the last line of the table C and R, denoting change and retain, respectively. 
Only these strategies are discussed in the correspondence. 

I t  will be seen that the numbers in the last column of Montmort’s table 
are obtained as 2c(i;S) from the previous table. 

Returning to the correspondence, the first letter from Montmort on Her 
contains the remark that A’s advantage lies between 1/85 and 1/84. Since 

1 - - -- 2828 I 131 

5525 2 11,050 84.4’ 
- - - - 

this indicates that Montrnort has found that A’s probability of winning is 
(at least) 282815525. 

In his reply Bernoulli states that if one supposes that each player chooses 
the strategy which is most advantageous for him, then when A chooses C, 
B also chooses C, and when A chooses R, B also chooses R, and in both 
cases A’s probability of winning becomes 282815525. Nevertheless, he adds, 
i t  is more advantageous for A to use strategy C than R, and “this is an 
enigma that I leave for you to expound.” Obviously, Bernoulli’s remark refers 
to the fact that strategy C gives either 282815525 or 283815525, whereas 
strategy R gives only 2828/5525 or 2834/5525. 

Montmort replies that Bernoulli’s solution agrees with his own. However, 
before asking for Bernoulli’s opinion he had for some time discussed the 
problem with two of his friends, M. I’Abbe d’Orbais (also called Monsoury) 
and an English gentleman, Mr. Waldegrave, and they are of another opinion; 
M .  I’Abbe d’Orbais holds that i t  is impossible to determine the expectation 
ofeither A or B because one cannot find A’s optimal strategy without knowing 
B’s strategy and vice versa, and this leads to a circular argument. We have 
illustrated this in the following table, assuming that A begins by choosing 
strategy C. 

TABLE OF A’S EXPECTATION ACCORDING TO THE 

FOUR STRATEGIES 
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Montmort had shown Bernoulli’s letter to his friends, and in response 
Waldegrave writes a letter to Montmort stating their objections. Although 
using more sophisticated reasoning than shown above, they arrive at the 
circular argument and maintain that whether the players use strategy C or 
R makes no difference. They conclude that Bernoulli‘s solution is false because 
he has “contented himself with considering the fractions which express the 
different expectations of A and B without taking notice of the probability 
of what the other player will do.” 

It is no wonder that Bernoulli does not understand the implication of this 
remark, since the writers themselves have not grasped the full implication of 
their point of view. Bernoulli is not convinced; he now gives the arguments 
for his previous solution. If A has chosen a strategy, C or R, then B chooses 
the same strategy, because this choice minimizes A’s expectation and thus 
maximizes his own; for both these combinations of strategies A’s expectation 
is 2828/5525. However, Bernoulli states that if it is impossible for the players 
to decide which strategy to use, they may leave the decision to chance and 
each choose a strategy with a probability of i, which makes A’s expectation 
equal to 2832/5525. He also states that this procedure does not lead to a 
unique solution because A’s expectation is 2833/5525 if he always uses strategy 
C and B leaves the decision to chance. (Bernoulli uses slightly different 
numbers in his reasoning.) 

In the last letter on Her, Montmort writes that he is now convinced that 
the original considerations by himself and Bernoulli do not represent a 
solution because they presuppose that B knows the strategy of A. He adopts 
the idea of choosing a strategy at random and gives A’s expectation as 

2828ac + 2834bc + 2838ad + 2828bd 
j j =  - 

5525(a + b)(c  + d )  
> 

where a/(a + b )  and c/(c  + d) are A’s and B’s probabilities of choosing strategy 
C, respectively. Montmort is unable to find the optimal values of these 
probabilities and concludes that it is impossible to solve the problem. 
However, before he has finished his letter he receives one from Waldegrave 
with the solution, which he includes in the letter to Bernoulli. 

Setting a = 3 and b = 5 ,  Waldegrave finds that j j  = 2831.75/5525 = 0.5125 
whichever strategy B chooses and thus, also, whichever values of c and d he 
chooses. He gives a clear discussion of this solution, showing that if A chooses 
any other strategy, there exists a strategy for B which makes A’s expectation 
smaller. Hence, a = 3 and b = 5 is the optimal strategy for A. Furthermore, 
Waldegrave observes that B is able to limit A’s expectation to 2831.75/5525 
by choosing c = 5 and d = 3, and this is the optimal strategy for B. The 
introduction of a chance device thus resolves the problem of the circular 
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argument and gives a uniquely determined value of A’s expectation. 
Waldegrave does not explain how he has found this solution. 

According to Henny (1975), Bernoulli acknowledged Waldegrave’s 
solution in a letter to Montmort in 1714. Neither Waldegrave nor Bernoulli 
generalized their analysis. A mathematical theory of games of strategy was 
not developed until the 1920s with the works of Bore1 and von Neumann 
and in the fundamental book by von Neumann and Morgenstern (1944). 

Like Henny (1975) we shall comment briefly on the relation between 
Waldegrave’s solution and modern theory. Let aij, i = 1,2 and j = 1,2, denote 
the values of A’s expectation in the 2 x 2 table above, i and j denoting the 
strategies ofA and B, respectively. Under the assumptions made by Montmort 
and Bernoulli, A gets at least 

2828 
max min aij = --, 

i j  5525 

and at most 

2834 
min max aij = --. 

j i  5525 

Since 

max min aij -= min max aij, 
i j  j i  

there is no unique solution by means of pure strategies. 

Montmort’s formula for A’s expectation becomes 
Introducing mixed strategies and setting x = a/(a + b) and y = c/(c + d) ,  

Just as in the example, we shall assume that the coefficients of x and y are 
positive and the coefficient of xy negative. 

Waldegrave determines the optimal value of x, xo, say, by the condition 
that p(x,, y) has to be independent of y. Setting the coefficient of y equal to 
zero, we obtain 

3 - -- a,, - - a 2 2  

a21 -a22 + a12 --a11 

xo = 
8’ 
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Further, Waldegrave states that if A chooses a strategy different from xo, 
then there exists a strategy y for B such that p(x ,  y) < p(xo,  y )  for x # xo. To 
prove this, consider the difference 

If x > x o ,  then B chooses y = 1 to make the difference as large as possible 
and positive. If x < xo, then B chooses y = 0, which again makes the difference 
as large as possible and positive. Hence, 

j ( x , ,  y )  = max min p ( x ,  y) .  
X Y  

Analogously it  is found that the optimal value of y equals 

a1 2 - a22 5 
8’ 

.____ = - Yo = 
a21 - a22 + a12 - a,  1 

and that p(x, y o )  = p(xo, y),  which means that 

max min p(x ,  y )  = min max p(x, y ) .  
X Y  Y X  

This is the fundamental minimax theorem, which shows that the use of mixed 
strategies leads to a uniquely determined value of the game. 

Returning to Montmort’s considerations it is interesting to see that he 
has fully grasped the importance of this type of game. He writes that “These 
questions are rather simple, but I think impossible to solve; if this is so it is 
a great pity because this difficulty occurs in many instances of civil life: for 
example, when two persons do business each of them will adjust his behaviour 
after the other; i t  also takes place in several games” (1713, p. 406). 

Trembley (1  804) does not understand Waldegrave’s reasoning leading to 
the minimax solution. Referring to Nicholas Bernoulli he says that if each 
player is ignorant of the strategy chosen by the other player, then each of 
them should choose a strategy with a probability o f f ;  he does not notice 
Bernoulli’s reservation about this solution. Presumably the choice of a 
uniform a priori distribution seemed natural for Trembley in view of the fact 
that Laplace in the meantime had introduced the principle of insunicient 
reason as a general solution of such problems. Trembley extends his analysis 
to the case of three players. 

Todhunter’s discussion (pp. 106- I 10) is incomplete; he has overlooked 
Montmort’s randomized strategy and Waldegrave’s minimax solution. Fisher 
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(1934) discusses the problem based on Todhunter's exposition; he derives the 
table of c(iJ S) given above, and by randomization he finds Waldegrave's 
solution. I t  seems that he has not read Montmort's book and, misled by 
Todhunter, he consider his solution to be new; his exposition of the 
randomization principle is of course clearer than that given by Waldegrave. 

18.7 PROBLEMS FROM MONTMORT'S ESSA Y 

1. Drawing seven cards at random from a pack of 52, show that the 
probability of getting three doubles and a single is 16,632/900,473 (1708, 
p. 99). 

2. Drawing 13 cards at random from two packs (104 cards), find the 
probability of getting two quadruples, two doubles, and a single (1708, 
p. 99). 

3. Suppose that a pack of cards consists of five kings, four queens, two 
jacks, two tens, and one ace. Drawing four cards at random among the 
14, show that the number ofchances for getting two doubles is 93; (1713, 
p. 3 I ) .  Montmort derives this result by a generalization of (2.4). Find the 
general formula. 

4. Throwing nine ordinary dice, show that the number ofdifferent outcomes 
without regard to order is 2002 (1713, p. 36). 

5. Throwing nine ordinary dice, show that the number of chances for getting 
exactly three aces is 1,312,500 (1713, p. 39). 

6. Throwing nine ordinary dice, show that the number of chances for getting 
a quadruple, a double, and three singles is 907,200 (1708, p. 140). 

7. For the multinomial (a + b + c + d + e +J)9, consider all the terms in 
which any letter occurs in the fourth power, any combination of two 
letters in the second power, and any letter in the first power. Show that 
the sum of the coefficients of these terms equals 680,400 ( 1  7 13, pp. 45-46). 

8. Show that 

" - 1  2 + i 3n5 + 15n4 + 25n3 + 15n2 + 2n 

60 z( ) =--- t 

i = O  

(1713, p. 64, 144). 
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9. The Lottery of Lorraine consists of 1,000,000 tickets at a price of livre 
each, and the prizes amount to 425,000 livres distributed over 20,000 
drawings with replacement. Any player buying 50 tickets without getting 
a prize will get his 25 livres refunded. Supposing that 20,000 players each 
buy 50 tickets, show that the expected loss of the Lottery amounts to 
184,064 - 75,000 = 109,064 livres ( 1  71 3, pp. 257-260, 31 3, 327, 346). 
Montmort’s result is not quite correct because of rounding errors; find 
the correct result. 

10. Suppose that 12 persons by a majority vote are to decide whether A or 
B should hold a certain office. It is known that A has three votes and 
B two and that A and B have the same chance for getting each of the 
remaining seven votes. However, before the voting, three of the voters 
fall ill; it is assumed that they have been chosen at random and that i t  
is not known how they would have voted. Show that A’s probability of 
being elected is 109/176 (1 7 13, pp. 260-262). 

11. Consider a play consisting of at most three games, each game being 
for two points. Of the two players, A and B, the one who first wins 
two games is the winner. To equalize the chances of winning, the stronger 
player A gives B one point in the first game and one in the third game, 
if i t  is to be played. Assuming that A’s probability of winning a point is 
p and B’s probability q, show that A’s probability of winning the play 
may be expressed as a polynomial of the seventh degree in p (1713, pp. 
343, 350,.352). According to Montmort, p / q  is approximately equal to 
1.77. 

12. Players A and B play alternately with a four-sided die having the face 
values 0, 1,  2, and 3. Player A pays a certain number of crowns to a 
common stock and begins the play. Each player gets as many crowns 
from the stock as the number of points thrown, with the following 
exceptions for B. If B gets 0 points, he pays a crown to A, and if he gets 
a larger number of points than the number of crowns remaining in the 
stock, he gets nothing but has to pay to the stock as many crowns as 
his number of points exceeds the number of crowns in the stock. They 
continue in this way until the stock is exhausted. How many crowns should 
A pay to the stock at  the beginning of play for A’s and B’s expectations 
to be equal? Solve the problem also under the assumption that B pays 
a crown to the stock when he throws 0 instead of paying a crown to A 
(1713, p.401). These are the two first problems posed by Nicholas 
Bernoulli to Montmort. 
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13. Players A and B play alternately with an ordinary die; A pays s crowns 
to the stock at the beginning of play. Player A gets a and player B gets 
6 crowns from the stock if he throws an even number, if not A has to 
pay c, and B has to pay d crowns to the stock. Player B has the first 
throw. The problem is to find (a) the expectations of A and B, respectively; 
(b) the value of s for given values of a, 6, c, and d so that the expectations 
are equal; (c) the probability of a given duration of play (1713, pp. 
401 -402, 407-408). This is Montmort’s generalization of the third 
problem posed by Bernoulli. 

14. Player A has a number of counters in his hand and asks B to guess 
whether the number is even or odd. If Bs guess is correct, he gets four 
crowns when the number is even and one crown when the number is 
odd. If B’s guess is wrong, he gets nothing. Find the optimal strategies 
of the two players (1713, p. 406). The problem is due to Montmort. 

15. Jeu de la Ferme. This game is played with an ordinary pack of cards 
after removal of the four 6‘s. Each player pays one crown to the stock 
before play begins. The players bid for the position of banker, and the 
highest bidder becomes banker, paying his bid to the stock. The banker 
deals two cards to each player, and the sum of each player’s points is 
compared with 16. If all the players have more than 16 points, the banker 
continues, and each player pays a crown to the stock; if not, the following 
rules apply. If the number of points exceeds 16, the player has to pay as 
many crowns to the stock as indicated by the difference. If the number 
of points is less than 16, the player may either keep his cards or he may 
exchange them with two new ones from the banker. If the number of 
points equals 16, the player wins the stock and takes over as banker. If 
nobody has 16 points, the player who is nearest below 16 takes over as 
banker. If two or more players have the same number of points, the player 
sitting farthest to the right of the banker wins. For the banker two special 
rules apply: (a) if he is closer to 16 than any other player by one point, 
he loses the position of banker; (b) if he and another player both have 
16 points, the play starts all over again with a new round of bidding. The 
problem is to find how much a player should bid so that the game is a 
fair one. 

This is the third problem posed by Montmort (1708, pp. 187-188) for 
the reader to solve. Montmort does not indicate the solution. 

16. Jeu des Tas. The game is played with a pack of 40 cards distributed at 
random into 10 piles of 4 cards each. The player turns up the top card 
of each pile and removes cards of the same face value in pairs. He next 
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turns up the cards immediate]! below the cards removed and continues 
the pairing and removal of pairs of equal value. He wins if he succeeds 
in removing all the cards. Find the best strategy of pairing and the 
probability of winning. Generalize to a pack of N = sfcards; s suits, each 
off face values. 

This is the fourth problem posed b! Montmort (1708, pp. 188-189) 
for the reader to solve. For N = 2n, h: qntmort (1713, p. 321) gives the 
probability of winning as (n - 1)/(2n - I); a proof has been given by 
Todhunter (pp. 1 1 1 - 1 13). 



CHAPTER 19 

The Problem of Coincidences 
and the Compound Probability 
Theorem 

In the 24th and 25th Problems, I explain a new sort of 
Algebra, whereby some Questions relating to combinations [of 
events] are solved by so easy a Process, that their solution is 
made in some measure an immediate consequence of the 
Method of Notation. I will not pretend to say lhat this new 
Algebra is absolutely necessary to the Solving ofthose 
Questions which I make to depend on it. since it appears by 
Mr. De Montmort's Book, that both he and Mr.  Nicholas 
Bernoully have solved, by another Method, many of the cases 
therein proposed: But I hope I shall not be thought guilty of 
too much Conjidence, if1 assure the Reader, that the Method 
I haae.followed has a degree of Simplicity, not to say of 
Generality, which will be hardly attained by any other Steps 
than by those I have taken. 

-De MOIVRE.  1718 

19.1 INTRODUCTION 

In its simplest form the problem of coincidences (matches, recontres) may 
be formulated as follows: Let there be n objects numbered from 1 to n, and 
let them be ordered at random, assuming that the n! permutations are equally 

326 
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probable. A coincidence occurs if object number i is found at the ith place. 
The problem is to find the number of permutations with at least one 
coincidence or, equivalently, the probability of at least one Coincidence. 

The problem may be generalized in many ways. Consider for example s 
sets of n objects each, the objects within each set being numbered from 1 to 
n, and draw consecutively n objects at random among the ns objects. What 
is the probability of getting at least one coincidence? 

It is practical to introduce two parallel sets of symbols, the one giving the 
number of permutations and the other the corresponding probabilities. As 
usual we have two types of distributions corresponding to the number of 
coincidences and the waiting time for the first coincidence, respectively. 

Considering the simplz problem described above, we denote the number 
of permutations with exactly k coincidences by c,(k), 

c,(O) + * "  + c,(n) = n!. (1) 

The probability of exactly k coincidences then becomes p,(k)  = c,(k) /n! ,  and 
the probability of at least k coincidences equals 

For the probability of at least one coincidence, we introduce the abbreviation 

Let d,(i) denote the number of permutations with the first coincidence 
occurring at place number i, that is, the waiting time, or duration, equals i .  
The number of permutations with at least one coincidence then equals 

p,* 

d,  = d , ( l )  + * . *  + d,(n). (3) 

Obviously, 

d, + c,(O) = n!,  (4) 

or, equivalently, 

since P ,  = d,/n!.  
The notation is easily generalized to P,,,, and so on. 
There exists a large literature on the problem of coincidences. The two 

recent papers by Henny (1975) and Takacs (1980) cover almost the same 
ground as the present chapter. 
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19.2 MONTMORT’S FORMULA FOR THE PROBABILITY OF 
AT LEAST ONE COINCIDENCE, 1708 

The first probabilistic discussion on the problem of coincidences is given by 
Montmort (1708, pp. 54-64) in connection with the card game Thirteen (le 
Jeu du Treize) .  The rules of the play are as follows: From a pack of 52 cards, 
4 suits of 13 cards each, each player draws a card to decide who should 
be the banker. Any number of players may participate. After shuming the 
pack, the banker turns the cards over successively, simultaneously calling 
out the names of the cards in order of rank, i.e., ace, 2 ,..., king. If no 
coincidence occurs among the 13 cards, the banker has lost and pays to each 
player what that player has staked. The player sitting to the right of the 
banker then takes over as banker. If, however, a coincidence occurs, for 
example, the third card turned is a 3, but the first is not an ace, and the 
second is not a 2, then the banker has won and collects all the stakes. He 
continues as banker and begins a new round, turning over the next card in 
the pack and calling out ace, 2, etc. If the banker, after having won several 
games, runs short of cards in a game because the whole pack has been used, 
he simply reshuffles the pack and continues the game, calling out the 
remaining names of the suit. 

Montmort says that since it is difficult to find the banker’s advantage, he 
will just give the solution of two simpler problems involving only one suit 
of 13 cards. This may be of some help in solving the general problem which 
Montmort uses as a problem for the reader on p. 185. 

Suppose then that the banker has n different cards in random order. What 
is the probability of at least one coincidence when the banker turns over the 
n cards successively? 

Montmort begins by giving the solution for n = 2,. . . , 5 ,  in each case 
following the same principle which obviously is the basis for his proof. For 
n = 5, his argument is as follows: The number of permutations of 5 cards is 
5 !  = 120. Among these there are 24 in which 1 is in first place, 18 in which 
2 is in second place without 1 being first, 14 in which 3 is in third place 
without 1 being first or 2 being second, 1 1  in which 4 is in fourth place 
without 1 being first, 2 being second or 3 being third, and, finally, 9 in 
which 5 is in fifth place, the other four being out of their places. The probability 
of at least one coincidence is therefore 

2 4 + 1 8 + 1 4 + 1 1 + 9  76 19 _________ = __ = - 
120 120 30’ 

He remarks that it will take up too much space to give the general proof 
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and then states the general solution in two forms: as a recursion formula and 
as an explicit solution in the form of a series. 

Denoting the probability of at least one coincidence by P,, Montmort's 
recursion formula may be written as 

( n -  l )Pn- l  +P , - ,  
P, = ___ 1 

n 
n 2 2, P, = 0, and P, = 1 .  

By means of this formula Montmort tabulates P, for n = 2,. . . ,13. He finds 

P -  109'3399663 = 0.632,120,558. 
l 3  - 172,972,800 

Montmort states that the solution may also be expressed by means of the 
numbers in the arithmetic triangle arranged in an alternating series. The ith 
term of the series is (7)/di)= l/i!,  so that Montmort's formula for the 
probability of at least one coincidence becomes 

1 1  ( -  1 ) n - '  
P,= 1 - -+-+ ... +-- n!  , n > l .  

2! 3! 

Referring to a paper by Leibniz he proves that 

lim P , =  1 -e-'=0.632,120,558. 
n -  w 

(Montmort does not give the decimal fraction here and above and does not 
discuss the rate of convergence to the limit. As we have seen above, 

Montmort does not discuss the relationship between the two formulae. 
P5 = 19/30 = 0.633.) 

Presumably he has noted that (1 )  may be written in the form 

and that (2) gives 

( -  1 ) n - 1  
P ,  - P,-  1 = -----, 

n !  
(4) 

from which it is easy to see how (2) may be derived from (l), and vice versa. 
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A clue to Montmort’s proof may be found from his examples. He divides 
the set of permutations with at least one coincidence into n disjoint sets 
defined by the place where the first coincidence occurs. To find d,(i), the 
number of permutations with a coincidence at the ith place and no coincidence 
before, we first note that d,( 1) = ( n  - I ) ! ,  since 1 has to be at the first place 
and the remaining n - 1 numbers may be permuted in all possible ways. For 
d,(2), we first fix 2 at the second place, and from the resulting (n - I ) !  
permutations we have to deduct the number of permutations with 1 at the 
first place, which number equals ( n  - 2)!, so that 

In general, we have 

d , ( i+  I)=dn(i)-d,,.-l(i),  n ~ 2 ,  i =  1 ,..., n -  I .  ( 5 )  

Presumably Montmort knew this recursion formula and used it for 
calculating d,(i) for i = 2,. . . , 5  in his examples. In the Essay (1 7 13, p. 137), 
he uses it to calculate d,(i) up to I I  = 8. 

The recursion formula is a simple example of the application of the method 
of inclusion and exclusion. To prove the formula we first note that d,(i) may 
be interpreted as the number of permutations with a coincidence at the last 
of i consecutive places and no coincidence at the i -  1 places before. 
Considering places 2,. . . , ( i  + l), d,(i) thus gives the number of permutations 
with a coincidence at place ( i  + 1); no coincidence at place 2,. . . , i; and no 
restriction on place 1. To find d,(i+ I) ,  we have to deduct the number of 
permutations with a coincidence at place 1, i.e., the number of permutations 
with a 1 on place I ,  no coincidence at the following places, and a coincidence 
at place ( i  + I), which number equals d,,- l(i). This proof is due to Todhunter 

In the problem above, Montmort considers only a single game. He next 
gives a short discussion of the banker’s advantage under a rule of continuation 
but does not reach a general solution. 

(P. 92). 

19.3 THE RESULTS OF MONTMORT AND NICHOLAS 
BERNOULLI, 1710-1713 

Montmort continued his research on the problem of coincidences, and in a 
letter of November 1710 to John Bernoulli he wrote that he had found 
“many curious results on this matter,” and as an example he gave the banker’s 
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advantage for the case with 13 cards drawn from an ordinary pack of 52 
cards, which means that he had found the probability of at least one 
coincidence, P13,4. However, he did not give a formula but only the numerical 
result, see Montmort (1713, p. 304). 

In his correspondence with Nicholas Bernoulli from 1710 to 1712, the 
problem of coincidences is frequently discussed, see Montmort (1713, pp. 
301 -302, 308-309, 3 15, 3 17-3 18, 323-324, 327-328, 344). Furthermore, 
Montmort gives the results from 1708 supplemented with some new results 
in the Essay (1713, pp. 130-143). Montmort does not provide proofs for his 
results from 1708; he writes in the preface (p. XXV) that the proofs may be 
found in a letter from Nicholas Bernoulli (pp. 301-302) and that “I would 
not have been able to do it better myself.” 

Bernoulli’s Proof of Montmort’s Formula for Pn 
Bernoulli first states that d,,( 1) = (n - l)!, and 

d”(2) = (n - l)! - (n - 2)!, 

d“(3) = (n - l)! - 2(n - 2)! + (n  - 3)!, 

d,(4) = ( n  - l)! - 3(n - 2)! + 3(n - 3)! - (n  - 4)!, 

and in general, 

Bernoulli does not attempt to give a rigorous proof of this result; the proof 
may be completed by inserting (1) into the recursion formula (2.5). We shall 
leave that to the reader. 

Bernoulli next finds the probability that the first coincidence occurs at 
the ith place as d,,(i)/n! and the probability of a coincidence at the mth  place 
or before as 

without mentioning the (obvious) intermediate step. Setting rn = n, Bernoulli 
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obtains 

in agreement with Montmort's formula (2.2). 

Bernoulli's Proof of Montmort's Recursion Formula for P,, 

To find the probability of at least one coincidence, P,, = Pr{C}, say, Bernoulli 
uses the theorem 

where A denotes the event that object I of n objects is at place 1. Hence 
Pr{A} = l /n  and Pr(CJ.4)  = 1, so that 

Pr{C} =-+--Pr{CJA}. 1 n - I  

n n  
Bernoulli then proves that 

- ( n  - l)!P,,- - ( n  - 2)! + (n - 2)!P,,-z 

(11 - l)P,,-1 - 1 + Pn-2 

Pr{CIA} = ----___ 
(n  - l)!  

- - 
n -  1 

9 

which inserted in the result above gives Montmort's recursion formula (2.1). 
The permutations corresponding to the event {CIA} are of the form 

( j ,  i l , .  . . , in -  1), j # 1, with at  least one coincidence at the last (n - 1) places. 
Bernoulli states that among the ( n  - l)! permutations of the i's there will be 
less than d,,- permutations with at least one coincidence, since one of the 
i's is a 1. The transfer of j to place 1 has the effect that permutations with a 
coincidence only at place j will be changed to permutations without 
coincidences, the number of such permutations among (n - 2) elements being 
(n - 2)! - d,,-z. The resulting number of permutations with at least one 
coincidence thus becomes 

as was to be proved. 
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Finally, Bernoulli derives (2.4) and thus shows how the series for P, may 
be derived from the recursion formula. 

Some Further Results by Montmort 

As mentioned in the previous section, Montmort uses the recursion (2.5) to 
calculate d,(i )  for n = 1,.  . . ,8, as shown in the following table. 

MONTMORT’S TABLE OF d,(i) AND d, 

i 

n 1 2 3 4 5 6 7 8 4, 
1 1 
2 1 0 
3 2 1 I 
4 6 4 3 2 

6 120 96 78-64 53 
5 24 18 14\11 9 

7 720 600 504 426 362 
8 5040 4320 3720 3216 2790 

1 
1 
4 

15 
76 

44 455 
309 265 3186 

2428 2119 1854 25487 

Source: Montmort (1713), p. 137. 

From this table it is easy to find P,  = d , / n !  and c&) = n! - d , .  Furthermore, 
Montmort gives the recursion formula 

which follows immediately from the formula for n!P,. For given n the 
probability that the first coincidence occurs at the ith place equals 

d”0)  - d,( i )  
n! d , + # ) .  

__ - __~- 

Finally, Montmort (1713, p. 138) states that 

which is intuitively obvious (see also the table above). 

states that the number of permutations with exactly k coincidences equals 
Montmort also derives the distribution of the number of coincidences. He 
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because the places with the k coincidences may be chosen in (i! ways, and 
there should be no coincidences at the remaining n - k places. 

From 

Expressing these results in terms of probabilities, we get 

(-1y 
p , , ( O ) = l - P , =  c --, 

i = o  i !  

Pn-&(0) 1 ,-& ( -  1)’ P , # ( k ) = - - = -  C --. 
k !  k ! i Z o  i! 

(7) 

By means of these formulae Montmort calculates the distribution of the 
number of coincidences for n = 13 and finds the banker’s expectation 
1 - 2pJO). A summary of his results, expressed as decimal fractions, follows: 

k =  0 1 2 3 4 5 6 Total 
pI3(k)= 0.368 0.368 0.184 0.061 0.015 0.003 0.001 1.000 

Furthermore, p ,  3( 13) = 1/6,227,020,800. 
Montmort also states that the expected number of coincidences equals 1. 

His proof is equivalent to the following. Let ci be the characteristic random 
variable for a coincidence at  place i so that ci = 1 if a coincidence occurs at  
place i and ei = 0 otherwise. Then, 

The Montmort-Bernoulli Formula for P, 
Montmort’s result for P,,,, occasioned Bernoulli to send a letter with a 
formula for P,,s and a slight correction of Montmort’s numerical result. In 
his reply Montmort points out that the formula is wrong because of a writing 
error and gives the correct formula, which is stated again in a slightly more 
convenient form by Bernoulli in his next letter. 
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Setting N = ns, the Montmort-Bernoulli formula becomes 

They do not supply a proof, but Bernoulli states that the method of proof 
is the same as for P,. The proof was carried out by Struyck (1716, 

Montmort proposes the Jeu du Treize as a problem for solution (1708, 
p. 185; 1713, p. 278). With regard to the second edition, Todhunter (p. 105) 
writes, “It is not obvious why this problem is repeated, for Montmort stated 
the results on his pages 130-143, and demonstrations by Nicolas Bernoulli 
are given on pages 301,302.” The explanation is, however, that Montmort 
writes about the Jeu du Treize as it is played in practice with a rule of 
continuation and not about the simplified version, which we have called the 
problem of coincidences relating to one game only. 

pp. 102-104). 

Three Corollaries to Montmort’s Results 

Corollary 1. For d, and c,(O), the following recursions hold: 

These results follow immediately from Montmort’s recursion formula for P,. 

Corollary 2. For c,(O) the following recursions hold: 

The first result follows immediately from (2), and the second is obtained by 
inserting (4) into (1.1). A recursion formula for c,(O) is obtained by solving 
(12) for c,(O). An explicit formula for c,(O) is given by (5). 

Corollary 3. For n -+ 00 and k fixed, we have 
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This result follows from (7). It means that the distribution of the number of 
coincidences for large n may be approximated by the Poisson distribution 
with unity as mean. 

Montmort does not himself formulate these corollaries. We include them 
for later reference. 

19.4 DE MOIVRE’S DERIVATION OF THE PROBABILITY OF 
COMPOUND EVENTS, 1718 

Reading Montmort’s Essay (1713), de Moivre realized that all the results on 
the problem of coincidences may be derived from a general theorem on the 
probability of compound events. He derived this theorem by means of the 
method of inclusion and exclusion, a method that was used by Montmort 
and Bernoulli in deriving the formula for d,(i) and also used by Montmort 
on several other occasions. However, they did not, as did de Moivre, give 
their results as special cases of a general theorem. That de Moivre was aware 
of the importance of the theorem is evident from the quotation used as 
epigraph. 

For two events it was well known that 

Pr{A, + A 2 } = P r { A l } + P r { A , } - P r ( A , A , } .  

Without comment this result had been used by de Moivre himself for the 
solution of Problem 26 in De Mensura Sortis (1712). A related method had 
been used by Halley (1694) for finding the probability of survivorships for 
two and three independent lives, see 89.3. 

Let A l , .  . . , A, denote n events, and let the probabilities of the simultaneous 
occurrence of any number of them be known. It is assumed that the events 
are exchangeable or symmetric such that the probabilities satisfy the relation 

for any set of r different integers ( i , ,  . . . , i,) selected from among the integers 
(1,. . . , n). The complement of the event Ai is denoted by 2,. The problem 
solved by de Moivre is to express the probability of the simultaneous 
occurrence of a set of A’s and A’s in terms of the probabilities (1). 

De Moivre’s proof is by incomplete induction and is based on the identity 

P ( A , A , ) =  P ( A 2 ) - P ( A , A , ) =  P ( A , ) -  P ( A , A , ) .  (2) 
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Expressed in the "new sort of algebra" used by de Moivre, the equation 

P(A2) = P(AlA2)  + P ( A , A , ) ,  

( + A , )  = ( + A  1 + A 2 )  + ( - A  1 + 4). 
takes the form 

This is an ingenious notation for the present purpose but not easy to use in 
other connections. We have therefore translated de Moivre's equations to 
the standard notation used today. 

Using (2) repeatedly, de Moivre finds 

From (3) and (4) it follows that 

Generalizing these results de Moivre states without proof that 

It is straightforward to complete the proof by induction. 

equals 
The probability of the simultaneous occurrence of exactly k of the n events 

' A"), 
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De Moivre finds the probability of the occurrence of at least k events, P,(k), 
by incomplete induction. We shall prove his result by summation of (8). 

From (6) and (8) we get 

In the proof we have used the relation 

which leads to 
i 

x = k  i - x  i - k  

De Moivre’s formulae (6)-(9) are very important and of great generality, 
as he mentions in his preface (1718, p. XI). The results are to be found in 
the Doctrine of Chances (1718, pp. 59-66; 1738, pp. 95-103; 1756, 
pp. 109-1 17). In the text, however, all the results are couched in the language 
of the problem of coincidences and are intermingled with the solution of 
special cases of this problem. We have separated the general results from 
the applications, which are discussed in the following section. 

19.5 
COINCIDENCES 

DE MOIVRE’S SOLUTION OF THE PROBLEM OF 

The problem is formulated by de Moivre in Problem 25 (1718): “Any given 
number of Letters a , b , c , d , e , f  etc. all of them different, being taken 
promiscuously, as i t  Happens: To find the Probability that some of them 
shall be found in their,places, according to the rank they obtain in the 
Alphabet; and that others of them shall at  the same time be found out of 
their places.” 
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It will be seen that de Moivre has generalized the problem posed by 
M on tm ort. 

Let there be n letters, and let Ai denote the event that a coincidence occurs 
at place i. Then (4.6) gives the probability that k letters are at the right place, 
that r letters are out of place, and that no restrictions are put on the remaining 
n - k - r letters. The solution is obtained by inserting 

1 
P ( A  1 . . . A i )  = n(i). 

The probability of at  least one coincidence is obtained from (4.7) as 

In this way de Moivre derives all Montmort’s results as special cases of 
(4.6)-(4.8). Furthermore, he uses (4.9) to find 

P , ( k ) = -  Yk ~ (-IY 
( k  - l ) !  i = o  i ! ( k  + i)‘ 

De Moivre next considers the problem of coincidences for n drawings 
from a pack of N cards consisting of s suits with n cards in each. He notes 
that 

Si 
P ( A  1 * .  A i )  = - ””’ 

which inserted into ( 1 )  and (4.7) leads to the Montmort-Bernoulli formula 
(3.8) for at least one coincidence. 

From (4.9) we find 

De Moivre does not give the general formula; he finds P J k )  for k = 1 , .  . . , 4  
and states that “The Law of the continuation of these Series being manifest, 
it will be easy to reduce them all to one general Series.” 

Finally, de Moivre considers a generalization to m packs of cards, each 
pack containing n different cards. A coincidence is defined as the occurrence 
of the same card in the same place for a11 the packs. Since the one pack may 
be laid out in natural order and the remaining m - 1 packs in random order, 
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we have 

De Moivre gives the probability of at least one coincidence as 

which is an immediate consequence of (4.7). 

19.6 SOME NOTES ON LATER DEVELOPMENTS 

The problem of coincidences is an example of a problem occurring in many 
different contexts and therefore solved by many different authors, many of 
them unaware of the fundamental contributions by Montmort, Nicholas 
Bernoulli, and de Moivre. Even after the publication of the Montmort-- 
Bernoulli formula for PnTs by Laplace ( I  8 I2), independent derivations of 
Montmort’s formulae by essentially the same method occurred steadily. The 
following notes should not be taken for a complete history of the problem 
but only as a guide for further study. 

Euler (1753, 181 1 )  wrote two papers on the problem, the latter read in 
1779 and published posthumously in 181 I .  In  the first paper he begins with 
some numerical examples and later derives the recursion 

which he uses to tabulate d,,( i )  up to n = 10. In his discussion of the tabulation 
he notes that the simpler recursion (2.5) holds, which Montmort used to 
construct his table. He then uses this formula in much the same manner as 
Bernoulli to find P,; he tabulates P,, up to n = 15 and shows the agreement 
with the limiting value 1 - e -  ’. In the second paper he derives the recursion 

However, since d,l+ , ( n  + I )  = c,(O), this relation is identical to (3.10). He also 
derives (3.1 I). Compared with the results in Montmort’s Essay (1713), there 
are essentially no new results or methods of proof in Euler’s papers. He does 
not refer to any of his predecessors. 
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Inspired by Euler’s first paper, Lambert (1773) takes up the problem in 
order to discuss the reliability of predictions of the weather and other events 
to be found in the popular almanacs in Germany. He says that variations 
in the weather from the one day to the next are produced by an infinite 
number of unknown causes, just like the outcome of a game of chance. This 
implies that the reliability of predictions may be tested by comparing the 
number of coincidences of actual weather and predicted weather for a number 
of days with the expected number of coincidences. He then derives (3.1 1 )  and 
(3.12), which gives the expected number of coincidences. He does not, however, 
provide any observations as a basis for carrying out the test. 

Laplace ( 1  8 12) discusses the problem of coincidences for drawing n balls 
from an urn containing N = ns balls, the balls being numbered from 1 to n, 
each number being repeated s times. Using the method of inclusion and 
exclusion, Laplace derives P,,s by the same method as Bernoulli and Struyck 
and furthermore derives de Moivre’s result P,,,(k) and formula (5.4). He also 
proves that pn,JO)+e-’ for n + m .  He does not refer to Montmort and de 
Moivre, but in the introductory remarks to his book there is a general 
reference to their works. Laplace’s results are reproduced in Book 2, Chap. 2, 
99 in all editions of his book. 

Kendall (1968) has pointed out that the theory of coincidences has been 
discussed by the English physician and scientist Thomas Young, who also 
did some of the first successful work in deciphering Egyptian hieroglyphic 
inscriptions. In a paper on the probability of errors in physical observations 
and on the density of the earth by Young (1819), it is surprising to find a 
section on the application of the theory of coincidences to linguistic and 
historical problems. He writes, 

There are cases in which some little assistance may be derived from the doctrine 
of chances with respect to matters of literature and history: but even here it would 
be extremely easy to pervert this application in such a manner, as to make it 
subservient to the purpose of clothing fallacious reasoning in the garb of 
demonstrative evidence. Thus if we were investigating the relations of two 
languages to each other, with a view of determining how far they indicated a 
common origin from an older language, or an occasional intercourse between two 
nations speaking them, it would be important to inquire, upon the supposition 
that the possible varieties of monosyllabic or very simple words must be limited 
by the extent of the alphabet to a certain number; and that these names were to 
be given promiscuously to the same number of things, what would be the chance 
that 1,2,3 or more of the names would be applied to the same things in  two 
independent instances. 

Like Lambert, he finds the recursion formula (3.12) for c,(k),  which he uses 
to tabulate p , (k )  for n =  10. He compares p , , ( k )  with the Poisson 
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approximation e -  ‘ / k ! .  Since he does not have an explicit expression for p , (k )  
such as (3.7), he cannot find the limiting value directly. Instead he derives 
the Poisson distribution by noting that the probability of no coincidence 
equals [(n- I)/n]”, which is approximately e - ’  for large values of n. He 
continues his “proof” by stating that “if n is increased by 1, each of these 
cases of no coincidence will afford 1 of a single coincidence; if by two, each 
will afford one of a double coincidence, but half of them will be duplicates; 
and if by three, the same number must be divided by 6, since all the 
combinations of three would be found six times repeated.” From these 
numerical results Young concludes that 

It appears therefore that nothing whatever could be inferred with respect to the 
relation of two languages from the coincidence of the sense of any single word in 
both of them; and that the odds would only be 3 to 1 against the agreement of 
two words; but if three words appeared to be identical, it would be more than 10 
to 1 that they must be derived in both cases from some parent language, or 
introduced in some other manner; six words would give near 1700 chances to 1, 
and 8 near 100,000; so that in these last cases the evidence would be little short 
of absolute certainty. 

It will be seen that Young uses the tail probabilities of the Poisson 
distribution as a test of significance of the null hypothesis that there is no 
relation between the two languages. 

Young’s paper does not contain any reference to previous results on the 
theory of coincidences. 

In his textbook on combinatorics, Oettinger (1837, pp. 100-1 1 1 )  
generalizes the problem by considering the number of coincidences obtained 
by drawing only r elements, 1 < r < n, of the n or N = ns elements. Setting 
r = n, he later finds all the previously mentioned formulae except (5.4). In 
1837 he gives the solution in terms of the number of permutations in question, 
and in his textbook on probability (1852, pp. 37-44) he gives the solution 
in terms of probabilities. He uses the method of inclusion and exclusion in 
his proofs, and he refers to the previous literature. Using the same symbols 
as before but with r added as a superscript, Oettinger’s results may be written 
as 
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Analogous formulae hold for the other probabilities. 
According to Takacs (1980), the formula for p',(k) has also been found by 

Catalan (1837). 
Schneider (1974) has given a detailed discussion of one of the first 

applications of probability theory in physics, namely, Clausius' (1849) use of 
the Poisson distribution with mean unity as the limit of the distribution of 
the number of coincidences in a mathematical model of light radiation in 
the atmosphere. 

It seems that all the authors mentioned above have overlooked de Moivre's 
elegant general solution by means of the compound probability theorem. 

Using the method of inclusion and exclusion, M. C. Jordan ( 1  867) proved 
the compound probability theorem without de Moivre's restriction to 
symmetric events. The fundamental quantities in the theorem are the sums 

which have (;) terms. Using that 

(;)( T ') = ( i)( k i)' 

and under the assumption of symmetry that 

de Moivre's results (4.8) and (4.9) may be written as 

Jorda proved that these formulae are also valid for the onsymmetrical 
case, with the definition of Sk given in (3 ) ;  he does not refer to de Moivre. 
The proof may be carried out by the same method used by de Moivre; by 
means of indicator functions, as done by Lotve in Parzen (1960); or by 
symbolic operations, as done by King (1902), K. Jordan (1956, 1972), and 
Riordan (1958). 
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Using King’s symbolic representation, the results may be written in the 
form 

p n ( k ) = S k ( l  + S ) - ’ - ’ ,  

P,(k)  = S‘(1 + S)-’,  (7) 

where S‘ after expansion in series should be replaced by S ,  and Si = 0 for i > n. 

theorem and generalized the theorem. 

the following theorem (Whitworth, 1901, p. 70): 

Takacs (1967) has discussed the history of the compound probability 

Using the method of inclusion and exclusion, Whitworth (1878) proved 

If there be N events or operations and if (out of r possible conditions a, B, 7,. . .) 
every one condition (such as a) be fulfilled in N, of the events; and every 
combination of two simultaneous conditions (such as a,/?) be fulfilled in N, of 
the events; and every combination of three simultaneous conditions (such as a,P,y) 
be fulfilled in N ,  of the events; and so on; and finally all the r conditions be 
simultaneous fulfilled in N, of the events; then the number of events free from all 
these conditions is 

r r(r - 1) r(r - l)(r - 2) 

1 1.2 
N, -+ ’.. f N, .  

1.2.3 N - - N , + -  N1- 

Obviously, Whitworth’s result is just a description of the formula for p,(O). 
He noted that the formula may be derived by a symbolic method. He used 
his result to prove some theorems on “derangements.” Irwin (1955) discussed 
Whitworth’s theorem and used it to derive some important statistical 
distributions. Whitworth gives no references. 

The compound probability theorem was used by de Moivre (1725) and 
Simpson (1742) to find the probabilities of survivorships for several lives; it 
has been used in life insurance mathematics ever since. King (1902) has given 
a comprehensive account of such applications. 

The distribution of the number of coincidences has been used for various 
statistical purposes, mainly in connection with testing guessing and 
classification abilities, for example, in psychological, graphological, and 
tasting experiments, see Vernon (1936) and some critical comments by Irwin 
(1955). There are also examples of applications to genetic problems of random 
mating. 

An exposition of the theory of coincidences within the framework of 
combinatorics and with some historical comments has been given by Netto 
(1901). A more advanced treatment is due to MacMahon (1915). 

The problem has been generalized to multiple coincidences of several 
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packs of cards with suits of unequal numbers of cards and with many different 
definitions of a multiple coincidence. There exist many papers on these 
problems; the later development of the mathematical theory involved has 
been discussed by Barton (1958). 

A monograph on the compound probability theorem and its applications 
to the problem of coincidences has been written by Frechet (1940, 1943). 

Textbook expositions have been given by K. Jordan (1956, 1972), Riordan 
(1958), and David and Barton (1962). 

The history of a closely related problem about the seating arrangements 
of 2n couples at a round table, the probldme des mtnages, has been discussed 
by Takacs (1981). 

19.7 PROBLEMS 

1. Prove that 

This result is due to John Bernoulli, see Montmort ( I  7 13, p. 290). 

2. Prove the recursion formula (3.10) directly by combinatorial arguments. 

3. Tabulate pl,(k) and the Poisson approximation e -  ‘ / k ! .  Verify Young’s 
(1819) statement about the tail probabilities, see 619.6. Find limits for the 
difference p , ( k )  - e -  ‘/k!. 

4. Prove Oettinger’s formula for pL(k) [see (6.1)]. 

5. Show that P,3,4 = 0.643. This result is due to Montmort (1713, p. 324) 
and N. Bernoulli. Find the limiting value of Pn,s for n .+ co. 

6. De Moivre (1718, p. 66) writes that “the Odds that two or more like Cards 
in two different Packs will not obtain the same Position, are very nearly 
as 736 to 264 or 14 to 5.” Check this statement. 

7. Solve the problem of the Jeu du Treize in its original formulation with a 
rule of continuation for the banker, see $19.2. 

8. Use de Moivre’s method of proof for proving Jordan’s generalization of 
the compound probability theorem. 
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9. Use the compound probability theorem to compare P,(1) = 1 - p,(O) 
when the n events are (a) independent, (b) symmetric, (c) independent and 
symmetric, see Jordan (1972,  p. 198). 

10. Prove Montmort’s result (14.3.1) on the number of chances of getting s 
points by throwing n dice by means of the compound probability theorem. 

11. Let p, (k)  be the probability that exactly k lives of n lives will survive t 
years. Find p,(k) in terms of the probabilities of the joint lives surviving 
t years assuming independence and the same life table for all lives, see 
King (1902, p. 14). 

12. Prove that the number of ways in which an ordered series of n objects 
may be “deranged” so that no object is followed by the object that 
originally followed it equals 

and that this expression may be reduced to 

which is the integer nearest to ( n  + l ) ! / n e .  This result is due to Whitworth 
(1901, p. 103). 

13. Suppose that n married couples are seated at a round table such that 
the women first take alternate seats and the men choose the remaining 
seats at random. Find the probability that exactly k husbands are sitting 
next to their wives. Hint:  Use the compound probability theorem and 
prove that 

&=--( 2n  2 n - k  ) ( n - k ) ! .  
2 n - k  

Takacs ( 1  98 1 )  has generalized this problem by considering the 
distribution of the number of husbands sitting next to their wives’ right 
and left sides, respectively. 



CHAPTER 20 

The Problem of the Duration of 
Play, 1708- 17 18 

20.1 FORMULATION OF THE PROBLEM 

The problem of the duration of play, also called the ruin problem, may be 
formulated as follows: consider two players, A and B, having a and b counters, 
respectively. In each game, A has probability p and B has probability q = 1 - p 
of winning, and the winner gets a counter from the loser. The play continues 
until one of the players has lost all his counters. What is the probability that 
the play ends at the n th  game or before? 

A complete probabilistic description of the play is given by the function 
u,(x,a,  b), -a  < x < b, denoting the probability of the compound event that 
neither player is ruined in n games and that A after n games has won x 
counters from B. The probability that B is ruined at the rith game, which is 
the same as the probability that A wins the play at the 11th game, thus becomes 

an analogous formula being valid for the probability r r ( a ,  b )  that A is ruined. 
Hence, the probability of a duration of exactly II games equals 

d,, = r, + r,*. 

Since the parameters a and b usually are fixed in a given problem, we shall 
often suppress them as in the formula above. 

Cumulative sums of { r , }  and { d " }  are denoted by the corresponding capital 
letters, so that 

D, = C di  = R,, + R,T 
i = O  

347 
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denotes the probability of a duration of at most n games. The probability 
of a duration of more than n games, 1 - D,, may also be expressed as 

x =  - o +  I 

so that 

D,+ U,= R ,  -+ R,* + U , =  1. 

If A has infinitely many counters, we shall write r,(b) instead of r n ( a , b )  
for B’s probability of being ruined at the nth game. 

The first solutions of the problem of the duration of play were given by 
Montmort, Nicholas Bernoulli, and de Moivre between 1708 and 1718, mostly 
without proofs or with incomplete proofs. In the present chapter we shall 
discuss these results and indicate how they may have been proved. 

In Chapter 23 we shall return to the problem and discuss the solutions 
derived by de Moivre, Lagrange, and Laplace by the method of difference 
equations. 

Another solution using generating functions was given by Laplace in 1812. 
Since then the problem of the duration of play has become a standard topic 
in advanced textbooks on probability theory. Like so many other of the 
classical problems of games of chance, i t  has steadily been given new 
interpretations and applications. 

In today’s terminology the play may be described as a random walk ( t ,  g , ) ,  
t = 0, 1,. . ., with absorbing barriers at - a  and b,g, denoting the gain of A 
at the end of t games. The path moves one step up when A wins and one 
step down when A loses, and the play ends when the path for the first time 
hits one of the barriers. 

This description lends itself to generalizations by varying the time interval 
between jumps and the size of the jumps and, further, by making these 
quantities random instead of deterministic. In this way a theory of stochastic 
processes with many applications has been developed. 

Letting the number of steps per time unit tend to infinity and the size of 
the jumps tend to zero, the random walk model tends to a diffusion model. 
Hence, the random walk model has been used as a first approximation to 
describe the random motion of particles in statistical mechanics and kinetic 
theory. In statistical quality control and later on in the theory of testing 
statistical hypotheses, a generalized version of the random walk model has 
led to Wald’s sequential analysis. In insurance mathematics a generalized 
model has been used to find the probability of ruin by comparing the 
accumulated claims with the company’s capital. These applications and many 
more are today discussed in specialized treatises; their relations to the classical 
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problem have been indicated by Thatcher (1957), Takacs (1969), and Feller 
(1 970). 

20.2 MONTMORT’S DISCUSSION OF THE DURATION OF 
PLAY IN 1708 

In continuation of his discussion on the problem of points, Montmort stresses 
an essential difference between this problem and the ruin problem. In the 
problem of points the play will end after at most a + b - 1 games because 
the winner of each game gets one point and the loser gets zero; in the ruin 
problem, however, the winner of each game gets one point and the loser 
loses one point, so that the play may continue indefinitely without any of 
the players being ruined. Montmort (1708, p. 178) recounts an experience 
with two players having six counters each at the beginning of the play, none 
of them being ruined in the course of 30 games when they decide to stop. 
Montmort proposes to divide the total stake between them in the ratio of 
the number of counters they have, assuming that the players are of equal 
skill; however, he only discusses numerical examples. In his letter to 
Montmort (1713, pp. 295-296), John Bernoulli states that the ratio of the 
probabilities of winning is as n + x : n  - x when A has n + x counters and B 
has n - x, x = 0, 1,. . . , n - 1; a proof is given by Nicholas Bernoulli in a letter 
to Montmort (1713, p. 31 1). The problem corresponds to Huygens’ fifth 
problem with the modification that the ratio of the probabilities of winning 
a single game is as 1:l instead of as 9:5 .  The reader may prove the result 
as a special case of the three proofs given in 514.2. 

Montmort (1708, pp. 184-185) then generalizes Huygens’ fifth problem 
by considering the probability that either one or the other of the players will 
be ruined in at most a given number of games, the problem of the duration 
of play. As an example he considers two players of equal skill having three 
counters each. He states that the probability of a duration of at most 2n + 1 
games equals 

3 i - I  c 4i , n=1,2  ,.... 
i - 1  

He gives no proof. Presumably he has followed his usual procedure of 
considering some examples and then has derived the general formula by 
incomplete induction. Rashly he adds that “Without much difficulty one may 
find similar formulae for other cases which will lead one to a rather interesting 
research.” As we shall see in the next section he continued his investigations, 
and contrary to his expectations the research proved to be rather difficult. 
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20.3 
PROBABILITY, 1713 

NICHOLAS BERNOULLI’S FORMULA FOR THE RUIN 

On 15 November 1710, Montmort (1713, pp. 306-307) answered John 
Bernoulli’s letter and returned to the problem of the duration of play, noting 
that he now had the general solution for players of equal skill and with the 
same number of counters. He returns to the example of two players, each 
having six counters, and states that the probability of a duration of at most 
26 games is 16,607,955/33,554,432, which is a little less than t ,  whereas the 
probability of a duration of at most 28 games is 70,970,250/134,217,728, 
which is a little larger than i. We have given the correct denominator of the 
second probability; as pointed out by Nicholas Bernoulli there is an error 
in the result as originally stated by Montmort. Montmort writes that he has 
found these results nearly without calculation but does not disclose his 
formula. 

From his numerical results and later remarks it seems reasonable to assume 
that he had found the probability of a duration ofat most n games in the form 

n 
k = O  i = O  m - 2kb - b 

, n=b+2rn ,  p = ) .  ( 1 )  
k = O  i = m - Z k h - b + l  

The reduction from the first to the second expression is obtained by means 
of the formula 

i = O  

The two probabilities mentioned above equal 

‘f ( 217)/225 and i = 6  f (’p)/227, i = 5  

respectively. 
Let us digress a little from the course of the historical events and summarize 

Montmort’s numerical results. In the correspondence with the Bernoullis he 
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gives several examples of determining the median duration of play, i.e., he 
solve the equation D,(b, b )  = $ for n, 

D26(6,6) = 0.495 < < D28(6,6) = 0.529, 

~ , ~ ( 7 , 7 ) = 0 . 4 8 5 < $ < D , , ( 7 , 7 ) = 0 . 5 1 1 ,  

D6,(9,9) = 0.505. 

He also mentions that lie believes that D122(12, 12) <$ < D124(12, 12), but as 
pointed out by Nicholas Bernoulli the correct solution is 

DIo8(12, 12 )=0 .499<3<D1,0 (12 ,  12)=0.507. 

We have given the probabilities as decimal fractions, whereas Montmort 
naturally uses the ratio of two integers. 

Finally, Montmort (1713, p. 276) states that the equation D,(b, b )  2 $ for 
b odd has the approximate solution 

n > $ b 2 + $ .  (2) 

He does not indicate how he has obtained this result and adds that he has 
not been able to find a similar formula for b even. Using (2) to find n for 
the four examples above, we get 27.25, 37.00, 61.00, and 108.25. Montmort 
does not give these result but mentions as an example that the median 
duration for b = 19 will be n = 271. A formula similar to (2) was proved by 
de Moivre in 1738, see (23.2.10). 

Returning to the letter to John Bernoulli, Montmort writes that he will 
send his formula if Bernoulli is interested. At the time John Bernoulli was 
43 years old and, except for Leibniz, the most renowed mathematician on 
the Continent. He was busy with his own research at Basel, and Montmort 
could not expect Bernoulli to spend more time on his problems. Montmort 
therefore indicated that he would be glad if John would pass on the problem 
to his nephew Nicholas, “who seems to me to be capable of solving the most 
dificult problems and, being young, perhaps he has the leisure to search for 
the solution which certainly is worthy for him.” Nicholas was 23 years old, 
had just received his degree in 1709, and was preparing himself for his Grand 
Tour to England, the Netherlands, and France. He did live up Montmort’s 
expectations. On 26 February 1711 he sent the complete solution to 
Montmort (1713, pp. 309-31 1). It was really an extraordinary achievement 
on the part of Nicholas Bernoulli to solve this complicated problem that 
had until then proved too difficult for the more experienced probabilists 
Montmort and de Moivre. He gave no proof of his formula. 
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In his reply Montmort expresses his admiration for Bernoulli’s solution 
but admits that he is not quite able to understand it and asks for a numerical 
example. Bernoulli answers that Montmort’s difficulties are understandable 
in view of the fact that he has used ambiguous notation which he now 
corrects. He then derives formula (1 )  as a special case of his formula and 
gives two numerical examples. Montmort answers that he now understands 
Bernoulli’s formula and that the special case agrees with his own previous 
result. The correspondence regarding the ruin problem can be found in 
Montmort (1713, pp. 315-316, 324-326, 344-345, 368-369, 375, 380). 

In the formula Bernoulli assumes that n - b is even because B can be 
ruined only at games number b, b + 2, b + 4, .  . . ; it follows that 

Nicholas Bernoulli’s Formula for the Ruin Probability &(a, 6 )  

Setting c = a + b, we have 

R,(a ,b)  = p b  f ( 4 P ) k c C  
( p n - b - 2 k r - i q i  + q n - b - 2 k e - i  i P )  

k = O  i 

- - b  2 ( q P y + k c ~ ( n ) ( p n - b - 2 k c - 2 ~ - i  4 i + 4  n - b - 2 k c - 2 9 - i  P i ), (3) 
k = O  i t  

where 0 < 2i < n - h - 2kc in the first sum; 0 < 2i < n - b - 2kc - 2a in the 
second sum; and where only one of the two identical members of the last 
term of the sums over i should be included when the upper limit for 2i is even. 

As a corollary Bernoulli gives the complete solution of Huygens’ fifth 
problem, which is obtained for n-+oo.  Setting l imRn= R, his solution 
becomes 

R(a, b)  = p c - p b 4 ” ,  a # b ,  p # q ,  
PC - 4‘ 
Pa R(a, a)  = - 

pa + qg’ 

a 1 p = -  
2’ 

R(a, b) = __ 
a + b ’  

(see the discussion in $14.2). The result is given without proof; we shall leave 
the proof to the reader. 
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We have already mentioned that Bernoulli also derived formula (1) for 

It is of course easy be means of Bernoulli's formula to derive the other 
probabilities defined in $20.1, except for the function u,(x, a, 6). Interchanging 
the roles of A and B we get R,*(a,b) and thus D,(a,b), and by differencing 
we get r,, r,*, and d,. Bernoulli does not give these results. 

We shall finally indicate how Bernoulli may have derived his formula. 

D,@, b), P = ). 

A Proof of Bernoulli's Formula 

Takacs (1969) has suggested that Bernoulli derived his formula using the 
method of inclusion and exclusion and the method of reflection. We believe 
that Takacs is right, and in the following we shall report Takacs' proof with 
some comments in relation to Bernoulli's formula. 

Since the sum of the exponents of p and q in (3) equals n, and the coefficient 
equals (:), it is clear that Bernoulli, like Pascal and Fermat in their 
combinatorial solution of the problem of points, has analyzed a series of n 
games where the last ones may be fictitious because one of the players has 
been ruined before the series is completed. We shall therefore consider series 
of n games in which A wins i games and B wins n - i games, i = 0, 1, , . . , n; 
the probability of any such series is piq"- ' .  Consequently we rewrite 
Bernoulli's formula in the form 

which is obtained by introducing the power of p in each of the sums of (3) 
as a new variable. 

The formula is an alternating series, indicating that Bernoulli has used 
the method of inclusion and exclusion, which is also affirmed by Montmort 
and de Moivre who explicitly use this method in their comments on 
Bernoulli's result. The series is finite because the binomial coefficients become 
zero for k sufficiently large. 

We shall now consider various subsets of the set of series of games in 
which A wins i games and B wins n - i games to find the set, R ,  say, in which 
A ruins B. The set R is defined by the property that A's gain reaches b before 
B's gain reaches a. To find R consider the set C ,  in which A wins b counters 
from B at least once in n games. Compared with R,  the set C ,  is obviously 
too large because it includes the set in which A's gain reaches --a before it 
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reaches b. We therefore deduct the set of series of games, C, ,  say, in which 
A's gain at least once passes from -a  to  b. This is the beginning of an 
alternating series in which the terms are defined as follows: Czk, k = 1,2,. . . , 
is the set of series of games in which A's gain at least k times passes from 
-a to b, and C2k+ k = 0, I , .  . . ,is the set of series of games in which A's 
gain at least once reaches b and afterward at least k times passes from - a  
to b; clearly C2k+l  is a subset of c2k. 

The definition of these sets is indicated by the form of (3), since the factor 
pb means that A's gain at least once reaches b, and the factor ( 4 ~ ) ~ '  indicates 
that A's gain at least k times goes from - a to b. 

Using the method of inclusion and exclusion, the set of series of games 
leading to the ruin of B is found as 

W 

R =  C ( - l ) k - l C k .  
k =  1 

( 5 )  

This result may also be seen by writing R in the form 

since C ;  is the set of series of games in which A's gain at  least once reaches 
b, and { CZk - C2k+ k = 1,2,. . .} is the set of series not belonging to R because 
A's gain reaches --a before reaching b. 

To find Pr(R} ,  we thus have to find 

where N , ( i )  denotes the number of series of games of length n belonging to 
ck. Formula (4) indicates that we have to distinguish between series in which 
A's gain, g" = 2i - n, is larger and smaller than b, respectively. 

The total number of different series of games in which A wins i games 
and B wins n - i games equals ( y ) .  Consider now N1(i). All the series in which 
2i - n 3 b are members of C1,  since A's gain necessarily reaches b at least 
once, and we thus have 

N,(i) = (;) for 2i - n 2 b. 

All the series in which 2i - n < 2b - n are not members of C l  , since i < b, so 
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that 

N , ( i )  = 0 for 2i - n < 2b - n. 

In the intermediate case, where 2 b - n < 2 i - n  < b, we have to find the 
number of series of games in which A's gain at least once reaches b and ends 
with being smaller than b. Consider the random walk (t, g,), t = 0,1,. . . ,IZ, 
and reflect the section of the path after it has reached b for the first time in 
the horizontal line through b. Since g n  = 2i - n, the reflected path will lead 
to a gain of 

b + (b  - g n )  = 2b - (2i - n)  = ( n  + b - i )  - ( i  - b )  b b, 

so that the reflected path represents a series of n games in which A wins 
n + b - i games, and B wins i - b games. A graph of the random walk shows 
that there is a one-to-one correspondence between the original and the 
reflected path. Hence, 

N,( i )  = ( ) i - b  
for 26 - 11 d 2i - n < b, 

because this is the total number of series in which A wins n + b - i games, 
B wins i - b games, and A's gain reaches b at least once. 

Reflection corresponds to changing the outcome of a game from + 1 to 
- 1 and vice versa, as indicated by the interchange of p and q in the inner 
sums of (3). 

Summing over i we get the probability that A's gain reaches b at least 
once as 

1 ( " ) p l q n - i +  1 ( 11 j p i q n - i ,  

Z i - n 2 b  I 2 i - n < b  i - b  

which is the first term of (4). Since we have disregarded the possibility of A 
being ruined, this probability obviously equals Rn(b) .  

The proof may be extended to find the four binomial coefficients in (4) 
by reflecting the path each time A's gain reaches --a or b;  we shall leave 
that to the reader. The complete proof has been given by Takacs (1969). 

We do not believe that Bernoulli carried out a formal proof such as the 
one above; presumably he simply worked through some examples, and from 
the structure of the solution he constructed his formula by incomplete 
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induction. Nevertheless, the solution of this complicated problem requires 
great combinatorial insight and testifies to his ingenuity. 

Besides printing the correspondence with Bernoulli on this problem, 
Montmort (1713, pp. 268-277) wrote a section in the main part of his book 
giving Bernoulli’s formula with a first attempt at a proof and some numerical 
examples. From Montmort’s arguments one gets the general idea of the 
proof, but as pointed out by de Moivre, some of the details are wrong. De 
Moivre ( 1  71 8, pp. 122-124) does not quote Bernoulli’s formula, only the 
example discussed by Montmort for n = 15, a = 3, and b = 2. He then 
improves Montmort’s argument as follows: 

The first Series of the first Branch expresses the number of Chances there are for 
A to win b stakes of B, including the number of Chances there are for B, before 
the expiration of the n games, to be in a circumstance of winning a Stakes of A; 
which number of Chances may be deduced from our foregoing Problem [to find 
RJb)].  The second Series of the first Branch is a part of the first, and expresses 
the number of Chances there are, for B to win a Stakes of A, out of the number 
of Chances there are for A in the first Series, to win b Stakes of B. It is to be 
observed about this Series, First, that the Chances of B expressed by it are not 
restrained to Happen in any Order, that is, either before or after A has won b 
Stakes of B. 

(We have replaced de Moivre’s numbers by n,a, and b, respectively.) De 
Moivre’s argument is correct, but it must certainly have been very difficult 
to understand. It will be seen that he gives a verbal formulation of (5)’ the 
first part of the proof above. With respect to the second part of the proof, 
he simply refers to formula (6), which he states (without proof) immediately 
before. In the next section we shall show that he presumably proved (6) and 
some other results by induction without using the combinatorial methods 
that Bernoulli and Montmort used. 

20.4 DE MOIVRE’S RESULTS IN DE MENSURA SORTIS, 1712 

Independently of Nicholas Bernoulli and about the same time, de Moivre 
solved some problems on the duration of play; his results are given as 
solutions to Problems 20-26 in De Mensura Sortis, read to the Royal Society 
in 1711 and published in 1712. De Mensura Sortis has been translated into 
English by McClintock (1984). 

De Moivre gives a general rule for finding the probability of continuation 
u,(x, a, b), which we shall call de Moivre’s algorithm. 

De Moivre’s Algorithm. Multiply p + q by itself n times, and after each 
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multiplication reject those terms in which the exponent of p exceeds the 
exponent of q by b and in which the exponent of q exceeds the exponent of 
p by a. The remaining terms will then give the probability of continuation 
after n games. 

The algorithm is obviously correct; in principle i t  solves the problem 
completely, but in practice it is useful only for small values of n, a, and b. 
Naturally, de Moivre had hoped to derive a formula for the continuation 
probability, but he did not succeed. 

After having formulated the algorithm he gives an example for n = 7, a = 3, 
and b = 2, which leads to 

u7(1) = 13p4q3 and i d 7 ( -  1) = 21p3q4; 

we shall leave the derivation to the reader. 

proves that 
He then turns to the simpler problem of finding U ,  for a = b. First, he 

U b + z m  = (2pq)' +"', a = b = 2, m = 0,1,. . , , 
Ub+zm=(3pq) '+m,  a = b = 3 ,  m = 0 , 1 ,  . . . .  

Using the algorithm to find the first few terms, it is straighforward to prove 
these results by induction. 

However, even for a = b = 4 the problem becomes so complicated that de 
Moivre cannot find an explicit solution. Instead he uses the algorithm to 
tabulate U,(4,4) for n 3 4, ending with 

and without proof he gives recursion formulae for the coefficients, so that 
tabulation can easily be continued. 

He solves the symmetric equations U,(4,4) = f and U6(4,4) = f with 
respect to p and finds that p/q = 5.274 and 2.576, respectively. He shows how 
such a reciprocal equation of the nth degree can be transformed to an equation 
of degree $n. 

Commenting on de Moivre's result, Montmort (1713, p. 275) writes that 
although the algorithm is simple and ingenious, Bernoulli's and his formula 
is much easier to use. As an example he mentions that his formula (3.1) gives 
D6,(9, 9) = 581,928 x 10'2/260, which he had found in less than an hour; but 
de Moivre's rule implies the calculation of (1 + 1)9, followed by 26 
multiplications with 1 + 2 + 1, and rejection of the two extreme terms after 
each multiplication, which requires an immense amount of calculation. 
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Without referring to Montmort, de Moivre (1718, p. 106) later took up 
the idea of using the algorithm on (1 + 1) instead of ( p  + q)  and after having 
found these numbers, to multiply by the adequate powers of p and q; 
presumably they both considered this procedure a modification of the 
arithmetic triangle, which is generated by (1 + l)", n = 0,1,. . . . 

Setting 

where c,(x, a, b)  denotes the number of ways in which A may win x counters 
in n games without any of the players being ruined, it is clear that de Moivre's 
algorithm leads to the recursion 

with the initial values 

c,(O)= 1 and c,(x)=O for x # O ,  

and the boundary conditions 

C"( - a) = c,(b) = 0. 

This is just a formalization of de Moivre's numerical examples. An example 
of this procedure has been given in Fig. 20.4.1, corresponding to de Moivre's 
previously mentioned example for n = 7, a = 3, and b = 2. 

The coeffkients of the ruin probabilities are listed just outside the 
boundaries; these coefficients are equal to c,- l ( b  - 1) and c,- 1( - a + I), 
respectively, since rn = pun - (b  - 1). 

Besides the algorithm, the most important result given by de Moivre is 
the probability R,(b) of B being ruined in at most n games when A's capital 
is unlimited: 

He gives no proof, but he has presumably used the algorithm to calculate 
some values of R,(b) from which he has inferred the formula, or he may have 
used the algorithm to derive a few terms of the series r, and U,,  n 2 b, as 
done by Laplace ( I  776), and then found the formula by incomplete induction. 
We shall indicate the complete proof. 
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Fig. 20.4.1. Modified arithmetic triangle according to de Moivre's algorithm, showing 
the calculation of c,(x, a, b) ,  rn(a, b),  and r:(a, b )  for a = 3 and b = 2. 

Proof o f (3) .  Since rb+ 2 m +  = 0, m = 0,1,. . . , we shall set n = b + 2m and 
use the algorithm with two steps at a time. From the expansion of 

(p + q)b = rb + Ub, 

it follows that 

rb =pb and ub= (;)pb-iqi. 
i =  1 

(4) 

Continuing wit,. the expansion of ,$2 + 2pq + q2)Ub, we find r b + 2  and U b + 2 ,  
and so on. After a few steps it is easy to see that the general formulae become 

b + 2m - 2 b + 2m - 2 
'b+'m=(( >-( m - 2  >)pb+mqm 

P b +  m -  iqm+', 
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To prove by induction that these formulae hold, we use 

The binomial coefficients of order b + 2m on the left-hand side are changed 
to order 6 + 2m -t 2 by means of the formula 

which is obtained by using the recursion formula for the arithmetic triangle 
two times in succession. In this way the left-hand side may be brought into 
a form equal to the one obtained from ( 5 )  and (6), with m + 1 substituted for 
m, which concludes the induction. Since the formulae hold for m = 0, formulae 
( 5 )  and (6) have been proved. 

From U ,  we obtain R,, 

which proves that (3) holds for n = b + 2m. 
Since rb+ Z m + ,  = 0, we have 

which leads to an expression for R b +  Z m + ,  equal to (8), with 2m replaced by 
2m + 1 so that (3) holds also for n = 6  + 2m + 1. This concludes the 
proof. 

De Moivre points out that the binomial coefficients in (3) are symmetric 
with respect to i = $(n + 6) and that the first sum equals the upper tail of the 
binomial ( p + q ) " .  This is of course in agreement with the first term of 
Bernoulli's formula for R,(a, b), see (3.6). 

20.5 
CHANCES,  1718 

DE MOIVRE'S RESULTS IN THE DOCTRINE OF 

In 171 1 de Moivre was 44 years old and a renowned mathematician. It must 
have been a great surprise for him to learn that a young and unknown 
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mathematician, Nicholas Bernoulli, had solved a problem which de Moivre 
at the same time had tried solving without finding a satisfactory solution. In 
the Doctrine of Chances (1718, p. XIII), he acknowledged Bernoulli’s result 
as follows: 

Mr. de Monmort, and Mr. Nicholas Bernoully, have each of them separately given 
the Solution of my XXXIXth Problem [to find D,], in a Method differing from 
mine, as may be seen in Mr. de Monmort’s second Edition of his Book. Their 
Solutions, which in the main agree together, and vary little more than in the form 
of Expression, are extreamly beautiful; for which reason I thought the Reader 
would be well pleased to see their Method explained by me, in such a manner as 
might be apprehended by those who are not so well versed in the nature of 
Symbols: In which matter I have taken some Pains, thereby to testify to the World 
the just Value I have for their Performance. 

This remark is omitted from the following editions of the Doctrine in which 
he claimed, without giving any evidence, that he had the solution in 1711 
but was “preserving this Problem by me in order to be published when I 
should think it proper” (1738, p. 181). De Moivre never gave a full account 
of Bernoulli’s formula, he only discussed a numerical example; Todhunter 
followed de Moivre, and for this reason Bernoulli’s result was overlooked 
for a long time. 

De Moivre’s important new results in the Doctrine may be summarized 
as follows: 

1. a formula for r,,(u,b); 
2. a recursion formula for d,(a, b); 
3. a method for summing recurring series to find D,,(a, b); and 
4. a solution of the difference equation corresponding to the recursion 

giving a formula for U,(b, b). 

De Moivre did not indicate how he obtained these results, except for the 
summation formula under (3); he gave only sOme numerical examples of how 
to use the formulae..For the generation of mathematicians after de Moivre 
it became a challenge to prove the recursion formulae. The young Laplace 
(1774, 1776) formulated de Moivre’s algorithm as the partial difference 
equation 

with the boundary conditions u,(O) = 1, and 

u,(x)=O, x > ( b - I ) r \ n  and x < ( - a + l ) v ( - n ) ,  n20, 
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and showed how it  could be transformed to a linear difference equation with 
respect to n only, in this way proving de Moivre’s recursion formulae, see 
$23.4. 

Todhunter (pp. 169-172) gives up reconstructing de Moivre’s proofs; 
instead, he uses generating functions due to Laplace (1812) to derive de 
Moivre’s results. Todhunter’s defeat leads him to write (p. 193) that “Our 
obligations to De Moivre would have been still greater if he had not concealed 
the demonstration of the important results which we have noticed in Art. 306.” 

I t  seems, however, that Todhunter has overlooked a clue given by de 
Moivre (1718, p. XIII): 

All the Problems which in my Specimen [De Mensura Sortis] related to  the 
Duration of Play, have been kept entire in the following Treatise; but the Method 
of Solution has received some Improvements by the new Discoveries I have made 
concerning the Nature of those Series which result from the Consideration of the 
Subject; however, the Principles of that Method having been laid down in my 
Specimen I had nothing now to do, but to draw the Consequences that were 
naturally deducible from them. 

We interpret this statement to mean that de Moivre derived the recursion 
formulae from his algorithm, and we shall therefore give a proof based on 
this method and induction. We further believe that de Moivre found the 
formula for rn by differencing Bernoulli’s formula, even if he did not refer to 
Bernoulli. We shall prove the formula by this method. 

We shall give page references to the Doctrine (1  71 8) only; the reader may 
find the same results in the second and third edition, as indicated in $22.4. 

De Moivre’s formula for Y,((z, b) 

Setting c = a + b and 

we have 

b Imlbl 
jm(b ,  b) = 2 ( -  1)‘(2k + I )  

b + 2m k = O  
(4) 

‘These results are given by de Moivre on pp. 121, 110, and 118-119, 
respectively. 
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Proof. Setting 

Bernoulli's formula (3.3) may be written as 
W 

Rn(at b) = pb C (qp)kcsn(m - kc) 
k = O  

W 

- pb C (qp)"+k'S,(m - a - kc), n = b + 2m. 
k = O  

To find 

' b +  2m = R b +  2 m -  R b +  2 m -  29 

we therefore have to find SJm) - S , - , ( m  - 1). Inserting 

(;) = ( ; ' )  + 2( ;I ;) + (7::) 
into S,(m), multiplying S,- 2(m - 1) by p 2  + 2pq + q2, and comparing terms 
of the same form, we get 

n 

(3) follows. This result agrees with (4.5).  
The differences of the S's in the two terms of (6)  are 

n m - kc 
( P d "  - kc 

n -  2m + 2a + 2kc n 
( P d "  - a  - kc n ( m  - a - k c )  

(7) 

= ( p q ) m - " - k c _ - _ _ _ _  a + ( 2 k + l ) c (  b + 2 m  ) 
b + 2 m  m - a - k c  
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Inserting these results into (6), (4) and ( 5 )  are easily found. 
By analogy we get 

which concludes the proof. A similar proof has been given by Hald 
(1 988). 

Before proving de Moivre's recursion formulae we shall prove two lemmas, 
which presumably would have been known to de Moivre. They are easily 
found by incomplete induction. 

De Moivre gave two forms of R,(6), one is a linear combination of the 
terms ~ ' q " - ~ ,  i = 0,1,. . . , n, see (4.3) and the other a linear combination of 
the terms p * ( ~ q ) ~ ,  i = O ,  1 ,..., m, see (2) and (3). Hence, the first form 
corresponds to the usual expansion of the binomial ( p + 4 ) " ,  whereas the 
second requires an expansion in terms of (pq)'. 

Lemma 1. An Expansion of the Binomial. 

where 

Proof. Expanding the binomial in powers of p 4  we get 

and so on. These expansions are of the form (8), and from the pattern of the 
coefficients it is easy to see that (9) holds. 

To give a rigorous proof of (9) we multiply (8) by p + q  and eliminate 
p"' + q"-' from the right-hand side, in this way obtaining an expansion of 
(p + q)"" analogous to (8), but with coeficient ai(n) + ai -  ] ( n  - 1). Replacing 
!I by n + 1 in (8) and comparing coefficients in the two expansions, we get 
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the difference equation 

where a&) = 1 for n 2 0. It is easy to prove that the complete solution is 
given by (9). The proof is essentially due to Laplace (1776). 

By means of the lemma it may be proved that 

k h  ,121 (-1y-'ai(n)( n-2i  )=(;), O < k < n ,  (10) 
i =  1 k - i  

1 + k h f 2 ' ( -  1 ) q  ;')( -2i)  = (;), 0 < k < n. (11) 
i= 1 k-i 

The proofs are due to Hald and Johansen (1983) and Hald (1988). 

In his search for recursion formulae it seems reasonable to suppose that 
de Moivre began by investigating r,(b) as the simplest of the ruin probabilities. 

Lemma 2. The Recursion Formula for r,(b). 

Proof. Since rb+2m+l(b)=0,  we need only consider the case n = b + 2m. 
The proof is based on (4.5) for rb+ 2m, starting from r b  = pb. We have 

r b + 2  - bpqrb = O, 

and from the difference rb+4 - (b + 2 ) p q ~ ~ + ~  combined with (4.9, we get 

and so on. This leads to (12) by incomplete induction. The series contains 
only m terms since r, = 0 for n < 6. 

To give a rigorous proof we insert (4.5) in (12) and use the fact that 
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so that (12) is reduced to the equation 

m m--r 

which holds according to (1 1). 

De Moivre’s Recursion Formulae 

As observed by Montmort, de Moivre’s algorithm requires too many 
additions to be of practical use for n large. Bernoulli’s formula remedies this 
deficiency by replacing additions by binomial coefficients. However, &(a, b) 
is also difficult to calculate, being a complicated polynomial of the nth degree. 
In his search for a better solution, de Moivre got the ingenious idea of 
transforming the algorithm into a recursion formula with respect to n, and 
by summing the recurring series, he found a solution that is easier to calculate. 

Writing D,(a, b) in the form 

where r and r* are defined in (2)’ de Moivre’s recursion formula for the 
coefficients in the two series becomes 

where P:(a, b) satisfies the same recursion for m 2 b. 
For a = b the recursion may be reduced to 

Both (14) and ( I  5 )  are given by de Moivre on pp. 1 16 and 109, respectively. 
We shall prove (14) only; the same method may be used to prove (15). 

One may of course wonder why de Moivre did not give the recursion for 
a = b as a special case of the general formula; the reason is that (15) contains 
fewer terms and is computationally simpler than (14) for a = b. A proof of 
the reduction of (14) to (15) has been given by Hald and Johansen (1983), 
see Problems 11 and 12 in 820.6. 
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Proofof(I4). De Moivre states that the beginning of the series for D ,  is 

i = O  i = O  

This follows from the fact that for small values of n, only one of the boundaries 
can lead to ruin. For example, if n < b + 2a, as in the first sum, and A wins 
at least b games more than B, then it is impossible for B to ruin A regardless 
of the size of Q. Hence, 

d,(a, b)  = r,(b) + rf(a), 0 < n < { ( a  + 2b) A (b  + 2 4 ) .  (16) 

Since a and b are positive integers, the equation holds for at least n < a + b. 
Using Lemma 2, we thus have 

W 

d,,(a, b) = C ( -  1 y - I  (n- f - i ) (pq)‘d,-2i(a,b) ,  

To find a recursion for larger values of n, we need the auxiliary formula 

( U A  b ) < n < a + b .  
i =  1 

(17) 

t(o + b -  11/21 

i =  1 
u,(x)= aiu,-2i(x), n > a + b - l ,  - a < x < b ,  (18) 

where the coeficients { a i }  are independent of n. Supposing that this formula 
holds, summation over x shows that the same recursion holds for U,,  and 
since D ,  = 1 - U,, we get 

D , ( a , b ) = ~ a , D , - , , ( a , b ) + C ,  n a a +  b -  1, 

C being a constant. We have here, as in the following, left out the limits of 
summation, which are the same as in (18). From d, = D, - D,- we obtain 

Comparing (17) and (19) for n = a + b, we see that (19) holds for 

a + b - I - i  
. a i = (  - l)i’( ) ( ~ q ) ~ ,  i = l , 2 , .  . ., [$(a + b - I ) ] .  (20) 

I 
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and the expressions for r and r* in terms of p and p*, the recursion formula 
(14) follows. 

We note that (16) and (17) show that other recursions exist if a or 6 is 
larger than unity. However, these recursions are of he same form as (19) and 
(20) but with a + b replaced by a larger number, so that (20) gives the optimum 
solution because it has the smallest number of terms, the smallest coefficients, 
and is valid for the largest n interval. 

We shall finally prove (18) by means of de Moivre’s algorithm as given 
by ( 1 ) .  

Starting from x = b - 1 and using u,(b) = 0, we get 

u,(b- 1 ) = p u n - , ( b - 2 ) ,  n >  1 .  

Continuing with smaller values ofx and eliminating u,- l ( x  + l), we obtain 

and so on. It follows that u,(x) may be written as 

the total number of terms on the right-hand side being b - x .  The coeficients 
ai are of the form (- l ) i -1k , (p4) i ,  i = 1,2 , .  . . , where the k’s are constants. If 
b - x  is even there are ; ( b - x )  a’s and P’s, and if b - x  is odd, there are 
f ( b  - x - 1) a’s and ;(h - x + 1) p’s. The summations are from i = I to the 
appropriate upper limits. 

Setting x = - a + 1 ,  and using u,( - a) = 0, we get 

I@ + b - I J/21 

u, ( -a+  I ) =  a , ( - - +  ~ ) u , , - ~ ~ ( - u +  l) ,  n > a + b - l ,  (22) 
i= I 

which is a recursion formula of the form (18). Since 

It follows that r: satisfies the same recursion for n 2 a + b. 
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The idea of the proof of (22) is due to Laplace, and in $23.4 we shall see 
how Laplace found ai(x) and p,(x).  

In the following we shall write ai for ai( - a + 1). The number of terms in 
the recursion is [$(a + b - l)], since b - x = b + a - 1 for x = - a + 1 .  

From Fig. 20.4.1 it will be seen that every second value of u,(x), n = 0, 1 ,  . , . , 
for a given value of x equals zero, so that the recursion (18) is trivially true 
if u,(x) = 0. We shall therefore assume that u,+~ - 1( - a + 1 )  > 0, which implies 
that u,+~- I ( x )  > 0 for x = - a + 3,  - a  + 5 , .  . . , and that the intermediate 
values equal zero. It follows that u,+~( - a + 1) = 0, u,+~( - a + 2) > 0, and 
so on. The reader should draw a diagram like Fig. 20.4.1 to see these and 
the following results. 

From (1) we have 

~ u , ( x +  ~ ) = u , + ~ ( x ) - ~ u , ( x -  l), n > 0 ,  - a < x < b .  

If the recursion (18) holds for u,(x - 1) and u,+ l (x ) ,  then it also holds for 
u,(x + 1) because the coeficients ai are independent of n. Equation (22) shows 
that the recursion holds for u,( - a + l), n Z a + b - 1. Furthermore, 

so that the recursion also holds for u,( - a + 2), n 2 a + b.  Hence it holds for 
u.(-a+3), n a a + b - l ,  for u,(-a+4), n > a + b ,  for u n ( - a + 5 ) ,  
n Z a + b - 1, and so on. This completes the proof of (18). 

The proof of the recursion for d,(a, b) given above is a modified version 
of a proof by Hald (1988). We note that formula (5.15) in that paper holds 
for n = a + b - 1 as shown above and not for n < a  + b - 1 as stated in 
the paper; however, this mistake does not influence the remainder of the 
proof. 

Using c,(x) instead of u,(x), the proof becomes simpler because p and q 
disappear. We do not believe that de Moivre carried out a formal proof of 
the recursion formula, presumably he looked at a few examples of the modified 
arithmetic triangle (see Fig. 20.4.1) from which the number pattern is easily 
found. The reader may be convinced by calculating c,(x) for (a, b )  = (3,5), 
(4,5), (4,% say. 

Inserting r b + J b )  in terms of p, into (12) we get the recursion 
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De Moivre ( p .  116) gives the final result in the form 

where Ba(u, b) and the following coefficients are found from the preceding 
ones by the recursion (14). De Moivre does not notice that the first Q terms 
might have been expressed recursively by means of (23). 

As an example, for a = 3 and b = 2 de Moivre finds 

The recursion (14) gives Pi  = 3pi- - Pi- 2, which is used for i 2 3 in the first 
series and for i > 2 in the second. The number of terms given corresponds 
to n = 15, which is the example used by Montmort to illustrate the appli- 
cation of Bernoulli’s formula. Of course, both Bernoulli’s and de Moivre’s 
formulae are polynomials in p of the nth degree, but de Moivre shows 
that the organization of his formula as a power series in pq combined 
with the recursion formula lead to simpler calculations than Bernoulli’s 
formula. 

For a = 6, de Moivre’s formula becomes 

where &(b, 6) satisfies the recursion ( 1  5) .  This may be proved by means of 
the algorithm combined with Lemma 1, see Hald (1988). 

On the Summation of Recurring Series 

To find Dn without calculating each term of the series it is necessary to have 
a formula for finding the sum of a recurring series. 

De Moivre defines a recurring sequence {r, ,} ,  n = 0, 1,. . . , of order k by 
means of two sets of k numbers, ro, r , , .  . . , rk- and a , ,  a2 , .  . . , uk, where ak # 0, 



20.5 DE MOWRE’S RESULTS IN THE DOCTRJNE OF CHANCES, 17 18 37 1 

and the recurrence relation 

The coefficients { ( -  l ) i - ’ a i }  are called the scale of relation, and the 
polynomial 

. .  k 

~ ( x )  = C ( -  l)’aix‘, a, = 1, 
i = O  

is called the differential scale. 
A recurring series is defined as the power series 

In the Doctrine (1718, pp. 128-130), de Moivre proves that 

which means that R(x) may be found as the ratio of two polynomials of 
degree k - 1 and k, respectively, the coefficients depending only on the 2k 
numbers defining the recursion. De Moivre adds that the terms of R(x) should 
be “continually decreasing” for the sum to exist. This is the main result 
published by de Moivre in 1718; he later proved many other results on 
recurring series which we shall discuss in 523.1. 

The sum of the first m terms of R(x) may be found as the difference between 
R(x) and the power series beginning with the (m + 1)st term, so that 

m -  1 k - 1  n k - 1  n 
A(x) 1 r,x”= C x” 1 (- l) iairn-i-  x“ 1 X” 1 ( -  l ) i a i rm+n- i .  (27) 

n=O n = 0  i = O  n = O  i = O  

In 1718 de Moivre expressed the sum by means of the k values immediately 
before rm instead of the k values used here, which he introduced in 1738. 

From (14) and (15) it follows that {/3,(b, b ) )  and {@,(a, b ) }  are recurring 
sequences with scales defined by 

ui=- (  b b - i  ) and a i = (  ~ + b - l - i  ), 
b - i  
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respectively. Ignoring the factors p b  and q”, the sums entering the formulae 
for D, are thus partial sums of recurring series and may therefore be evaluated 
by means of (27), using (4) and ( 5 )  to calculate the first Lib] and [;(a + b - l)] 
values, respectively, and the same number of terms following the last term 
of the sum. The result will be a ratio of two polynomials in p q .  

The development leading to this end result may be summarized as follows. 
First, de Moivre shows that the ruin probability rb+2m(u, b) may be written 
as pb(pq)”P,(a, b), where the value of 8, may be found by means of an 
algorithm analogous to the one leading to the binomial coefficients. Second, 
he gives a formula for p, which is too complicated to be used for tabulating 
a,. Third, he gives a recursion formula for p, so that each value is a linear 
function of a fixed number of previous values, which makes the calculation 
easy. Fourth, he derives a formula for the summation of recurring series so 
that only 2a values of rb+2m have to be calculated to find the sum RL+2m, 
m 2 2a, regardless of the value of m. 

De Moivre’s Trigonometric Formula for U,(b, b )  

In a casual remark at the end of his discussion of the problem of the duration 
of play, de Moivre (pp. 149-150) gives a completely new solution. Without 
proof he states that the probability of continuation may be found as 

IW2l 

j =  1 
U,(b, b )  = C cjt;”, 

where 

i + j  

n ( t j  - ti)’ 
i # j  

c . = --- 
J 

for b odd, n should be replaced by n - 1 on the right-hand side of (28). 
He writes that he takes this solution to be ‘‘as expeditious as the nature 

of the Problem can admit of.” Obviously, the new solution offers great 
theoretical and computational advantages compared with the previous ones 
both because of its form and its small number of terms; but the form of the 
solution and the lack of explanation must have ballled the reader. However, 
de Moivre knew that Montmort and Nicholas Bernoulli were working on 
the same problem, and he wanted to secure his priority by publishing the 
solution. He later developed the theory of recurring series and the trigono- 
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metric solution of the ruin problem in more detail; we shall give an account 
of his theory in H23.1 and 23.2. 

In 1718 he limited himself to present two numerical examples. In the first 
he showed that U4,(4,4)=0.05085; in the second he solved the equation 
0,(4,4) = 100/101 and found that n is about 60. 

in  addition to those references already mentioned, we have used in 
particular the papers by Fieller (1931), Schneider (1968), and Kohli (1975b). 

20.6 PROBLEMS 

1. Derive the solution of Huygens’ fifth problem from Nicholas Bernoulli’s 
formula for R,(a, b). 

2. Derive Montmort’s formula for D,(b, b), p = i, from Nicholas Bernoulli’s 
formula for R,(a, b). 

3. Use Montmort’s formula for D,(b, b), p = $, to prove that 

0,(2, 2) = 1 - (f)””, 0,(3,3) = 1 - ($)‘”- 1)”, 

as stated by Montmort (1713, pp. 275-2?6)(see also Todhunter, pp. 103- 
104). Compare with de Moivre’s proof. 

4. Check Nicholas Bernoulli’s result that 

Use de Moivre’s trigonometric formula to solve the same problem. 

5. Find an approximate solution of the equation 

1 0,(4,4) = &, p = i, 

by means of de Moivre’s trigonometric formula (De Moivre, 171 8, p. 15 1). 

6. Calculate 0 , , (3 ,2 )  for p = 4. Montmort (1713, p. 270) finds the result 
26,606/32,768, whereas de Moivre (1718, p. 117) gets 31,171/32,768. 

7. “To Find what Probability there is, that in a given number of Games, A 
may be winner of a certain number q of Stakes; and at some other time, 
B may likewise be winner of the number p of stakes, so that both circum- 
stances may Happen”(De Moivre, 1718, Problem 41; 1712, Problem 26). 
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8. “To Find what Probability there is, that in a given number of Games, 
A may win the number q of Stakes; with this farther condition, that B, 
during the whole number of Games, may never have been winner of the 
number p of Stakes” (De Moivre, 1718, Problem 42). 

9. “Supposing A and B, whose proportion of Skill is as a to b, to Play 
together, till A either wins the number q of Stakes, or loses the number 
p of them; and that B Sets at every Game the sum G to the sum L: It 
is required to find the Advantage, or Disadvantage of A (De Moivre, 
1718, Problem 43). 

10. “If A and B, whose proportion of Skill is supposed equal, play together 
till Four Stakes be won or lost on either side; and that C and D, whose 
proportion of Skill is also supposed equal, play likewise together till Five 
Stakes be won or lost on either side: What is the Probability that the 
Play between A and B will be Ended in fewer Games than the Play 
between C and D?” (De Moivre, 1718, Problem 46). 

11. Suppose that A has infinitely many counters and that B has b counters. 
Prove by recursion that the number of ruin permutations ending with 
a gain for A of gn = 2i - n < b equals ( i l l b ) .  
Hint:  Set i = b + in, rn = 0, 1,. . . , [i(n - b ) ] ,  and let N ( b ,  rn, n) denote the 
number of permutations leading to ruin. Prove that 

N ( b ,  m, n )  = ( ‘ i b ) + : Z : N ( k +  1 , r n -  1 , n - b + k -  1) 

m 
+ 1 N ( b + k - 1 , r n - k , n - k - 1 )  

k =  1 

and N(b, 0, i t )  = 1. 

12. Prove that 

k A f 2 1 a i ( b l ( b -  1 - k + i ) = ( 2 b - i  - k )  , O < k < b .  
i = O  k - i  

Hint: Use the generating functions (pb-qb)/(p-q4) and p b + q b .  A 
combinatorial proof has been given by Hald and Johansen (1983). 

13. Compare de Moivre’s recursion formula for d,(b, b)  with that obtained 
from d,(a, b) by setting a = b. Use the result in Problem 12 to prove that 
the two formulae give the same result. 



CHAPTER 21 

Nicholas Bernoulli 

All this [ Nicholas Bernoulli’s theorem on the binomial distribution 
and his solution of Waldegrave’s problem] is  indeed very d@cult 
and a great work. You are a terrific man: being ahead of you 1 
thought that I would not have been catched up so soon, but I now 
see that I am mistaken; I am at present well behind you andforced 
to use my whole aspiration to follow you at a distance. 

- M O N T M O R T  TO NICHOLAS B E R N O U L L I  I N  A L E T T E R  OF 
20 A U G U S T 1 7 1 3  

21.1 DE USU ARTIS CONJECTANDI IN JURE, 1109 

Nicholas Bernoulli obtained his master’s degree in mathematics in 1704 and 
his doctor’s degree in jurisprudence in 1709 at the age of 21. His thesis is 
designated as Dissertatio Inauguralis Mathematico-Juridica and has the title 
On the Use  ofthe Art ofConjecturing in Law. It may be considered an attempt 
to carry out part of the program outlined by James Bernoulli in the last part 
of  Ars Conjectandi. As pointed out by Kohli (1975d), the thesis is greatly 
influenced by the work of James Bernoulli in the Meditationes and Ars 
Conjectandi and contains many statements that may be traced to these works. 
Nevertheless, i t  also shows its author’s ability to complete the analyses 
initiated by James and his originality in taking up and solving new problems. 
The contents is shown in the following table. 

We have used the translation by Thomas Drucker (1976, unpublished). 
We shall survey the problems discussed by Nicholas Bernoulli and present 
some of his solutions. A similar commentary has been given by Kohli (1975d). 

The thesis abounds with references to civil and canon’law and to the 
works of many jurists. In many cases Nicholas Bernoulli severely criticizes 

375 
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Table of contents of De Usu Artis Conjectandi in Jure, 1709 

CHAPTER PAGE 

Preface 
1 Of the art of conjecturing in general 
2 Of the means for reckoning the probability of human life, 

or of a man of any age 
3 Of an absent person to be presumed dead 
4 Of the purchase of an expectation, and in particular of the 

purchase of life incomes 
5 Concerning the means of deducting the Falcidian fourth 

from the bequests of maintenances, usufructs, life incomes, 
etc. 

6 Concerning assurance and nautical interest 
7 Of games, wagers, and lotteries 
8 Of childbirth, how many infants will probably survive 
9 Of the reliability of witnesses and of suspicions; also of a 

loan, whether it  can be held to be fulfilled if the property 
should be destroyed 

Corollaries 

3 
4 

7 
17 

22 

38 
44 
47 
52 

54 
56 

the arguments and results of his juridical predecessors because they have 
not taken into account the fact that the frequency of occurrence of uncertain 
events may be estimated from observation, so that the value of contracts 
concerning such events may be assessed by means of the calculus of proba- 
bility. We shall not relate the juridical discussion but keep to Bernoulli’s 
probabilistic arguments. 

The first chapter contains the definitions of the concepts of probability 
and expectation in accordance with the works of Huygens and James 
Bernoulli. Nicholas stresses the analogy between the expectation, the 
arithmetic mean, and the center of gravity. 

The main part of the thesis is found in Chapters 2-5, which contain a 
discussion of the probabilities of survival for one and two persons, the median 
and the expected lifetime, and the calculation of life annuities based on 
Graunt’s life table. (We have previously discussed these chapters in $88.2, 
9.1, and 9.2.) 

In Chapter 6 Bernoulli solves three problems of marine and life insurance 
by simple calculation of expectations from known probabilities and known 
values of the insured. 

Bernoulli defines a lottery as fair if the expected value of the prizes equals 
the price of a ticket; however, a small surplus must be allowed to cover 
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expenses. If lotteries are held to provide money for public works or for 
charity, a larger surplus may be considered reasonable. 

In Chapter 7 he takes the Genoese lottery as an example of an unfair 
lottery. It is held each year in Genoa just before the election of five members 
to the city council from among the 100 senators. Each player names five 
candidates and gets a prize of 1, 10, 300, 1500, and 10,000 crowns if it turns 
out that he has correctly guessed the names of one, two, three, four, and five 
candidates, respectively. The price for participating is 1 crown. In his analysis 
Bernoulli assumes that each player chooses the five names at random among 
the 100, so that the probability of guessing i names correctly is 

p i = ( : ) (  5 - i  95 )/(I:), 
i=o,1,  ..., 5. 

Setting the corresponding prize equal to x i ,  xo = 0, he further assumes that 
the prizes should vary inversely as the probabilities of winning, which means 
that xlpl  = = x 5 p 5  = c,  say, so that the equation c x i p i  = 1 gives c = 4. 
He thus finds the following prizes: 0.95; 10.9; 337; 31,700; and 15,057,504. 
The actual prizes are thus too small, except for the first, which is a little too 
large. Bernoulli also finds that the expected value of the actual prizes equals 
0.58 crowns, so that the lottery has a surplus of 0.42 crowns per ticket; he 
therefore concludes that the Magistracy should not permit wagers of this 
sort. (We have expressed Bernoulli results in decimals; he naturally gives the 
exact fractions.) 

As an example of a fair lottery, Bernoulli mentions a lottery from the 
Netherlands, issued in 1709, where the prizes are life annuities that may be 
converted to capitals equal to 11.75 times the yearly payment if the winner 
of the prize so desires. 

In Chapter 8 a question of inheritance is discussed. Suppose that a man 
dies and leaves a son and a pregnant wife; what part of the inheritance can 
the son request? According to civil law the son will get one-fourth, since the 
Roman jurists reasoned that the pregnant wife may give birth to a number 
of children between one and five, the mean being three. Bernoulli says that 
it is unreasonable to use this mean; one should instead use the arithmetic 
mean and also take into account the possibility of a miscarriage, which means 
that on the average, only one child will be born. If the division of the inheritance 
cannot wait until the birth of the child, then it should be divided into two 
equal parts. 

In Chapter 9 Bernoulli says that the trustworthiness of a witness should 
be measured empirically by the relative frequency of the number of times in 
which he has been found to speak the truth. 

To find the probability of the innocence of an accused person, Bernoulli 
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states that one should find the probability that any piece ofevidence presented 
against the accused indicates his innocence and thus the probability of his 
innocence relative to the total evidence. For example, if each piece of evidence 
indicates his guilt with a probability off and his innocence with a probability 
of 3, then the probability of his innocence relative to IZ pieces of evidence 
will be (5,”. 

In view of the background for the work of James and Nicholas Bernoulli 
in applied probability, they obtained important and original results, however, 
as noted earlier they seem to be unaware of the pathbreaking paper by Halley 
(1694) and of the other English contributions mentioned in Chapter 12, and 
on that basis, there is nearly nothing new. 

Todhunter’s discussion of Nicholas Bernoulli’s thesis is based on a 
summary published in the Acta Eruditorum, 171 1 ,  pp. 159-170, and it is there- 
fore somewhat incomplete. 

21.2 SOLUTIONS OF WALDEGRAVE’S PROBLEM BY NICHOLAS 
BERNOULLI, MONTMORT, AND DE MOIVRE 

Let there be n + 1 players, A,, . . . , A,, of equal skill. Players A,  and A, 
play a game, and the loser pays a crown to a common stock and does not 
enter the play again until all the other players have played; the winner plays 
against A,, and the loser pays a crown to the stock, and so on. If the winner 
of the first game beats all the rest, the play is finished; if not, the play goes 
on, each player coming in again in turn until one player has beaten in 
succession all the other players, and he then receives all the money in the 
stock. 

The problem is to determine 

1. the probability of each player winning the stock; 
2. the expectation of each player; and 
3. the probability of a given duration of the play. 

In a letter to Bernoulli of 10 April 171 1, Montmort writes that the problem 
has been proposed to him and also solved by Waldegrave for three players. 
Independently, de Moivre formulated and solved the problem for three 
players in De Mensura Sortis (1712). Todhunter has proposed the name 
Waldegrave’s problem. 

Montmort does not state how Waldegrave solved the problem. He offers 
a solution without proof and also gives part of the solution for four players 
but leaves it unfinished because it is too difficult. 
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In this answer Bernoulli presents the general solution of all three problems 
and uses his formulae to calculate the solutions for three and four players. 
He writes that the proof is quite long, that i t  is not based on the use of 
infinite series as is Montmort’s formula, and that “I shall leave to you the 
pleasure of proving it yourself.” 

Montmort does not succeed, and in a letter of 30 December 1712, Bernoulli 
finally sends him the detailed proof which we are going to discuss. Bernoulli 
states that he values this proof more than anything else he so far has contri- 
buted to probability theory. 

Bernoulli sent a Latin version of his proof to de Moivre, who writes in 
the preface of the Doctrine (1718), 

The 32d Problem [Waldegrave’s problem] having in i t  a Mixture of the two 
Methods of Combinations and Infinite Series, may be proposed for a pattern of 
Solution, in some of the most dillicult cases that may occur in the Subject of 
Chance, and on this occasion I must do that Justice to Mr. Nicholas Bernoully, 
the Worthy Professor of Mathematics at Podua, to own he had sent me the 
Solution of this Problem before mine was Published; which I had no sooner 
received, but I communicated it to the Royal Society, and represented it as a 
Performance highly to be commended: Whereupon the Society ordered that his 
Solution should be printed; which was accordingly done some time after in the 
Philosophical Transactions, Numb. 341, where mine was also inserted. 

The paper alluded to by de Moivre is his solution for four players, which 
was later given in English in the Doctrine (1718). 

Struyck (1716) bases his discussion of Waldegrave’s problem on Bernoulli’s 
solution and elaborates two of Bernoulli’s formulae. 

The references to the discussion on Waldegrave’s problem as outlined 
above are as follows: Montmort (1713, pp. 318-320, 328-331, 345-346, 
350-351, 366, 375, 380-387); N. Bernoulli Phil. Trans., 1717, pp. 133-144; 
de Moivre(l712, Problem 15; Phil. Trans., 1717, pp, 145-158; 1718, Problems 
31-32); Struyck (1716, pp. 116-118, 206-210). 

For three players it is easy to list the sequence of games for any duration 
of play and to find the corresponding values of the probabilities and the 
stock and thus to obtain the solution by summation of three infinite series. 
This is the method used by Montmort and de Moivre. Bernoulli writes to 
Montmort that i t  is difficult to obtain the general solution by this method, 
and he has therefore solved the problem by Huygens’ analytical method. 
During his visit to London in 1712, Bernoulli discussed the problem with 
de Moivre, telling about his own results and pointing out the difficulties with 
the generalization of de Moivre’s method. De Moivre reacted by publishing 
the solution for four players in the Phil. Trans. and in the Doctrine. 
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Nicholas Bernoulli’s Solution 

Theorem 1. Let p i  denote A:s probability of winning the stock. The p’s 
may be found from the equations 

a + l  

1 + 2”’ i = l  
* c p i =  1. (1) 

2“ 
pl = p 2 ;  p i + ,  =cp i ,  i = 2 ,  ..., n, c=- 

Proof’. In each game a new player enters and plays against the winner of 
the preceding game who may have won 0 or 1 or ... n - 1 games in succession. 
Assuming that he has won i games in succession, we shall denote the entering 
player’s (conditional) probability of winning the stock by r i ,  i = 0, I , .  . . , n - 1, 
ro = P I  = P2. 

In each game one of the players leaves the game as loser, but, except for 
the last game, he has the possibility of coming back and winning the stock. 
Assuming that the winner of the game has won i games in succession, we 
shall denote the loser’s (conditional) probability of winning the stock by si ,  
i =  1 ,..., n- I ,  s,=O. 

These are the fundamental concepts introduced by Bernoulli who then 
derives three sets of linear equations among the p’s, r’s, and s’s, eliminates 
r and s, and thus obtains the set of equations between the p’s given in (1). 

Since Ai enters the play at the ( i  - 1)st game and plays against an adversary 
who has won either 1 or 2 or i- 2 games, we have p 3  = r l  and 

1 i - 3  I i - 3  
p i  = +rl  + (+12r, + ... + (?) + ( 3 )  i = 4,. ..,n + 1, (2) 

where the last term is the sum of two equally large probabilities because the 
adversary may be either A,  or A,. 

Considering a player entering a game against an adversary, who has won 
i games in succession, the entering player may either lose and thus leave the 
adversary with i + 1 victories, or he may win either 1 or 2 or . . e n  - 1 games 
and thus leave the game with an adversary having just one victory, or he 
may win n games and thus the stock. This reasoning leads to the equation 

Consider next the case where a player leaves the game as loser and the 
winner has won n - 1 games in succession. The condition for the loser to 
enter the play again is that the winner loses to the next player, and in that 
case the player in question is situated as A,+l at  the beginning of the play; 
his probability of winning the stock therefore becomes 

s n -  1 = $ P n +  1’ 
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Continuing this reasoning we obtain 

s ~ = ( ~ )  1 n - i  ~ ~ + ~ + ( ~ ) n - ~ - ' p ~ + ~ + . . . + ~ ~ ~ +  l ,  i = l ,  ..., n-1. (4) 

To solve the three sets of equations, Bernoulli first uses (3) and (4) to find 
that 

From (2) it follows that 

which inserted into ( 5 )  gives 

and thus Theorem 1. (We have only deviated from Bernoulli's method of 
solving the equations by amalgamating two simple steps into one.) 

Summing the geometric series in (1) Struyck 

1 - c  p ,  = p 2  = --.___- 

(2 - c - c")' 

gives the explicit solution 

(6 )  

Theorem 2. Let P i  denote Ai's expectation. The P's may be found from 
the equations: P1 = P,, 

, i = 2 ,  ..., n; 2"(Pi + Pi) - n ~ i  + 1 

1 +2" 
P i + ,  =- 

and Pi = 0. 

Proqf. Following Bernoulli, we shall denote the expectations of the player 
in the various states considered by the capital letters used for the probabilities 
in the proof above, i.e., by P, R,  and S .  The proof follows the same lines as 
the proof of Theorem 1. 

From the definitions we have P l  = P ,  = R ,  and P 3  = R , .  
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Suppose that Ai in the (i - l)st game plays against an adversary who has 
won just one game. Player Ai's conditional expectation is R , ,  and the stock 
contains (i - 2) crowns, which is i - 3 crowns more than corresponding to 
R , .  The expected value of this surplus is (i  - 3)r1, so that the total conditional 
expectation becomes R ,  + ( i  - 3)r1. Hence, 

P i  = + [ R l  + ( i  - 3)rl]  + (+)'[RZ + ( i  - 4)rJ + 
i = 4 ,  ..., n +  1. (9) +(?I  1 i-3 (Ri_,+ri-3)+(3)i-3Ri_2, 

In analogy to (3) and (4), Bernoulli obtains 

R i  = + ( S i + ,  - 1) + (+)2[S, - 1 + ( i  + l ) s l ]  + ..+ 

+ ( + ) " [ S l - l  + ( n + i - l ) s , ] + ( + ) " ( n + i ) ,  i = O , l ,  ..., n - I ,  (10) 

To solve these equations with respect to P i ,  Bernoulli uses (10) and (3) to 
find 

From (1  1) and (4) he gets 

which inserted into (12) gives 

From (9) it follows that 

2 i ( P i + 2 - P i + 3 + p i + 2 ) = R i - R .  I+  1 + r i ,  

which inserted into (13) gives 

Using p1 = r,,, it follows from (3) that 

r i -+s i+l  +9s1 1 -p l  = O ,  
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which proves (8) and thus Theorem 2. 

Setting 
Struyck derives an explicit formula for Pi  from Bernoulli's Theorem 2. 

Struyck finds from (7) and (8) that 

P i + 3  = c P ~ + ~  + c'e, 

which leads to 

P i + 3 = ~ i + 1 P 2 + ( i + l ) c i e ,  i = O , 1 ,  ..., n - 2 .  (14) 

Using the fact that the sum of the n + 1 P s  equals zero, i t  follows that 

Inserting this result and the expression (6) for p 2  into (14), Struyck finds P i + 3  
in terms of a, b, and n. 

Theorem 3. Let the probability of a duration of play of exactly x games 
and at  most x games be denoted by z, and Z,, respectively. Then, 

Furthermore, 

(17) x ( m  - in + 2i - 1) (i - -  j'i+l)n, m 2 2, 
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x ( m - i n + 2 i +  I )  ( - i ) ‘ i+ I”’, m 2 2. (18) 

Proof. Obviously, the probability of winning the stock at the nth game 
equals 2(i)“, since the first or the second player may win the stock in n games. 
Bernoulli shows that the following values of z ,  may be found by the recursion 
( 1 6). 

A duration of x games requires that the winner of the stock, W, say, enters 
the play just after the (x - n)th game and wins the next n games. 

The adversary of W, that is, the winner of the (x - n)th game, may have 
won 1 or 2 or . . a n  - I games, but no more, because otherwise the play would 
have been finished. Bernoulli proves (16) by conditioning on each of these 
events. A duration of x - 1 games requires the winner of the (x - n)th game 
to have won only one game and thereafter to win n - 1 games in succession. 
After having won the (x - n + 1)st game, W s  probability of winning the stock 
is the same as the probability that an adversary having won one game wins 
the stock. Hence, before W has won the (x - n + l)st game, his probability 
of winning the stock is 4zx-  Similarly, a duration of x - 2 games requires 
the winner of the (x-n)th game to have won exactly two games and, 
thereafter to win n - 2 games in succession. After having won the (x - n + I)st 
game and the next, W’s probability of winning the stock is the same as the 
probability that an adversary having won two games wins the stock. Hence, 
before entering the (x - n f l)st game, W’s probability of winning the stock 
is ($)’z,-,. Obviously, the following terms may be derived in the same 
way. 

Bernoulli uses the recursion to calculate the probability distribution of 
the duration of play for five players. I t  is remarkable, however, that he also 
derives an explicit solution of the difference equation. He does not give a 
complete proof, only an essential hint of the solution in these words: “One 
can easily find the proof of these formulae C(17) and (Is)] supposing that 
the numerator of each term of the series z,, z,+ . . , equals the sum of all 
the preceding ones minus those that have been taken too much so that only 
n - I terms are included.” Following this advice we shall reconstruct 
Bernoulli’s proof. 

Setting 

z ,=(2)  1 x - 1  a,, x = 1 , 2  ,... ) 
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(16) is transformed to the simpler equation 

a, = a , - ,  + ax-2  + ' * .  +ax.-n+l ,  x = n + I , n  + 2 ,..., ( 2 0 )  

with the starting values a ,  = = an- I = 0 and a,, = 1. 
Writing ( 2 0 )  as 

x -  I x - n  

a, = 1 ai - C ai, 
i =  1 i =  1 

and setting x = rn + k; r = 1,2,. . . , k = 0, 1 , .  . . , n - I ,  we obtain 

with the exception that for r = 1 ,  the formula does not hold for k = 0. 
If follows that 

an+k = 2an+,- k = 2 , .  . .,n - I, 
so that 

a,+, = 2 k -  , k = l ,  ..., n - I .  

Similarly, from 

a 2 n + k  = 2a.2n + k  - 1 - 'n+kr 

we get 

u z n + ,  = 2 n + k - 1  - 2 ' - ' (k  + 2) .  

From these results and from ( 2 1 )  we see that a3n+k is obtained from a2"+,  
by substituting n + k for k and adding a term dependent on k only, so that 

u ~ ~ + ~  = 22n+k-1  - 2 " + l r - ' ( n  + k + 2 )  + 2lr-Ibk,  

where b, satisfies the difference equation 

b k = b k - ,  + ( k + 2 ) .  
Hence, 

(k  + I)(k + 4) 
2! 

b, = ---. 
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Proceeding in this way we obtain 

NICHOLAS BERNOULLI 

1 

2! 
+ -- [ { ( r  - 3)n + k + 1 1 { ( r  - 3)ti + k + 4) ] 2 f r -  3 ) n  

( -  1 y - 1  + -~ ----(k + I ) ( &  + 2 ) . . . ( k  + r - 2) (k  + 2r - 2),  
( r -  l ) !  

which inserted into (19) gives z,,,+~. To turn this result into the form used 
by Bernoulli, we set rti + k = n + nt - I ,  which leads to ( I  7). The probability 
of a duration of at most n + rn - 1 games is found by summation. 

De Moivre's Solution 

De Moivre assumes that each player pays a crown to the common stock 
before the play begins and that he pays a fine off crowns to the stock each 
time he loses a game. This means that all the results of de Moivre involving 
the size of the stock and the fines may be transformed to the results of 
Montmort and Bernoulli by a change of origin and scale. 

De Moivre does not attempt to find a formula for the probability of a 
given duration of play. 

He denotes the players by A, B, C, and D, and we shall use this notation 
in addition to the previous one. 

In all of de Moivre's proofs he assumes that B beats A in the first game. 
We shall denote Ai's probability of winning the stock under this assumption 

Table 21.2.1. Outcomes and Probabilities for a Sequence of Games with Three Players 

Outcome of the sequence of games 
Duration Winner Probability Stock for the given duration 

I A 3 + / '  BA" 
I 

2 B 2 3 + 2 /  BA,RC 
3 C (;Iz 3 + 3.r  BA,CB,CA 
4 A ( ; I 3  3 + 4 /' BA, CB, AC. A B  
5 B (;I4 3 + 5 f BA, CB, AC, BA, B C  
6 C (;I5 3 + 6 f BA, CB, AC, BA, CB, C A  
7 A (y 3 + 7/' BA, CB, AC, BA,CB, AC, A B  

"BA denotes that B beats A in  a game. 
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by p i ,  so that the unconditional probabilities of winning become 

PI = P 2  = i (P1  + P 2 )  

for A, and A,, whereas the following probabilities are unchanged, since the 
probability of winning for these players does not depend on whether A ,  or 
A, wins the first game. (The reader should note the change of notation 
compared with the notation used in the proof of Bernoulli’s theorems.) 

De Moivre’s procedure for finding the probability of winning the stock 
in a given number of games has been summarized in Table 21.2. I .  

Because of the rules for reentering the play, each player has the possibility 
of winning at every third game, for example, for B at games 2,5,8, .  . . , and 
the probabilities of winning constitute a geometric series. 

Summing the probabilities of winning, de Moivre obtains 

so that the unconditional probabilities become @, = pz = 5/14. 
The expectation of B is found as 

1 + 3 i  

e, = 2 (:) [3 + (2 + 3 i ) f ]  = 
i = O  

12 68 
7 49 

= - + - - f ,  

Similarly, 

6 48 3 31 
e3 = - + --f, e, = -. + .- 

7 49 7 49f9 

so that the unconditional expectations are i ,  = i2 = 15/14 + (99/98)J 
From these expectations, de Moivre deducts the expected values of the 

fines. Looking at Table 21.2.1, i t  will be seen that B has a probability of of 
being fined (losing) in the second game, a probability of 0 of being fined in 
the third game, a probability of ($)3 of being in the fourth game, and so on. 
These probabilities form a geometric series with every third term missing, 
so that the total probability becomes 
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Hence, B’s expected gain is 

5 5 33 

7 7 49 
g , = e 2 - -  f - 1 = -  +-- f. 

Similar calculations for C and A give 

1 6  4 39 

7 49 7 49 
g 3 =  - -+ -  f, g - f, 1 -  

so that the unconditional expected gains are 

1 3  
f. g1 = g2 = - - -- 

14 49 

De Moivre states that the same reasoning will lead to the solution if the 
skills of the players are in a given proportion, a:b :c ,  say. In the Doctrine 
(1718) he indicates the proof. From Table 21.2.1 i t  will be seen that the 
sequence CB, AC, BA occurs at the fifth, sixth and seventh game, so that 
the probability of winning at these games equals the probability of winning at  
the second, third, and fourth games times the probability that the sequence in 
question occurs. Since this property is repeated for each of the following sets 
of three games, B’s probability of winning becomes of sum of the terms of 
a geometric series with the ratio 

c u b  

c +  b u  + c b + u  
Pr {CBJ Pr (AC} Pr { BA} = ~ __ = m, 

say, so that 

which shows how to modify the previous solution. 
To discuss de Moivre’s solution for four players, we define uraX as the 

probability that A, wins the stock at the xth game assuming that A, beats 
A, in the first game, r = 1,. . . ,4, x = 1.2,. . . , u,., = ura2 = 0. The probability 
that A, wins the stock then becomes 

x =  1 

De Moivre’s procedure has been summarized in Table 2 1.2.2. 
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Table 21.2.2. Outcomes and Probabilities for a Sequence of Games with Four Players 

Sequence of 
X u 2 . x  U 3 . x  u4.x U1.X Stock outcomes 

3 114 0 0 0 4 + 3 /  BA,BC,BD 
4 0 118 0 0 4 + 4 f  BA,CB,CD,CA 
5 0 0 2/16 0 4 + 5 j  BA,CB,DC,DA,DB 

BA, BC, DB, DA, DC 

BA, CB, CD, AC, AB, AD 
BA, BC, DB, AD, AC, A B  

6 0 0 0 3/32 4 + 6f BA, CB, DC, AD, AB, AC 

7 3/64 2/64 0 0 4 + 7 J To be filled in by the 

8 31128 31128 21128 0 4 + 8 f  
9 0 31256 61256 41256 4 + 9 f  

10 41512 21512 61512 91512 4 +  10f 

reader 

De Moivre continues the table of u ~ , ~  to x = 12, and by studying the 
pattern of numbers he derives the following set of recursion formulae for x 2 3: 

u 2 . x = ; ~ l , x - l  +$u1.*-29 U 3 , x = f ~ 2 , * - l  +$%.x-29 (22) 
u 4 . ~ = $ ‘ 3 , x - 1  +$‘2,x-2’ U ~ . x = ~ U 4 , x - l  + g U 3 . x - 2 ’  

These equations are the key to the solution; the remaining part of the proof 
consists of summations leading to four linear equations between the 
probabilities of winning and the expected durations of play, respectively, 
which are then solved numerically. 

De Moivre relates a simple proof of the recursion formulae communicated 
to him by Brook Taylor. 

Summing (22) over x ,  de Moivre finds the four equations 

P 3  = t P 2  f $P4r 

PI = i P 4  + sP39 

1 3  
P 2  = 5 + SPI, 

1 
P4 = $PJ + $P2, 

which have the solution 

56 36 
32 P1 = 749‘ 25 p 2 = - - ,  p3=-- ,  p 4 = - -  

149 149 149’ 

The expected value of the stock for A, is 
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say, where u, = ~ u , , , x  is the expected duration of play. Inserting (22) in u,, 
four linear equations between the u’s are obtained, which de Moivre solves 
numerically. 

De Moivre analyzes the probability of being fined in the same manner as 
in Table 21.2.2 and finds that the same recursion formulae hold as for the 
u’s, but with other starting values. Using the same procedure as above, he 
then calculates the expected fine for each player. 

Finally, he finds the expected gain as e, - I minus the expected fine. For 
A,  and A, the average gain is calculated just as for three players. The results 
are 

5 1176 
f, g3=--+-----  f 9  

y, = & = _- - -I_ 13 2700 
149 22,201 149 22,2201 

21 4224 

149 22,201 
y f .  . 4 -  

De Moivre states that this method of proof may be used for any number 
of players, and he gives the recursion formulae for six players. The method 
is theoretically simple but in practice very cumbersome for more than three 
players. Furthermore, a new set of equations has to be derived and solved 
for each n so that the method does not show how the solution depends on 
the number of players; i t  is therefore unsatisfactory as a general solution of 
the problem. 

Bernoulli’s solution is not mentioned in the text, only in the preface as 
quoted at the beginning of the present section. 

in  the second edition of the Doctrine ( 1  738) de Moivre reprints the proof 
for three players from the first edition and gives a slightly shortened version 
of the proof for four players. 

Presumably, the unsatisfactory solution kept nagging him, for in the third 
edition of the Doctrine (1756, p. 151), after having reprinted the exposition 
in the second edition, he adds a Remark of nine pages in which he makes 
use of Bernoulli’s Theorem I to obtain a simplification of his own solution, 
and at the same time he extends the problem as indicated by the following 
introductory remark: “As the Application of the Doctrine contained in these 
Solutions and Corollaries may appear difficult when the Gamesters are many, 
and when it is required to put an end to the play by a fair distribution of 
the money in the Poule [stock]; which I look upon as the most useful Question 
concerning this Game: I shall explain this Subject a little more particularly.” 

This means that he takes up the problem of an equitable division of the 
stock when the play is stopped before a player has won n games in succession. 
This problem is of course considerably more complicated than the original 
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one, and its solution requires sophisticated reasoning with conditional 
probabilities and expectations. As in the solution of the original problem, 
de Moivre uses recursion, which leads to a new set of linear equations for 
each value of n. He tabulates the solution for three, four, five, and six players. 

The only new method employed is to be found in his proof of Bernoulli’s 
first theorem, which runs as follows. 

The probability distribution P1,p2,p3r...,pn+I, whose sum is 1, gives the 
“value” of the place for each of the n + I players before the play begins. The 
greater value of the place of A ,  (or A,) compared to the value of the other 
places depends on the chance that A ,  has of beating all the other players in 
the first round. This chance equals (i)”, and the other players should therefore 
pay A ,  the amount 

to give up his priority and move to the last place. Since A ,  and A, have the 
same chance of winning, A 2  should not pay anything. If A ,  is moved to the 
last place, all the other players move up one place. Since A i + ,  has paid 
($)“pi+, for this change, we have 

from which Bernoulli’s Theorem I follows. Using equilibrium considerations, 
de Moivre thus obtains a simpler proof than the one given by Bernoulli. 

In an Appendix to the Doctrine (1756, p. 332) ,  de Moivre mentions 
Bernoulli’s result on the duration of play. I t  is odd that he does not discuss 
this aspect of the problem already in 1718 when he used so much space to 
discuss the duration of play in the ruin problem. 

Laplace’s Solution 

Laplace ( I  8 12, Book 2, 9; 1 1)  begins by deriving the difference equation ( 1  6) 
in nearly the same way as Bernoulli and then uses his own method of 
generating functions to find the solution. The generating function of z, 
becomes 

m (+)”1“(2 - t )  &)= c z p -  
x =  I ( 1  - t ) (  1 - t - (+)“I”) ’  

and the generating function of Z ,  is y(t)/(l - I ) .  The two probabilities z ,  and 
Z ,  are then found as the coeflicients of t X  in the expansions of the generating 
functions. In  this way he derives Bernoulli’s results ( I  7) and ( I  8). His proof 
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is neither shorter nor simpler than Bernoulli's, but it  has the advantage of 
being based on a general method for solving difference equations and thus 
not requiring ad hoc methods. (Note that Laplace's formula for 2, contains 
an error; the numerator of the second term should be x - 2n + 2.) 

De Morgan (1837, $52) complains of the incompleteness of Laplace's 
derivation of the generating function of Z, and also provides some details 
for the derivation of the coefficient of tx. The account given by Todhunter 
(pp. 535-539) is based on de Morgan's comments; Todhunter does not discuss 
the solutions of Bernoulli and de Moivre. 

Next, generalizing de Moivre's formula (22) to I I  + 1 players, Laplace 
derives a recursion formula for u , , ~  which he transforms to the partial 
difference equation 

He derives the generating function of uraX,  which turns out to be rather 
Complicated, and presumably for that reason he does not give an explicit 
formula for u , . ~ .  He then turns to the simpler problems of the probability of 
A, winning the stock and of A,% expectation and solves these problems by 
means of the generating function for I I , . ~ .  His solution agrees with the one 
found by Bernoulli and Struyck, but his proof is more complicated. 

I t  is understandable that Nicholas Bernoulli rated his own proof of 
Waldegrave's problem highly. The problem is complicated, and its solution 
requires sophisticated reasoning with conditional probabilities, proving the 
first two theorems by means of Huygens' analytical method and the third 
by solving a difference equation. Bernoulli's proof is not only the first general 
proof, it is also mathematically simpler than the other proofs mentioned 
above. 

21.3 
CONTRIBUTIONS 

A SURVEY OF NICHOLAS BERNOULLI'S 

Since Bernoulli's contributions are scattered throughout Montmort's Essay 
and in the present book as well, we shall now list in chronological order his 
most important contributions. 

In his thesis in 1709 he explained how to use Graunt's life table to solve 
many legal problems hinging on the lifetime of one or more persons, such 
as problems of inheritance and life insurance. He derived the expectation of 
the largest observation among n observations from a uniformly distributed 
population. He also demonstrated the importance of using probability theory 
for the evaluation of lotteries and testimony. These problems have been 
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discussed in @8.2, 9.1, 9.2, and 21.1. 
In 1710 he proved Montmort’s two formulae for the probability of at least 

one coincidence among n objects, and together with Montmort he later 
generalized this result to the case of s groups of n objects each; see $19.3. 

In 1711 he solved the ruin problem by giving the probability of a player 
being ruined in at most n games, each game being a Bernoulli trial with a 
gain of one unit or a loss of one unit, and as a special case he gave the 
solution of Huygens’ fifth problem on the Gambler’s Ruin; see $20.3. 

In 171 1 Bernoulli also gave the solution of Waldegrave’s problem on the 
probability of winning a tournament, the expected gain, and the probability 
of a given duration of the tournament. He communicated the proof to 
Montmort in 1712; see $21.2. 

In 1712 he contributed to the discussion on the problem of points in the 
game of tennis, see 0 18.5, and to the discussion on the game Her, see $ 18.6. 

In 1713 Nicholas improved James Bernoulli’s proof of the law of large 
numbers and derived a simple approximation to the binomial distribution, 
which he used for testing the significance of the variations of the sex ratio 
at birth; see 0516.3 and 17.3. 

In 1713 he also formulated five problems for solution, among them the 
Petersburg problem; see $ 18.4. 

In 1713 Montmort openly admitted that Bernoulli was far ahead of him 
in probability theory; a comparison of the Essay (1713) and the De Mensura 
Sortis (1712) shows that Bernoulli was ahead also of de Moivre. Why, then, 
did Bernoulli at the age of 26 suddenly disappear from the scene of probability 
theory? 

There may be several reasons. First, he obviously missed the inspiration 
from Montmort, who had become absorbed in a project of writing a history 
of mathematics. Bernoulli tried to keep up a correspondence on the 
Petersburg problem, but Montmort was no longer interested, as is evident 
from their letters from 1714 to 1716, published by Spiess (1975). Second, 
Bernoulli did not have the abundance of time that he had during his period 
of study and travel from 1709 to 1713. Returing to Basle in 171 3, he had to 
look for a Job, and in 1716 he became professor of mathematics in Padua. 
His stay there does not seem to have been satisfactory, for he returned to 
Basle and became professor of logic in I71 9, later becoming professor of law. 
These jobs may naturally have taken much of his energy, and even though 
he kept up a correspondence on mathematics, he never again succeeded in 
making essential contributions to probability theory. 

Hence, after the death of Montmort at an early age in 1719 and the 
engagement of Nicholas Bernoulli in other matters, there was left only 
de Moivre of the three pioneers to carry on research in probability theory, 
which he did by producing three editions of the Doctrine oj Chances. 
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21.4 A NOTE ON NICOLAAS STRUYCK 

Nicolaas Struyck ( I  687- 1769) has born into a burgher family in Amsterdam. 
He got a good education in classical subjects as well as in mathematics and 
the natural sciences. Throughout his adult life he earned his living as a teacher 
of mathematics, cosmography, astronomy, and accountancy and as an author 
of many books. 

The many references to books and papers in foreign journals in his works 
show that he read profusely and that he carried on a vast correspondence 
with colleagues in many countries. He was elected a member of the Royal 
Society of London and the Paris Academy of Sciences. 

He wrote about probability theory, life annuities, population statistics, 
astronomy, geography, and accountancy. Nearly all his publications were 
written in Dutch, and for that reason his work did not get the influence i t  
deserved. His treatises about probability theory, life annuities, and population 
statistics have been translated into French by J. A. Vollgraff and published 
by La Societe Generale Neerlandaise d’Assurances sur la Vie et de Rentes 
Viageres in I9 12. 

His first book was entitled Calculation qf the Chances in Pluy, hy means 
of Arithmetic and Algebra, together with  a Treatise on Lotteries and Interest 
(1716). It shows that he masters probability theory as given in the works of 
Huygens, Montmort, James and Nicholas Bernoulli and de Moivre to whom 
he refers. The problems treated are formulated as games of chance and solved 
by means of combinatorics, the method of inclusion and exclusion, infinite 
series, and difference equations. For his solution of Huygens’ five problems 
we refer to $14.2, for the problem of coincidences to $19.3, and for 
Waldegrave’s problem to $21.2. It  will be seen that he gives slight 
generalizations and improvements of previous proofs and results. He also 
mentions de Moivre’s Poisson approximation, and he used Montmort’s idea 
of randomization of the number of trials as shown in $14.4. Furthermore, he 
discusses the binomial and the multinomial distributions and uses them to 
solve many problems including the problem of points. He stresses the 
important distinction between drawings with and without replacements, 
illustrating this by his solution of Huygens’ second problem and his discussion 
of the Lottery of Lorraine. He solves the occupancy problem in the same 
way as de Moivre. Without proof he gives Montmort’s formula for the dis- 
tribution of the sum of points at dicing and shows that this formula agrees 
with the one given without proof by de Moivre, see the two forms of formula 
(14.3.1); like Montmort he tabulates the distribution for 2,3. .  . . , 9  ordinary 
dice. Finally he discusses the duration of play using Nicholas Bernoulli’s 
formula for the ruin probability and de Moivre’s algorithm. He illustrates 
all the theorems by many examples. He does not mention James and Nicholas 
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Bernoulli’s theorems on the binomial distribution, nor does he take up 
problems outside the field of games of chance. 

Struyck’s book in interesting from a historical point of view because it 
shows that a person with a good mathematical education in 1716 was able 
to fully understand, apply, and slightly improve the fundamental results 
obtained by the four pioneers between 1708 and 1713. It is the only 
mathematical work written by Struyck. His book has not been given much 
attention outside Holland, neither by his contemporaries nor in the historical 
literature; it is not mentioned by Todhunter. 

Struyck’s treatises on life annuities and population statistics are to be 
found in two of his books published in 1740 and 1753, which also treat of 
many other topics. 

In his treatises on annuities he refers to de Witt and Halley but not to 
de Moivre (1725). He points out that the value of annuities s h d d  be 
calculated from life tables based on observations (as done by Halley) and 
not from hypotheses (as done by de Witt). However, he considers the 
construction of Halley’s table as unsatisfactory because Halley had access 
to the number of deaths only and not to the corresponding number of living 
and because it rests on population data. His first problem was, therefore, to 
provide a reliable life table for annuitants. He realizes, as Kersseboom and 
Deparcieux about the same time and de Witt and Hudde before them, that 
such a table may be constructed from the registers of annuitants. His 
observations comprise 794 male and 876 female annuitants who bought 
their annuities in Amsterdam in 1672-1674 and 1686-1689, most of them 
being dead before 1738. For each five-year group, 0-4 years, 5-9 years, etc., 
he tabulates the number of annuitants entering at a give age and the number 
of survivors at any later age. Assuming that mortality at a given age does 
not change over time, he sums the numbers exposed to risk and the numbers 
of deaths for each age group and calculates the rates of mortality from which 
he derives the life table lx for x = 5,6,. . . ,94.  He does not explain how he 
has graduated the raw mortality rates and how he has interpolated to for 
each year of age. He stresses that the mortality of females is smaller than 
that of males and contends that he is the first to calculate life tables for males 
and females separately. 

Using Halley’s formula and his own life table Struyck tabulates the value 
of annuities for every fifth year of age for an interest rate of 2i”/o and finds 
that there is good argeement with the average values found from his 
observations. Like Halley, he points out that the government is selling 
annuities too cheaply. He calculates the value of annuities based on Halley’s 
table and finds that these values for ages between 15 and 55 years are a little 
larger than the average value for males and females found from his own 
tables. He also gives examples of increasing, decreasing, and deferred 
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annuities. These results are given in his 1740 treatise. 
In 1753 he supplements the life table from 1740 with values of 1, for x = 

f, 1,1 f, 2,. . . ,5, which he has obtained by following 850 newborn boys and 
822 newborn girls in the village Broek-in Waterland from 1657 to 1738. He 
shows that the corresponding values of annuities are increasing with age 
because of the large infant mortality. 

Finally he discusses Deparcieux's results for French annuitants compared 
with his own, and he investigates some tontines and widow pension funds. 

With regard to Struyck's works on population statistics we refer to the 
Memoir published by Algemeene Maatschappij van Levensverzekering (1  898, 
pp. 85-99) and to K. Pearson (1978). We shall, however, briefly mention his 
method of analysis of the sex ratio at birth. 

He supplements the data from London with data from many other regions 
as demanded by Graunt. For London he finds 783,145 male and 740,113 
female births in the period 1629-1744. He uses the ratio of these numbers 
as a standard which he applies to observations from other regions to find 
the expected number of female births from the observed number of male 
births and thus the deviation between the expected and the observed number 
of female births. For example, in Amsterdam for the years 1700-1739 he 
finds 14,655 male births, which gives an expected number of female births 
of 13,850 compared with the observed number 13,844. He finds similar small 
deviations for several other cities and regions, the only exception being five 
Dutch villages with approximately the same number of male and female 
births. He does not give a probabilistic evaluation of the deviations as done 
by Nicholas Bernoulli. 

Despite the larger number of male births Struyck finds in most places a 
larger number of females than males in the whole population. He mentions 
that this fact has been explained by Arbuthnott, Nieuwentyt, and Derham 
by the larger mortality of males due to their more dangerous occupations 
and participation in wars. Struyck argues, however, that this explanation is 
incomplete because the number of females surpasses the number of males 
already from the age of 10. 

Among political arithmeticians Struyck stands out as critical and 
sober-minded. He has a skeptical attitude about the accuracy ofdata collected 
by others, and to provide reliable data he arranges for a census of several 
Dutch villages under his own supervision. He criticizes the existing birth and 
death registers in several countries and recommends that regular and accurate 
censuses be carried out. He warns against uncritical use of statistical ratios 
and stresses that the crude birth rate depends on the composition of the 
population according to age, sex, and marital status. In most cases he tries 
to explain facts without involving divine providence. He does not use the 
binomial or other distributions in his analysis of population data; probability 
theory and political arithmetic seem to be two dinerent worlds. 
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De Moivre and the Doctrine 
ofChances, 1718, 1738, and 1756 

22.1 THE LIFE OF DE MOIVRE 

The following account in based mainly on the fundamental paper by 
Schneider (1968), who has used the biography by Maty (1755) and the letters, 
papers, and books by de Moivre. 

Abraham de Moivre (1667-1754) was born into a Protestant family in 
Vitry, France. His father was a surgeon, and the family did not belong to 
the French nobility; their name was Moivre, the “de” was added to the name 
by the young Moivre himself when he emigrated from France to England. 
Moivre received a good education in the humanities in the colleges of Sedan 
and Saumur and also studied some mathematics on his own; it is stated that 
he read Huygens’ treatise at the age of 16. From 1684 onward he studied 
mathematics in Paris. When the persecution of the French Protestants 
(Huguenots) was intensified after the revocation of the Edict of Nantes in 
1685, the 18-year-old Moivre was interned in a priory in an attempt to 
persuade him to change his religion. After three years he was released and 
immediately left France to seek asylum in England, like thousands of other 
Huguenots before him. It is not known what became of his family. In London 
presumably he was first supported by other refugees until he established 
himself as a visiting tutor of mathematics to the sons of wealthy citizens. 

During these first years of hard work assimilating the customs of a foreign 
country, i t  must have been exciting for him to read the newly published 
Principia (1687) by Newton, containing not only a new natural philosophy 
but also the beginnings of a new mathematics. He succeeded in mastering 
Newton’s work, and in 1695 he published his first paper on the method of 
fluxions and some of its applications in the Phil. Trans., communicated by 
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Halley, whom he had gotten to know in 1692. Through Halley he was 
introduced to the circle of scientists around Newton, and in 1697 de Moivre 
was elected a Fellow of the Royal Society. 

He published his papers, 15 in all, in the Phil. Trans. between 1695 and 
1746. We have previously mentioned the two papers on probability theory, 
the De Mensura Sorfis and the paper on Waldegrave’s problem. Another 
paper is on insurance mathematics, and the remaining papers are on pure 
mathematics or mathematics applied to physical and astronomical problems. 

Like other mathematicians of the time, de Moivre worked on the solution 
of algebraic equations and on infinite series. In particular he showed that 
the n roots of the equation z” = 1 are equally spaced on the unit circle, and 
he found the fundamental formula which today bears his name, 

(cos x + i sin x)“ = cos nx + i sin nx, 

although he never wrote i t  in this form. Another contribution to the theory 
of equations is his method of reduction of reciprocal equations. 

In  1698 he published a paper, “A Method of Raising an infinite 
Multinomial to any given Power, or Extracting any given Root of the same”, 
in which he gave the rule for finding the coeficient of z m t i  in the expansion 
of (az + bz2 + cz3 ...)’”. The following year he wrote “A Method of extracting 
the Root of an Infinite Equation”, in which he solved the equation 

az + bz2 + cz3 + ... = gy + h y 2  + iy3 + -.., 
expressing z as a power series in y. To find the coefficients of y he wrote z 
as a power series in y with undetermined coefficients, and inserting this series 
in the given equation he determined the coefficients successively by comparing 
the coefficients of the same power of y.  

Besides the papers he wrote several outstanding books. In 1718 he 
published The Doctrine of Chances: or, A Method of Calculating the 
Probability of Eoents in Play, which he considerably improved in the second 
(1738) and third (1756) editions. In 1725 he published the Annuities upon 
Lioes, which appeared in expanded editions in 1743, 1750, and 1752; in 1756 
it was incorporated into the Doctrine of Chances. These books contain many 
original contributions to probability theory and insurance mathematics, and 
they were for many years the best textbooks in these fields. 

In 1730 he published the Miscellanea Analytica Je Seriebus et Quadraturis 
summarizing much of his previous work on mathematics with improved 
versions of some proofs and also giving important new results. Among the 
new contributions are the proofs of his theorems on recurring series, his 
approximation to logm! (Stirling’s formula), and his proof by means of a 
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generating function of the probability of throwing a given number of points 
with any given number ofdice. In 1733 he derived the normal approximation 
to the binomial distribution. All these results were incorporated in the second 
edition of the Doctrine. We shall return to these topics in the following 
sections. 

De Moivre’s work on probability theory and insurance mathematics are 
purely deductive; he did not collect or analyze observations to demonstrate 
the applicability of his theories. 

Schneider (1968) has given an annotated list of de Moivre’s letters; his 
extensive correspondence with John Bernoulli has been published with 
commentaries by Wollenschlager ( 1933). 

In 1703 the physician and mathematician G. Cheyne published a book 
on the inverse method of fluxions (integration) in which he gave a rather 
unsatisfactory exposition of Newton’s theory. He also mentioned de Moivre’s 
theorem on the expansion of the multinomial without giving de Moivre credit 
for this result. In a book published in 1704, de Moivre protested and gave 
a critical evaluation of Cheyne’s book. Cheyne responded in 1705 by 
publishing a pamphlet with corrections, some of which he ascribed to John 
Bernoulli, and a severe personal attack on de Moivre. K. Pearson (1978, 
p. 143) writes, 

De Moivre allowed the controversy to drop, for it had passed from the field of 
mathematics to that of personalities. Somewhere in the twenties (5th Edn 1725) 
Cheyne published his essay on health, and the effect of a vegetable and milk diet 
on the truculent medicine man was obvious: “The defense of that book (the 
Methodusfluxionurn inuersa) against the learned and acute Mr Abraham de Moivre 
being written in a spirit of levity and resentment, I most sincerely retract, and 
wish undone, so far as it is personal or peevish, and ask him and the world pardon 
for it.” 

The controversy with Cheyne gave de Moivre the opportunity to begin 
a correspondence with John Bernoulli by sending him a copy of the 
Animaduersiones ( 1  704). The correspondence continued until 1714, when the 
priority dispute between Newton and Leibniz placed de Moivre and Bernoulli 
in opposite camps. 

De Moivre’s occupation as a wandering private tutor did not leave him 
much time for study and research. In 1707, at the age of 40, he had published 
six papers in the Phil. Trans., and with that background he began to look 
for a university post. In letters to Bernoulli in 1707 and 1708 he explained 
his latest research and his working conditions and asked Bernoulli to 
intercede with Leibniz to secure a university appointment for him somewhere 
on the Continent, but nothing came of it. 

His luck was no better in England. When Newton retired as professor of 
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mathematics at Cambridge he was succeeded by William Whiston, who like 
Newton was an Arian but unlike Newton spoke and wrote openly about his 
religious beliefs, with the result that he was expelled from the university in 
1710. The chair went to the 29-year-old Nicholas Saunderson in 171 1 and 
not to de Moivre, who was a Huguenot and perhaps still considered to be 
a foreigner, deeply rooted in French culture as he was. 

Saunderson died in 1739 without having published anything essential; his 
lectures on algebra were published by his friends in 1740. Stigler (1983) has 
suggested that Saunderson may be the one who discovered Bayes’ theorem 
and communicated it to the English psychologist David Hartley, who quoted 
a version of the theorem in his book from 1749. However, Edwards (1986) 
contests that the quotation refers to inverse probability and suggests instead 
that Hartley’s formulation has its root in de Moivre’s considerations on the 
estimation of a probability by means of his normal approximation to the 
binomial distribution. Gillies (1987) maintains that Hartley’s source was 
Bayes himself. 

Schneider ( 1968) indicates that de Moivre’s correspondence with John 
Bernoulli in 1708 made him realize that he had no future as a pure 
mathematician, and his efforts in vain to secure a university appointment 
must have confirmed this conclusion. From 1708 onward, de Moivre therefore 
turned more and more to applied mathematics in the form of probability 
theory and insurance mathematics. Besides the income from the sale of his 
books he also earned money as a consultant to gamblers and insurance 
brokers, his “oflice” being Slaughter’s Coffe House at  the upper end of St. 
Martin’s Lane, where he usually came after his daily teaching work. 

Like many other scientists at the time, de Moivre became involved in 
some priority disputes besides the one with Cheyne. We mentioned the dispute 
with Montmort earlier in 518.1, and we shall comment further in the next 
section. In 1742 Thomas Simpson published a treatise on annuities against 
which de Moivre reacted in the second edition of his treatise (1  743), attacking 
Simpson for plagiarism; we shall return to this matter in 525.1. 

De Moivre did Newton many services. He saw the Latin edition of the 
Opticks through the press and helped with the French edition. He functioned 
as interpreter when Nicholas Bernoulli in 1712 and Montmort in 1715 visited 
London and were introduced to  Newton. He became a member of the Royal 
Society Committee to investigate the priority of the invention of the calculus, 
and he translated some of the material in this dispute into French. After the 
death of Leibniz in 1716, the priority dispute continued for many years with 
Newton and John Bernoulli as the main opponents. Much of the 
correspondence went on with de Moivre and the French mathematician 
Pierre Varignon as mediators; they tried to end the dispute but without much 
success. It is said that Newton often called at Slaughter’s Come House and 
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took de Moivre home with him for mathematical and philosophical 
discussions. De Moivre dedicated the first edition of the Doctrine of Chances 
( 1  71 8) to Newton, thanking him for the inspiration received from “your 
incomparable Works, especially your Method of Series” and adding: “But 
one Advantage which is more particularly my own, is the Honour I have 
frequently had of being admitted to your private Conversation; wherein the 
Doubts I have had upon any Subject relating to Mathematics, have been 
resolved by you with the greatest Humanity and Condescension.” After the 
death of Newton in 1727, de Moivre wrote a memorandum on Newton’s life 
based on these conversations; see Westfall (1980, pp. 385, 403). 

De Moivre was rather old when he began his research in mathematics; 
and not until the age of 41 did he begin his work on probability theory. 
Nevertheless, he succeeded in becoming the leading probabilist from 17 18 
until his death, and he found one of his most important results, the normal 
approximation to the binomal distribution, in 1733 at the age of 66. 

He had arrived in London as a penniless refugee the age of 21, and he 
died there in poverty, 87 years old. 

Todhunter (p. 135) writes, “In the long list of men ennobled by genius, 
virtue, and misfortune, who have found an asylum in England, it would be 
difficult to name one who has conferred more honour on his adopted country 
than de Moivre.” 

Maty’s small Mtmoire (1755, 46pp.) contains a list of de Moivre’s 21 
books and papers and a survey of their contents. 

For other biographies of de Moivre, we refer to Wollenschlager (1933), 
Walker ( 1  934), David ( 1  962), and K. Pearson ( 1  978). 

22.2 DE MENSURA SORTIS, 1712 

De Moivre’s first paper on probability theory is the De Mensura Sortis, seu, 
de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus (On the 
Measurement of Chance, or, on the Probability of Events in Games 
Depending Upon Fortuitous Chance), read to the Royal Society in 171 1 and 
published in the Phil. Trans. in 1712. It is dedicated to Francis Robartes 
(c. 1650-1718), later the third Earl of Radnor, politician, musician, member 
of the Royal Society, and “patron of the Mathematical Sciences.” It is a 
peculiar coincidence that the first important book on statistics, Graunt’s 
Observations (1662), is dedicated to Lord Roberts (Robartes), later the first 
Earl of Radnor, and the first important paper on probability published in 
England is dedicated to his son. 

De Mensura Sortis is important in the history of probability because it  is 
the fourth of the great treatises, the first three being those by Huygens (1657), 
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Pascal (1665), and Montmort (1708). In the preface, and in the preface to 
the Doctrine of Chances (1718, pp. 1-11), de Moivre states that he took up 
probability theory in 1708 at the exhortation of Robartes, who after having 
read Montmort’s Essay proposed “to me some Problems of much greater 
dificulty than any he had found in that Book,” these problems being the 
problem of points in a game of bowls (Robartes’ problem) (see Ej 18.3) and the 
occupancy problem (see (j22.5). That these problems should be more difficult 
or require other methods for their solution than the problems solved by 
Montmort is not true. 

Furthermore, de Moivre (1718) writes that 

I had not at that time [I7083 read any thing concerning this Subject, but Mr. 
Huygens’s Book,. . . As for the French Book, I had run  it over but cursorily, by 
reason I had observed that the Author chiefly insisted on the Method of Huygcns, 
which I was absolutely resolved to reject, as not seeming to me to be the genuine 
and natural way of coming to the solution of Problems of this kind. 

I t  will be seen that de Moivre, like James Bernoulli, has overlooked Pascal’s 
treatise, which forde Moivre is rather odd, since it is mentioned by Montmort, 
and, contrary to Bernoulli, he repudiates Huygens’ methods. 

We have previously quoted Montmort’s reply to the unjust remarks on 
the Essay and de Moivre’s apology, see 518.1. In 1714 Montmort sent a copy 
of the second edition of the Essay to de Moivre, who thanked for the present, 
and a friendly correspondence later ensued. It is, however, not correct as 
indicated by Todhunter (p. 187) that a lasting reconciliation was achieved. 
The publication of the Doctrine (1718) upset Montmort because he felt that 
de Moivre had not given proper credit to him and to Nicholas Bernoulli, 
although in his preface de Moivre apologized for his previous error and 
expressed his admiration for the second edition of the Essay; see Schneider 
(1968, pp. 193-195). In the Miscellanea Analytica ( I  730), de Moivre defended 
himself, and in the following editions of the Doctrine he removed the laudatory 
remarks about Montmort from the preface. 

De Moivre wrote his paper for a scientific journal and not as Montmort 
for a mixed reading circle of gamblers and scientists. He therefore had to be 
more concise and leave out the many card and dice games treated by 
Montmort and instead concentrate on the principles, although all the 
problems naturally were formulated as games of chance. 

De Mensura Sortis consists of a preface, a short introduction, and the 
solution of 26 problems. An English translation has been given by McClintock 
with a commentary by Hald (1984). Most of the material from De Mensura 
Sortis is included in the Doctrine, see $22.4. 

In the introduction de Moivre defines the probability of an event as the 
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number of favorable cases divided by the total number of cases in which the 
event may happen, provided that these cases are equally likely. He defines 
the expectation of a player as his probability of winning times the prize. In 
much of the paper the reasoning is expressed in terms of odds or expectations 
instead of probabilities. 

The multiplication theorem for independent events is given in the following 
form, which also implies the addition theorem: 

If two events have no dependence on each other, so that p is the number of chances 
by which the first event may happen and q the number of chances by which It 
may fail, and r is the number of chances by which the second event may happen 
and s the number of chances by which it may fail: multiply p + q by r + s, and 
the product pr + qr + ps + qs will contain all the chances by which the happenings 
and failings of the events may be varied amongst one another. 

He gives an interpretation of the individual terms and any sum of these and 
says that this method may be extended to any number of events. As a special 
case he derives the binomial distribution. He does not discuss the 
multiplication theorem for dependent events in the introduction, but many 
of his problems lead to drawings without replacement from a finite 
population, and in those cases he just uses the multiplication theorem with 
the adequate conditional probabilities. 

We have previously discussed most of de Moivre’s solutions, as shown 
by the following list: the problem of points (§14.l), Huygens’ five problems 
(§l4.2), the number of chances of throwing a given number of points with 
any given number of dice (8 14.3), the number of trials giving an even chance 
of getting at least a given number of successes (§14.4), Robartes’ problem 
(§18.3), Waldegrave’s problem (§21.2), and the duration of play for the ruin 
problem (820.4). The occupancy problem is discussed in 522.5. 

These problems, except for Robartes’ problem and Waldegrave’s problem, 
had already been discussed by dther authors, but de Moivre does not give 
specific references to the previous solutions. The most remarkable of de 
Moivre’s contributions are his derivation of the ruin probability in Huygens’ 
fifth problem; his use of the Poisson approximation to solve the binomial 
equation B(c, n , p )  = 4 with respect to n; his solution of the occupancy problem 
by means of the method of inclusion and exclusion, and the algorithm for 
the continuation probability in the duration of play for the ruin problem. 
Furthermore, he gives without proof the probability of getting a given number 
of points by throwing any given number of dice and the probability of ruin 
when one of the players has infinitely many counters. 

The only contemporary evaluation of these impressive results is the critical 
review given by Montmort (1713, pp.362-368) in a letter of 5 September 
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1712 to Nicholas Bernoulli, about a month after Montmort had received a 
copy of the paper from de Moivre. In 1712 de Moivre was 45 years old and 
a renowned mathematician; the 34-year-old Montmort therefore opened de 
Moivre’s treatise with great expectations, hoping to find new problems 
formulated and solved. Like Huygens before him, Montmort had posed some 
problems for the reader at the end of his book, and he had hoped that de 
Moivre had at  least tackled these problems, but “you [Bernoulli] will find 
that his work is limited almost entirely to solve the most simple and easy 
problems from my book in a more general way than I have done.” Montmort 
adds that there is nearly nothing new in de Moivre’s paper since the problems 
that are not already solved in the Essay(1708) have been solved in our letters. 
This statement is true but unfair to de Moivre, who did not know the contents 
of these still unpublished letters and therefore in good faith published his 
solutions as new. 

Montmort goes on to a detailed critical commentary on the solution of 
each of the 25 problems in which he recognizes de Moivre’s priority to the 
Poisson approximation, to Robartes’ problem, and to the algorithm for 
finding the continuation probability in the problem of the duration of play. 

22.3 THE PREFACES OF THE DOCTRINE OF CHANCES 

Planning to write a book on probability in English, de Moivre had to decide 
what circle of readers to aim at. He was so fortunate to have two excellent 
models: Ars Conjectandi by James Bernoulli and the second edition of the 
Essay by Montmort, both of them published in 1713, the Ars Conjectandi 
being written for mathematicians and the Essay for the educated public. One 
would have expected de Moivre to choose the first solution, but actually he 
chose the second and wrote the Doctrine of Chances as a mixture of De 
Mensura Sortis and the sections on games of chance in the Essay, with some 
extensions of both parts. The reasons for this choice were presumably 
economic; he hoped in this way to get a larger number of subscribers to 
finance the printing of his book, and he also wanted to demonstrate his 
ability to solve all types of problems in popular games of chance and thus 
to strengthen his business as a consultant. 

De Moivre writes in the preface: 

I nave explain’d in my Introduction to the following Treatise, the chief Rules on 
which the whole Art of Chances depends; I have done i t  in the plainest manner 
that I could think of, to the end it  might be (as much as possible) of General Use. 
I flatter my self that those who are acquainted with Arithmetical Operations, will, 
by the help of the Introduction alone, be able to solve a great Variety of Questions 
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depending on Chance: I wish, for the Sake of some Gentlemen who have been 
pleased to subscribe to the printing of my Book, that I could every where have 
been as plain as in the Introduction; but this was hardly practicable, the Invention 
of the greatest part of the Rules being intirely owing to Algebra; yet I have, as 
much as possible, endeavour’d to deduce from the Algebraical Calculation several 
practical Rules, the Truth of which may be depended upon, and which may be very 
useful to those who havecontented themselves to learn only common Arithmetick. 

This is followed by a paragraph in the first edition only: “It  is for the Sake 
of those Gentlemen that I have enlarged my first Design, which was to have 
laid down such Precepts only as might be suficient to deduce the Solution 
of any difficult Problem relating to my Subject.” 

De Moivre’s decision to write also for readers knowing only common 
arithmetic had far-reaching consequences for the style of his book. For a 
mathematician large parts of the Doctrine are, like the similar parts of 
Montmort’s Essay, elementary, discoursive, and tedious. In his own words 
(1718, p. lo), 

Yet for the sake of those who are not acquainted with Algebraical computation, 
I shall set down the Method of proceeding in like cases. I n  order to which, i t  is 
necessary to know, that when a Question seems somewhat difficult, it will be 
useful to solve at first a Question of the like nature, that has a greater degree of 
simplicity than the case proposed in the Question given; the Solution of which 
case being obtained, it will be a step to ascend to a case a little more compounded, 
till at last the case proposed may be attained to. Therefore, to begin with the 
simplest case, we may suppose that A wants 1 Game of being up, and B 2. 

He does not care for his mathematical readers in the same way; in some 
of the most difficult problems of the duration of play, he gives his results 
without proof, see $20.5. 

The preface falls into four parts: ( I )  historical remarks; (2) the uses which 
may be made of the book; (3) a description of the methods used; and (4) a 
description of the most important problems with some references. 

The preface of the first edition is reprinted in the second and third editions 
with the following footnote: “This Preface was written in 1717.” Hence, one 
gets the impression that the complete preface has been reproduced, but this 
is not so; we have already noted that the laudatory remarks on Montmort 
were omitted in the later editions and so is the following remark on the Ars 
Conjectandi: 

Before I make and end of this Discourse, I think my self obliged to take Notice, 
that some Years after my Specimen [ D e  Mensura Sortis] was printed, there came 
out a Tract upon the Subject of Chance, being a posthumous Work of Mr. James 
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Bernoully, wherein the Author has shewn a great deal of Skill and Judgment, 
and perfectly answered the Character and great Reputation he hath so justly 
obtained. I wish I were capable of carrying on a Prqject he had begun, of applying 
the Doctrine of Chances to Oecoriomirnl and Political Uses, to which I have been 
invited, together with Mr. de Morrrmort, by Mr. Nicholos Bernoully: I heartily 
thank that Gentleman for the good opinion he has of me; but I willingly resign 
my share of that task into better Hands, wishing that either he himself would 
prosecute that Design. he having formerly published some successful Essays of 
that Kind, or that his Uncle, Mr. John Brrrioully, Brother to the Deceased, could 
be prevailed upon to bestow some of his Thoughts upon it; he being known to 
be perfectly well qualified in all Respects for such an Undertaking. 

It  is remarkable that this is the only reference to the Ars Conjecrandi in 
the first edition. It  is even more remarkable that de Moivre does not mention 
Bernoulli’s theorem or  the improved version by Nicholas Bernoulli; only 
after having found the normal approximation to the binomial does he in the 
second edition indicate that the two Bernoullis have discussed the same 
problem. Of course he alludes to Bernoulli’s theorem in a loose way, for 
example, in the preface where he writes, “For, by the Rules of Chance, a 
time may be computed, in which those cases may as probably happen as 
not; nay, not only so, but a time may be computed in which there may be 
any proportion of Odds for their so happening.” 

We shall let de Moivre recommend his own book by means of the following 
quotations: “Such a Tract as this may be useful to several ends.” 

1. For inquisitive persons “to know what foundation they go upon, when 
they engage in play.” 

2. “ I t  may serve in Conjunction with the other parts of the Mathematicks, 
as a f i t  introduction to the Art of Reasoning.” 

3. I t  may “be a help to cure a Kind of Superstition, which has been of 
long standing in the World, uiz. that there is in Play such a thing as 
Luck, good or bad.” 

4. “The same Arguments which explode the Notion of Luck, may, on the 
other side, be useful in  some Cases to establish a due comparison 
between Chance and Design: We may imagine Chance and Design to 
be as it  were in Competition with each other, for the production of 
some sorts of Events, and may calculate what Probability there is, that 
those Events should be rather owing to one than to  the other.” 

5. “One of the Principal Uses to which this Doctrine oiClrances may be 
apply’d, is the discovering of some Truths, which cannot fail of pleasing 
the Mind, by their Generality and Simplicity; the Admirable Connexion 
of its Consequences will increase the Pleasure of the Discovery; and 
the seeming Paradoxes wherewith it abounds, will afford very great 
matter of Surprize and Entertainment to the Inquisitive.” 
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Many experienced gamblers, then as now, have noticed the occurrence of 
long sequences of successes which they have ascribed to ‘‘luck’’ in 
contradistinction to chance. For example, Cardano ( I  564) writes about luck 
as if  i t  was a quality of certain persons on certain days. A t  a time when 
superstition was widespread it iseasily understandable that he did not attempt 
to explain these phenomena by means of his rudimentary calculus of chances. 
However, the great advance of probability theory led probabilists such as 
James Bernoulli, Montmort, and de Moivre to deny the existence of luck in 
play because they could show that all the possible outcomes of a play had 
positive probability. For example, de Moivre (1718, pp. IV-V) states that 
the probability of losing 15 games of Piquet equals ( l /2)’  = 1/32,768 “from 
whence it follows, that it was still possible to come to pass without the 
Intervention of what they call I / /  Luck. Besides, This Accident of losing 
Fifteen times together at Piquet, is no more to be imputed to ill  Luck, than 
the Winning with one single Ticket the Highest Prize, in a Lottery of 32,768 
Tickets, is to be imputed to good Luck, since the Chances in both Cases are 
perfectly equal.” Like Arbuthnott and James Bernoulli, de Moivre states that 
the probability of an equal number of heads and tails in a long series of coin 
tossings is very small so that “Chance alone by its Nature constitutes the 
Inequalities of Play, and there is no need to have recourse to Luck to explain 
them” ( 1  7 18, p. V). 

Inspired by Arbuthnott’s discussion of chance versus design, de Moivre 
makes the comment quoted above under (4) that we “may calculate what 
Probability there is, that those Events should be rather owing to one than 
to the other.” As an example he considers two new packs of 32 cards each 
and calculates the probability that the cards are in the same order (the 
maker’s design) or in any other order. He concludes (1718, p. VI) that “there 
are the Odds of above 26,313,083 Millions of Millions of Millions of Millions 
to One, that the Cards were designedly set in the Order in which they were 
found” (32! = 26,313,083.7 x loz8). He does not pursue this important idea 
in the text; it was not until the third edition of the Docrrine ( 1  756, pp. 251 -253) 
that he made a few remarks on Arbuthnott’s and Nicholas Bernoulli’s 
analyses of the data on the sex ratio, see $24.5. De Moivre does not discuss 
James Bernoulli’s concept of moral certainty. 

Turning to the methods used, de Moivre states that he has first of all used 
the doctrine of combinations; however, when the play may continue for an 
infinite number of games with a priority of play for the gamesters, it will be 
more natural to use the method of infinite series, where “every Term of the 
Series includes some particular Circumstance wherein the Gamesters may 
be found.” 

De Moivre does not mention recursion, and he seems to have an aversion 
to Huygen’s analytic method, although he commends Nicholas Bernoulli’s 
solution of Waldegrave’s problem. 



408 DE MOIVRE AND THE DOCTRINE OF CHANCES 

In the second edition the modified preface from the first is supplemented 

In the third (posthumous) edition the Advertisement from the second is 
with an Advertisement describing the many improvements introduced. 

omitted, and a new is added with the following content: 

The Author of this Work, by the failure of his Eye-sight in extreme old age, was 
obliged to entrust the Care of a new Edition of it to one of his Friends; to whom 
he gave a Copy of the former, with some marginal Corrections and Additions, in 
his own hand writing. To these the Editor has added a few more, where they were 
thought necessary: and has disposed the whole in better Order; by restoring to 
their proper places some things that had been accidentally misplaced, and by 
putting all the Problems concerning Annuities together; as they stand in the late 
improved Edition of the  Treatise on that Subject. An Appendix of several useful 
Articles is likewise subjoined: the whole according to a Plan concerted with the 
Author, above a year before his death. 

22.4 A SURVEY OF THE PROBABILITY PROBLEMS TREATED 
IN THE DOCTRINE OF CHANCES 

The Doctrine consists of an introduction with definitions and elementary 
theorems, followed by a series of numbered problems. The first edition 
contains 53 problems on probability; the second, 75 problems on probability 
and 15 on insurance mathematics; the third, 74 problems on probability, 
followed by 33 problems on insurance mathematics, some tables, and an 
appendix. 

The first edition of the Doctrine brings the English educated public abreast 
with the development of probability theory as found in De Mensura Sortis, 
the Essay, and Ars Conjectandi. The only new results given by de Moivre are 
the compound probability theorem and some theorems on the duration of 
play. After the hectic period of progress from 1708 to 1718, there followed 
a period of nearly stagnation for about 20 years, during which time 
only de Moivre published essential new results in the Phil. Trans. and 
in his Miscellanea Analytica, thus preparing the second edition of the 
Doctrine. 

The introduction contains the same definition of probability as in De 
Mensura Sortis but without mentioning the assumption that the total number 
of cases (chances) has to be equally likely. I t  is, however, clear from the 
applications that this is what de Moivre has in mind. He does not mention 
James Bernoulli’s discussion and extension of the concept of probability. 

Like Bernoulli he gives a clear definition of independent events and the 
corresponding multiplication rule for probabilities. He also explicitly defines 
dependent events and the multiplication rule as follows: 
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Two Events are dependent, when they are so connected together as that the 
Probability of either's happening is alter'd by the happening of the other. . . . the 
Probability of the happening of two  Events dependent, is the product of the 
Probability of the happening of one of them, by the Probability which the other 
will have of happening, when the first shall have been consider'd as having 
happen'd" ( 1  738, pp. 6-7). 

He defines expectation and notes that the expectation of a sum equals 
the sum of the expectations. Moreover, the introduction contains some 
elementary examples leading to the binomial distribution and  the binomial 
waiting-time distribution and a discussion of the problem of points. 

The three editions of the Doctrine show the development of probability 
theory from 1718 to  1756, each new edition being an enlargement of the 
previous one by adding new problems and  new remarks and corollaries to 
existing problems. We have exhibited this development in the following list 
of the problems treated in the Doctrine but using todays' terminology to 
characterize each problem. We have discussed many of these problems in 
previous sections, and  we shall discuss the most important of the remaining 
problems in the following sections and chapters. Some problems have been 
used as problems for the reader in 922.7. 

A List of the Problems Treated in De Mertsura Sortis and the Three Editions 
of the Doctrine of Chances, Ordered a s  in the Third Edition, with Cross 

References to the Present Book 

De Mensura Doctrine of Chances 
Sortis (edition)" 

Problem 1712" 1718 1738 1756 Section' 

Examples of relation 394 3 ,4  1,2 1,2 14.1, 
between handicap t 8.5 
and skill; the 
problem of points 

giving a n  even 
chance of a t  least 
c successes; the 
Poisson approxi- 
mation 

throwing s points 
with n dice each 
having f faces 

The number of trials 5-7 5-7 3-5 3-5 14.4 

The probability of p. 220 p. 17 p. 35 p. 39 14.3 

(Continued) 
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De Mensura Doctrine of Chances 
Sortis (edition)” 

Problem 1712” 1718 1738 1756 Sectionb 

The problem of points 
for any number of 
players 

Huygens’ fifth problem; 
the probability of 
the Gambler’s Ruin 

An example of the 
problem of points 
for two players 

The gambler’s expect- 
ation in a general- 
ization of Huygens’ 
fifth problem 

Huygens’ second 
problem and its 
generalizations, 
priority of play and 
the method of in- 
finite series 

The summation of any 
number of terms of 
a series having con- 
stant differences of 
a certain order; the 
Montmort-Bernoulli 
formula 

The expectation of the 
players in a series of 
games with priorities 
of play 

Basset te 
Pharaon 
Elementary theorems 

on permutations 
and combinations 

Huygens’ fourth prob- 
lem; the hyper- 
geometric distribution 

8 8 

9 9 

10 10 

- 43,44 

11,12 11,14 

- p. 29 

6,69 

7 

8 

9 

10, I I 

p, 52 

6 

7 

8 

9 

10, I 1  

p. 59 

- 89 12 

14. I 

14.2 

14.1 

22.7 

14.2 

15.4 

12 12 13 15.5 
13,23 13,32 14,33 18.3 
15-19 14-18 15-19 

20 19 20 14.2 

(Continued) 
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Problem 

De Mensura Doctrine of Chances 
Sortis (edition)” 
1712” 1718 1738 1756 Sectionb 

Problems on lotteries - 

solved by combina- 
torial methods 

multivariate hyper- 
geometric distri- 
bution 

game Quadrille 
solved by combina- 
torial methods 

play where one has 
to win the successive 
games without inter- 
ruption 

dences and the com- 
pound probability 
theorem 

the problem of points 
in a game of bowls 

m specified faces 
occur at least once in 
n throws with a die 
havingf faces; the 
occupancy problem 

The probability of the 
occurrence of a given 
number of events in 
a given order 

Waldegrave’s problem 
On Hazard, a game of 

dice 
On Raflling 
On Whist 

An example of the - 

Problems on the card - 

The expectation in a - 

The problem of coinci- - 

Robartes’ problem; 16,17 

The probability that 18,19 

21,22 20-24 21--25 22.7 

50 25 26 22.1 

- 26-31 27732 

24 33 34 22.7 

25,26 34,35 35,36 19.4, 
19.5 

27,28 36,37 37,38 18.3 

29,30 38---41 39-42 22.5 

- - 42 43 22.7 

15 31,32 43,44 44,45 21.2 
- 47,53 45,46 46,47 

- 49 47,48 48,49 
- 48 49 50 22.7 

(Continued) 
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De Mensura Doctrine of Chances 
Sortis (edition)” 

Problem 1712” 1718 1738 1756 Sectionb 

On the card game 
Piquet 

Simple problems on 
the expected gain 
in games with two 
players 

On the duration of 
play; the ruin problem 

An algorithm for the 
probability of con- 
tinuation U,(b, h)  

A recursion for the 
duration probability 
D,(b, b) and a formula 
for d,(b,b) 

Solution of equations 
of the formU,(4,4) = 

with respect to p ;  
reciprocal equations 

An algorithm for the 
probability of conti- 
nuation U,(a, b) 

A recursion for the 
duration probability 
Dn(ar b) and a formula 
for &(a, 6) 

The probability of B 
being ruined when 
A’s capital is infinite, 

The probability that A 
wins b games more 
than B at least once 
in n games and that 
B similarly wins a 
games more than A 

- 51 50-54 51-55 

- . .- 5 5 5 6  56,57 

20-26 33-46 57-68; 58-71 20.4.20.5; 
70.71 23.2 

20 33 57 58 20.4 

- 34 58 59 20.5 

21-23 35-37 59-61 60-62 20.4 

24 38 62 63 20.4 

- 39 63 64 20.5 

25 40 64 65 20.4, 
20.5 

26 41 65 66 20.6 

(Continued) 
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De Mensura Doctrine o j  Chances 
Sortis (edition)" 

Problem 1712" 1718 1738 1756 Section" 

42 The probability that A - 

wins b games more 
than B at least once 
in n games and that 
B does not win a 
game more than A 

recurring series 

continuation U,(b, b) 
expressed as a tri- 
gonometric series; 
the median duration 
of play 

of the formulae for 
Un(ar b) and Dn(ur b) 

the binomial distri- 
bution 

as approximation 
to the binomial 

run of given length 

On the summation of - p. 127 

45 The probability of - 

46 Examples of application - 

The mean deviation of - - 

The normal distribution - - 

The probability of a - - 

"Numbers are problem numbers, unless otherwise noted. 
'Cross references to section unmbers of the present book. 

66 67 

p. 193 p. 220 

67,68; 68,69 
p. 202 

70,71 70,71 

86,87 72,73 

p. 235 p. 243 

88 74 

20.6 

20.5, 
23.1 
20.5; 
23.2 

20.5 

24.2 

24.5 

22.6 

To help the reader with the summation of a large number of terms of the 
harmonic series, de Moivre (1756, p. 95) gives the formula 

a and n being positive integers, a > n, where a few terms of the series on the 
right-hand side will usually give a good approximation. 

Two years after the publication of the second edition of the Doctrine, 
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ThomasSimpson(1710-1761),a teacher ofmathematics,authorofa textbook 
on the method of fluxions, and in 1743 professor of mathematics at the Royal 
Military Academy, Woolwich, published an excellent textbook for 
mathematicians entitled The Nature and Lnws of Chance. The Whole Afier 
a new, generd, and conspicuous Manner, And illustrated wirh A great Variety 
ujExarnples ( 1  740). There is, however, nothing “new, general, and conspicous” 
in Simpson’s book; it is simply plagiarism of the mathematical parts of the 
Doctrine. Leaving out the discussions of all the concrete games of chance, such 
as Bassette, Pharaon, Quadrille, Raming, and the main part of de Moivre’s 
careful analysis of the duration of play and all the problems on insurance 
mathematics, Simpson succeeded in writing a much more compact book; in 
fact, he reduced the number of pages in the text from de Moivre’s 256 to 85. 
It is presumably such a book that de Moivre originally contemplated writing. 

Simpson’s bad conscience shines through the preface. He praises the works 
of de Moivre: “I am satisfied, it may be deemed a sort of Presumption to 
attempt, upon any Account, a Subject like this, after so great a Man as Mr 
De Moivre.” What, then, is the “excuse” for publishing his book? “The Price 
[of the Doctrine] must, I am sensible, have put is out of the Power of many 
to purchase it; and even some, who want no Means to gratify their Desires 
this way, and who might not be inclinable to subscribe a Guinea for a single 
Book, however excellent, may not scruple the bestowing of a small Matter 
on one, that perhaps may serve equally well for their Purpose.” 

We shall comment on the main points where Simpson deviates from de 
Moivre. He elaborates a little on the Poisson approximation to the binomial, 
see $14.4. He does not use de Moivre’s martingale reasoning for solving the 
Gambler’s ruin problem but solves instead the difference equation much like 
Struyck, see $ 14.2. He does not use de Moivre’s generating function to find the 
probability of getting a given number of points by throwing a given number 
of dice; instead, he gives a combinatorial proof much like the one by 
Montmort. He gives a short and very unsatisfactory treatment of the problem 
of the duration of play without mentioning de Moivre’s ingenious solutions; 
instead, he gives without reference and without proof Nicholas Bernoulli’s 
formula for the probability that A wins in at  most n games. He derives the 
normal approximation to the binomial distribution and states wrongly that 
de Moivre has omitted the demonstration of this important result. He gives 
the first proof of de Moivre’s result on the probability of getting a run of a 
given length, see $22.6. 

22.5 THE OCCUPANCY PROBLEM 

We have previously noted that Montmort in the Essay (1708) found the 
distribution of the size of the occupancy numbers, see 518.2. After having 
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read the Essay, Robartes formulated another occupancy problem for de 
Moivre to solve, which may be found as Problem 18 in De Mensrira Sortis: 
Find the probability that r specified faces occur at least once in n throws 
with a die having f faces. 

In the occupancy terminology this means that n balls are distributed at 
random into f boxes, and that at least one ball is to be found in each of r 
specified boxes. 

De Moivre’s derivation of this probability is based on the method of 
inclusion and exclusion. 

The total number of equally likely outcomes is f”. The number of cases 
in which the ace, say, does not occur is ( f  - l)”, so that the number of cases 
with at least one ace is f ”  - ( f  - I)”. 

To find the number of cases where the ace and the deuce occur at least 
once suppose first that the deuce is expunged from the die so that the number 
of cases for the ace to occur at least once is ( f  - 1)” - ( f  - 2)”. Let now the 
deuce be restored; the number of cases for the ace to occur without the deuce 
will be the same as if the deuce were expunged. If from the number of cases 
for the ace to occur at least once (with or without the deuce), namely, 
f” - ( f -  l)”, are subtracted the number of cases for the ace to occur without 
the deuce, namely, (f - 1)” - (f - 2)”, there will remain the number of cases 
for theace and thedeuce to occur at least once, which number thus will be 

f” - 2(f - 1)” + ( f  - 2)”. 

Continuing in this manner for three and four specified faces, de Moivre 
concludes that the general formula is 

which divided by f ”  gives the probability 

It will be seen that de Moivre’s proof is analogous to 
probability of at least one coincidence given independently 
same time by Nicholas Bernoulli, see 8819.2 and 19.3. 

the proof of the 
and at about the 

De Moivie reprinted his proof in the-Doctrine without noting that is may 
considered a special case of his compound probability theorem (19.4.7), letting 
Ai denote the event that face number i does not occur. 

If follows directly from de Moivre’s proof that the number of favorable 
cases may be written as Ar(f - r)” using finite difference notation. 
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To solve the equation p,,,(n) = f with respect to n, de Moivre states that 
for small values of r/f, an approximation may be obtained by setting 

which leads to 

so that 

from which 11 is easily found. 
De Moivre writes in the preface that this artifice of changing an arithmetic 

progression into a geometric one, when the numbers are large and their 
intervals small, is due to his friend Halley. 

In the Doctrine de Moivre generalizes the occupancy problem as follows: 
Let a die have j i  faces all marked i ,  i = 1,. . . ., k ,  cfi =f, and find the 
probability that in n throws r specified numbers, I , .  . . ,r, say, occur at least 
once. De Moivre gives the number of favorable cases as 

and the total number of cases asf", commenting that the proof is analogous 
to the previous one. 

Laplace ( I  774a; 1786; I8 12, Book 2,541 generalizes de Moivre's occupancy 
problem as follows: A lottery consists off'tickets, numbered I , .  . . ,J, of which 
In are drawn (without replacement) at each time. After the drawing, the rn 
tickets are replaced and the whole process is repeated 11 times. Find the 
probability that after n drawings r specified tickets, 1,. . . , r, say, will have 
occurred at least once. 

De Moivre's problem is obtained for m = I .  
Laplace solves the problem in the same manner as de Moivre. Let z,,~ 

denote the number of favorable cases. Then, z , , ~ - ~  equals the number of 
cases where 1,. . . , r - I occur together with rand without r, which means that 
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In a single drawing the total number of cases is (L), and the number of 
cases where 1 does not occur is ("I) ,  so that 1 occurs at least once in 

cases. In n independent drawings we get, similarly, that 

Z f J = ( ; ~ - - (  f -1 )L( f - 1  ,,, ) 
I t  follows that 

and dividing by the total number of cases, the probability is obtained as 

which is Laplace's result. The probability that all the numbers occur is 
obtained for r = f. 

Like de Moivre, Laplace seeks an approximation to 

a discussion of his results compared with other approximations has been 
given by David and Barton (1962, Chap. 16). 

Euler (1785) derives the probability that at least f - i specified tickets 
occur in n drawings. It is in this paper that Euler introduces the symbol [!I, 
which later was modified to (;). 

Todhunter (pp. 250-256) gives a discussion of the occupancy problem, 
including a proof of Euler's result. 

22.6 THE THEORY OF RUNS 

Let the probability of the event A in a single trial be p and the probability 
of the complementary event A be q. p + q = 1. A run of length r is defined 
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as an uninterrupted sequence of rA's. In 1738 de Moivre formulated the 
following problem: What is the probability of getting a run of length r or 
more in n trials? We shall denote this probability by Z,, and we shall let 2, 

be the probability that a run of length r occurs for the first time at the nth 
trial, so that 

2, = 2.1 + z2 + *.. + z,, It = 1,2,. . . , (1 )  

Obviously, Z, = z ,  = pr and Z,+ = p' + qp'. 

De Moivre's Solution 

De Moivre gives the solution by means of a generating function without 
indicating his proof. The probability 2, may be obtained as the sum of the 
first n - r - I terms of the power series expansion of the function 

where c should be replaced by p / q  and x by q in the sum. 
As noted by Todhunter (p. 185), there is a mistake in de Moivre's formula 

as printed in the  Doctrine (1738, Problem 88); instead of substituting p / q  for 
c, he uses p;  however, de Moivre gives several numerical examples in which 
the formula is used correctly. 

The expansion given by de Moivre in the examples is as follows. Setting 
m = c + 1, we get 

p'( 1 - cx) aJ 

f ( x ) = -  -- = p'(1 - cx) 1 (mx - crxr+')lr, 
1 - (mx - c'xr + I )  k = O  

j + i  m 

i = O  j = O  
( 3 )  

De Moivre notes that the last sum may be obtained by means of a theorem 
given under his discussion of recurring series, but he does not give the result. 
We shall carry out the summation following de Moivre's suggestion. From 
(3) we obtain the first n - I' + I terms of the power series as 

n - 2 r - 1  

(mxy' - crxr+ ' 1 ( j  + l)(mx)i 
j = O  j = O  
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n - 2 r - 2  n - r -  1 

C (mx)j  - c r x r +  C ( j  + l ) ( m x ) j  

j = O  j = O  

+ (c"xr+l)Z - - 3 ( j : ' > (  1 mx)' . - ... ) . 
j = O  

Setting x = q; c x  = p; mx = I ;  and c"xrt ' = qp" = k,  say, we get 

(4) 1 1 

3! 
+ -k2(n - 3r)'*'{(n - 3r - 2)q + 3 )  - ... , 

where the series breaks off when a factor becomes zero or negative. This 
formula was first given by Simpson (1740) and later by Laplace (1812). 

How did de Moivre find his result? It  is easy to see that z r + ,  = qzr ,  

and in general that 

De Moivre may have known this recursion and in some way used it to find (2 ) .  
After having given an algorithm for finding Z,, de Moivre turns to the 

question of finding "what number of Games are necessary, in all Cases, to 
make it an equal chance whether or not r Games will be won without 
intermission." Without proof he gives the following approximation to the 
solution of the equation Z ,  = 4, 

0.7( 1 - p')' nz 
4Pr 

This means that he uses exp{ - nqp'(1 - P ' ) - ~ }  as an approximation to Z,. 
From (4) i t  will be seen that for large values of n in relation to r, we have 
as a first approximation, 

Z ,  s I - ePnk + pre-nk,  
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which gives 
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0.7 1 ns----- 
4P' 4 

as a first approximation to n. How de Moivre found the factor (I - p')' we 
do not know. 

Simpson's Solution 

Simpson ( 1  740, Problem 24) is the first to give an explicit expression for Z,,. 
Setting p' = a and qpr = k ,  say, Simpson gives in verbal form the recursion 

z , = ( 1 - Z , ~ , ~ , ) q p r = ( 1 - Z f l ~ , ~ , ) k ,  n = r + 2 , r + 3  ,..., (6) 

using the fact that a run of length r occurs for the first time at the nth trial 
if and only if such a run does not occur in the first n - r - 1 trials, that 2 
occurs at trial number n - r,and that a run of length r occurs in the last r trials. 

It follows that 

z r + i = k ( 1  - Z i - , ) = k ,  i =  I ,..., r, 

and from ( 1 )  that 

Z r + , = a + i k ,  i = O , l ,  ..., r. 
Moreover, 

zZr + = k( 1 - Zr +i- , ) = k[I - u - ( i  - ~ ) k ] ,  

Z 2 r + i = Z ~ r + z 2 , + 1  + ... + z Z r + ;  

( ' ) k 2 ] ,  
I - u + ( i -  l ) u k - ( r - - i -  l ) k +  

( ' ) k 2  + ( i ) k 3 ,  
i =  I ,  ..., r, 

and so on. 
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Simpson stops after Z2r+i  and writes "Now having proceeded thus far, 
the Law of Continuation is manifest." Todhunter (p. 208) writes that 
Simpson's demonstration is imperfect, and we have therefore included one 
step more to exhibit the law ofcontinuation clearly. Simpson gives the general 
formula as 

( ; 3 y 2  - ( ; 4')k3 + . . . ] 
+ ( n - r ) k - (  n - 2r ) k 2 + (  n - 3r >k'--( n - 4r )k4+ . . . ,  

which obviously is the same formula as the one we have derived from de 
Moivre's algorithm. Simpson does not mention de Moivre's procedure. 

Laplace's Solution 

Laplace (1812, Book 2, §12) first derives the recursion ( 5 )  and then finds the 
generating function of 2, as 

00 

g ( t ) =  1 z n t " = p * t ' + q ( t + p t 2 +  ... +p ' - ' t ' )g ( t ) ,  
n =  1 

which leads to 

p't'(1 - pt)  

1 - t + qpr tr+  I '  
g(t)  = ___---- 

Since the generating function of 2, equals G(t )  = g(t)/( 1 - t ) ,  Laplace finds 
2, as the coefficient of tn in the power series expansion of G(t),  which leads 
to Simpson's formula. 

Todhunter's Solution 

Thus far all the proofs have been based on the recursion for z,. Todhunter 
(pp. 184-185) gives a soluttion based on the recursion 

from which he finds the generating function G(t) .  
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22.7 
AND THE DOCTRINE OF CHANCES 

PROBLEMS FROM DE MOIVRE’S D E  MENSURA SORTIS 

1. The problem of points for three players. Let the number of points needed 
to win for three players of equal skill be 2, 3, and 5, respectively. Show 
that the corresponding probabilities of winning are 1433/2187,635/2187, 
and 119/2187 (de Moivre, 1756, Problem 6). 

2. “Supposing A and B, whose proportion of skill is as a to b, to Play 
together, t i l l  A either wins the number q of Stakes, or loses the number 
p of them; and that B Sets at every Game the sum G to the sum L: It 
is required to find the Advantage, or Disadvantage of A” (de Moivre, 
1718, Problem 43). Answer: ((aG - bL)/(a - 6)) {qaq(aP - bp) - pbP(aq - 
bq)j/(aP+q- b p + q ) .  

3. The two forms of the hypergeometric distribution. Consider an urn 
containing a white and 6 black counters, a + b = n. Drawing c counters 
without replacement the probability of getting p white counters is 

Show that this probability may be written as 

which is computationally advantageous when n and c are large and a is 
small (de Moivre, 1718, Problem 20). 

4. “In a Lottery consisting of 40,000 Tickets, among which are Three 
particular Benefits: What is the Probability that taking 8,0oO of them, 
one or more of the Three particular Benefits shall be amongst them?” 
(de Moivre, 1718, Problem 21). Answer: Nearly 61/125. 

5. “To Find how many Tickets ought to be taken in a Lottery consisting of 
40,000, among which there are Three particular Benefits, to make it as 
Probable that one or more of those Three may be taken as not” (de 
Moivre, 1718, Problem 22). Answer: 8252 tickets. 

6. “Supposing a Lottery of 100,000 Tickets, where of 90,000 are Blanks, and 
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10,000 are Benefits, to determine accurately what the odds are of taking 
or not taking a Benefit, in any number of Tickets assigned” (de Moivre, 
1738, Problem 22). Answer: Taking six tickets, the probability of getting 
one prize or more is 0.46857; for seven tickets, i t  is 0.52172. 

Compare the exact (hypergeometric) solution with the approximate 
solution obtained from the binomial distribution. 

7. “Supposing A and B to play together, the Chances they have respectively 
to win being as a and b, and B obliging himself to Set to A, so long as 
A wins without interruption: What is the Advantage that A gets by his 
Hand?” (de Moivre, 171 8, Problem 24). Answer: (a - h)/b. 

8. Find the probability of getting all the six faces by throwing a die 12 
times (de Moivre, 1712, Problem 18). Answer: Nearly 10/23. 

9. Find the probability of getting two aces at one time and two sixes at 
another time in 43 throws with two dice (de Moivre, 1712, Problem 18). 
Answer: Nearly 49/100. 

10. “Supposing a regular Prism having a Faces marked 1 ,  b Faces marked 
2, c Faces marked 3, d Faces marked 4, etc., what is the Probability that 
in a certain number of throws n, some of the Faces marked 1 will be 
thrown, as also some of the Faces marked 2.” (de Moivre, 1738, 
Problem 40). Find the probability of getting 5 points and 6 points at 
least once in eight throws with a pair of dice. Answer: 0.40861. 

11. “Any number of Chances being given, to find the Probability of their 
being produced in a given order without any limitation of the number 
of times in which they are to be produced.”(de Moivre, 1738, Problem 42). 
Find the probability of throwing with a pair of dice the number of points 
4,5,6,8,9, and 10 before 7. Answer: Nearly 0.066. 

12. “To find the Probability of taking Four Hearts, Three Diamonds, Two 
Spades, and One Club in Ten Cards out of a Stock containing Thirty-two” 
(de Moivre, 17 18, Probiem 50). Answer: 878,080/64,5 12,240. 

13. Find the probability of the dealer and of any other player to get any 
given number of trumps in Whist (de Moivre, 1756, Problem 50). 

14. Find the probability of getting a run of length 4 or more in 21 trials, 
given that the probability of the event in question in each trial is f (de 
Moivre, 1738, Problem 88). Answer: 521,063/1,048,570. 
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15. Find the number of games necessary to make it an equal chance whether 
or not six games will be won without intermission, given that the 
probability of winning a single game is 3 (de Moivre, 1756, Problem 74). 
Answer: Nearly 763 games. 



CHAPTER 23 

The Problem of the Duration 
of Play and the Method of 
Difference Equations 

23.1 DE MOIVRE'S THEORY OF RECURRING SERIES 

The models employed in mathematical astronomy and physics in the 17th 
century were continuous, and therefore the infinitesimal calculus was 
developed as the natural tool for the analysis of such models. In probability 
theory, however, the models were mostly discrete so that a new type of 
calculus was needed, the calculus of finite differences. 

Finite differences had previously been employed by Harriot and Briggs 
for the construction of tables, by Gregory and Newton for polynomial 
interpolation and quadrature, and by James Bernoulli and Montmort for 
the summation of series. A general theory was, however, missing until 
Brook Taylor published his Methodus Inwementorum Directa et Inuersa in 
1715. 

By his method of increments Taylor attempts to cover both the calculus 
of finite differences and as a limiting case the infinitesimal calculus. He 
introduces a notation for increments (differences) and integrals (sums) similar 
to Newton's dot notation for fluxions and fluents. As the title of his book 
indicates, his method is based on the fundamental idea that differencing and 
summation are inverse operations. 

He discusses the existence of the general solution of a difference equation 
of order n and points out that the solution contains n arbitrary constants. 

He derives the formula for A"(u,u,), analogous to the Leibniz formula for 
Dn(uxux), and uses this result to find the formula for summation by parts 
analogous to the one for integration by parts. 

425 
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These general results are used to find difierences and corresponding sums 
of elementary functions, such as factorials, inverse factorials, the exponential 
function, and the exponential times an arbitrary function. He also solves 
special cases of the difference equation u,+ I = n,u, + 6, by a method which 
may be used to find the general solution. All these results are today contained 
in any textbook on the calculus of finite differences. 

For further details on Taylor’s work, we refer to Enestrom (1879) and 
Feigenbaum (1 985). 

Since the time of Pascal and Huygens, recursion had been an important 
method for solving problems in probability theory. In the previous chapters 
we have given many examples of both ordinary and partial difference 
equations and their solution by ad hoc methods; an outstanding example is 
Nicholas Bernoulli’s solution OC the homogeneous linear difference equation 
with constant coefficients for the duration of play in Waldegrave’s problem, 
discussed in 92 I .2. From about 171 2 Montmort, Nicholas Bernoulli, and de 
Moivre ail realized the importance of finding a general method of solution 
of the linear difference equation. De Moivre (1718) was the first to publish 
his results, to a large extent without proofs. He writes in the Preface (1718, 
p. IX): “Those Demonstrations are omitted purposely to give an occasion to 
the Reader to exercise his own Ingenuity. In the mean Time, I have deposited 
them with the Royal Society, in order to be Published when it shall be thought 
requisite.” In that way de Moivre wanted to secure his priority. 

It follows from letters between Montmort and Nicholas Bernoulli during 
1718-1719 that they succeeded in finding the general term of a recurrent 
series of the second order. 

De Moivre’s proofs, deposited in the Royal Society, are presumably 
incorporated in two papers communicated to the Royal Society and published 
in the Phil. Trans. in 1724; and improved version is included in the Miscellanea 
Analytica (1 730). 

Accounts of de Moivre’s exposition in the Miscellanea Analytica have 
been given by Kohli (1975b) and Schneider (1968). They have also given 
excerpts of previously unpublished letters between Montmort, Nicholas 
Bernoulli, and de Moivre on this topic. 

We have previously given some of de Moivre’s results on the summation 
of recurring series in 520.5, based on the Doctrine (1718). Here we shall give 
an account of the complete theory as presented in the second edition of the 
Doctrine (1738, pp. 193-202) and comment on the proofs. 

De Moivre’s exposition contains nine propositions with some corollaries 
and in agreement with his pedagogical principles, he gives results for recurring 
series of order 2, 3, and 4 from which the reader may deduce the general 
results. We shall give the general results in modern notation. 

Propositions 1-3. Here de Moivre derives formula (20.5.26) for the sum of a 
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recurring power series R ( x )  of order k = 2,3,4. For a series of order k ,  the 
proof is as follows: 

k - 1  m m k  

R ( x )  - c rnxn = rnxn = 1 1 (- l ) i - lu ix irn- ixn- i  
n = O  n = k  n = k  i =  1 

k m 
= 1 (- 1 ) i - l q x i  1 rj,j 

= C ( -  1Y- 'a ix i  R(x)- C r jx j  

i = l  j = k - i  

k - i - 1  

{ j = O  

k 

i =  1 

Solving for R ( x )  we find 

k - I  n 

R ( x ) A ( x ) =  1 X" 1 ( -  l ) ia i rn- i .  ( 1 )  
n = O  i = O  

The differential scale A ( x ) ,  or, as we would say today, the generating 
function for the coefficients ( (  - l)'ai, i = 0, 1,. . . , k } ,  is a polynomial of degree 
k, and the right-hand side of ( 1 )  is a polynomial of degree k - 1 with 
coefficients that are found as convolutions of {(  - l) 'ai} and { r i } ,  so that R ( x )  
is a proper rational function (assuming that x is sufficiently small for the 
power series to converge). 

Corollary. If the scale operates from the beginning of the series so that 
r 1  = a l r 0 ,  r2 = a l r l  - a2ro,  etc., then R ( x ) A ( x )  = yo. 

Proposition 4. If Akrn =0, n =0, 1, ..., then R ( x )  is a recurring Series of 
order k, and A ( x )  = ( 1  - x ) ~ .  Moreover, R ( x )  may be written as 

n + s - 1  
R ( x ) =  5 x" i .( )= C cs(l - X ) - s ,  

n = O  s = l  s - 1  s =  1 

where the k coefficients {c,} are to be found from ro, .  . . , r k -  

Proof. The hypothesis means that rn may be represented by a polynomial 
in n of degree k - 1 .  Writing this as a linear combination of figurate numbers, 
we have 

n + s - l  



428 DURATION OF PLAY AND THE METHOD OF DIFFERENCE EQUATIONS 

We have to prove that 

or, equivalently, that 

k c (-lY(;)(-j+s-1)=0, n = k , k + l ,  ...; s = l ,  ..., k .  
i = O  s - 1  

This result may be obtained by comparison of coefficients of cn in the 
expansions of (1 - t )*( l  - t ) - s  and (1 - t)’-’, respectively. 

The last part of the theorem follows from the fact that 

n = O  s- 1 

De Moivre does not give (2) explicitly, but it follows easily from his 
corollary. The first part of Proposition 4 may be found in the first edition 
of the Doctrine, which also contains Propositions 1-3. De Moivre then adds, 
“When the Numerical Quantities belonging to the Terms of any Series are 
restrained to have their last differences equal to Nothing, then may the 
sums of those Series be also found by the following elegant theorem, which 
has been communicated to me by Mr. de Monmort.” Montmort’s formula 
is 

k f rnxn= x’(1 - - X ) - ~ A ~ - I ~ ~ ,  
n =  1 i = l  

see (18.2.7). The reference to Montmort is omitted in the following editions, 
where de Moivre only gives results corresponding to (2). 

Proposition5 The sum of the first m terms of a recurring series of order 
k times A ( x )  equals the difference between two polynomials of degree k - 1 
and k - 1 + nt, respectively, see (20.5.27). In particular, 

m + i - 1  

i = O  

(3) 
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Proof. Using (20.5.27), the last result is obtained from the identity 

Todhunter (p. 179) proves (3 )  by induction. 

To use Proposition 5, it is necessary to know rm and the following k - 1 
r's. This raises the question of how to calculate rm without having to calculate 
all the previous values. 

In the Miscellanea Analytica, de Moivre solves this problem by proving 
that a recurring series of order k under certain conditions may be written 
as a linear combination of k geometric series. He begins by proving the 
following theorem for k = 2: The sum of two geometric series 

r, = r ln  + rZn, where r ln  = r lr l ,n - l  and r2,, = t 2 r 2  ,"-,, 
is a recurring series of order 2, 

Inversely, a recurring series of order 2, 

may be written as the sum of two geometric series with ratios t ,  and t , ,  
respectively, if the equation 

has the two real and different roots t l  and t 2 .  

and 4. 

theorem is formulated in Proposition 6. 

The proof is straightforward. De Moivre gives a similar proof for k = 3 

In the Doctrine(1738) these results are given without proof, and the general 

Proposition 6. Let r l ,  ..., tk be the real and different roots of the 
characteristic equation 

k 

f ( t )  = C ( -  1)'aitk-' = 0, 
i = O  

(4) 
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and let the symmetric function of order i of (tl,. . . , t k )  be 

and so = 1 .  Let si after removal of ti be denoted by s ~ ( ~ ) ,  so(j) = 1. Then we have 

where 

k 

r, = C cjt; , 
j =  I 

k m  k 

j = 1  n = O  

Corollary 1. If R(x)  = I / A ( x ) ,  then 

Corollary 2. If ro = r I  = ... = rk- = 1, then 

k n - t h )  
h = l  
h + j  c . = __-__ 

n ( t j - t h )  
h =  1 
h f j  

J k  

( 5 )  

(9) 

P r m f  It follows from the definition of the f's that the expression (5) 
satisfies the recurrence relation, since 

The remaining part of the proof consists of solving the k linear equations 



23.1 DE MOIVRE'S THEORY OF RECURRING SERIES 43 1 

k 

C c j t ; = r , ,  n = 0 , 1 ,  ..., k-1, 
j =  1 

with respect to the c's. Presumably, de Moivre simply solved these equations 
for k = 2,3,4, and then by incompr2te induction formulated the general 
solution (7). Following Laplace (1771,1776), we shall solve the equations 
simply by successive eliminations; perhaps de Moivre also used this method. 

The equations are 

To find cl, say, Laplace first eliminates c k  by substracting the first equation 
multiplied by t k  from the second equation; next, he subtracts the second 
equation multiplied by t k  from the third equation, and so on. He thus gets 
k - 1 linear equations of the form 

c]t',(E!] - t k )  + c,t:(tZ - E!k) + " '  

i + C k - l t k -  ~ ( t k -  1 - t k )  = ri+ 1 - t k r i ,  i = 0, 1,. . , k - 2. 

To eliminate c k -  he proceeds in the same way, successively multiplying 
each equation by t k - l  and subtracting the result from the next equation. 
The final result becomes 

which proves (7) for j'= 1 .  The same procedure may be used to solve the 
equations for c j .  This concludes the proof. 

To determine si(j) recursively, Laplace notes that 

k k k 

f ( t )  = c ( -  l ) ' a i t k - '  = n ( t  - t i )  = c ( -  l ) i s i t k - i ,  
i = O  i =  1 i = O  

k k -  1 n @ - t i ) =  ( -  l ) i s i ( j + k - i - l .  
i= I i = O  
i+ j 
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Multiplying the last equation by t - ti, he gets 

so that 
s. . =a .  - t . s .  i =  1,2, ..., k-1. 

I ( J )  1 J I -  1 J J ) '  

Returning to Proposition 6, i t  will be seen that formula (6) gives a 
decomposition of R ( x )  into partial fractions. 

In modern terminology, Proposition 6 gives the solution of the 
homogeneous linear difference equation with constant coefficients under the 
assumption that the roots of the characteristicequation are real and different. 
Proposition 4 gives the solution when all the roots are equal to unity. 

Remarks. Noting that A(x)=xk . f (x - ' ) ,  it will be seen that the roots of 
A ( x ) = O ,  xi, say, equals t,:'. De Moivre sometimes uses A(x)  as a 
characteristic function, but mostly he uses 

so that his roots of the equation F ( y )  = 0 becomes y j  = xt j .  The reason for 
this choice is that he considers r,x" as terms of a recursive sequence and 
thus gives the solution as 

k 

r,,x" = 1 cjyy. 
j =  1 

In the following propositions it is assumed that the recurring series 
considered satisfy the conditions stated in Proposition 6. 

Proposition 7. Consider the series consisting of every mth term of R(x)  
beginning with the first, the second,. . . , the rnth term, respectively. The 
common differential scale for these series is the polynomial in z obtained by 
eliminating x from the equations A ( x )  = 0 and x" = z. 

This result follows from the representation of r,, given in Proposition 6. 

Proposition 8. Let R ( x )  and S(x) be recurring series with A(x)  and B(x) 
as differential scales. Then R(x)  & S(x) are recurring series with the differential 
scale A(x)B(x) .  
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This result follows from Proposition 6. 

Proposition 9. Let R ( x )  and S(y )  be recurring series with the differential 
scales A ( x )  and B(y) .  The series with the terms r,,s,(xy)n, n = 0,1,. . . , is a 
recurring series, and the differential scale is the polynomial in z obtained by 
eliminating x and y from the equations A ( x )  = 0, B(y)  = 0, and xy  = z .  (An 
example appears already in the 1718 edition.) 

Corollary. If B(y) = (1 - Y ) ~ ,  then the differential scale equals the 
polynomial in x y  obtained as { A ( x y ) f k .  

The proof is based on the representation of r ,  and s, given in Proposition 6, 
see Todhunter (pp. 179-181). 

Daniel Bernoulli wrote three papers on recurring series between 1728 and 
1731, they were published in 1732 and 1738; a summary has been given by 
Bouckaert (1982). Bernoulli’s results are less comprehensive than de 
Moivre’s; the only new result is 

rn+ 1 lim __ = max {(tilt i = I , .  .., k } .  
n-m rn 

The proof follows immediately from (5) .  
The most essential extension of the theory of recurring series in the second 

edition of the Doctrine compared with the first is Proposition 6,  in which de 
Moivre shows that the general term of a recurring sequence of order k may 
be represented as a linear combination of k geometric sequences. De Moivre 
did not formulae this important result as a theorem on the solution of linear 
difference equations because such terminology did not exist at the time. 
However, as we shall discuss in 523.3, de Moivre’s solution inspired Euler, 
Lagrange, and Laplace to develop similar solutions of differential and 
difference equations and to generalize these results. 

23.2 
CONTINUATION PROBABILITY 

DE MOIVRE’S TRIGONOMETRIC FORMULA FOR THE 

We shall now prove de Moivre’s trigonometric formula for U,(h,  b), assuming 
for convenience that b is even. Setting 

( 2 j -  1)n , j =  1,2  ,..., i b ,  vi = ~ 2b 
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de Moivre's formula may be written as 

bl2 sin 2vj  
x C ( -  1)j - l  ________ (1 + c 0 s 2 v j y ~ ~ .  

p 2  + q 2  - 2pq cos 2uj 
(1) 

j =  1 

De Moivre's proof in Miscellanea Analytica is somewhat incomplete; Kohli 
(1975b) and Schneider (1968) have given complete proofs filling in the gaps; 
the following proof is based on these expositions. 

Proof. De Moivre first notes that U ,  is a recurring series of order 
i b ,  with the scale of relation given by 

ui = --( h b - i  )(/?4r. 
b - i  i 

The problem is to find the roots of the corresponding characteristic 
equation 

Setting 

t = 4pq cos2 u, 

we get 

= ( ~ 4 ) ~ / * 2  cos bu = 0, (3) 

according to a well-known relation between cosbu and cosu. Hence, the 
roots are 

(4) t j  = 4py cos2 uj = 2pq( 1 + cos 2 V j ) .  

Since U o  = U ,  = ... = U b - 2  = I ,  the solution follows from Proposition 6 

To find the coefficients cj  we note that the recursion formula (20.5.15) 
and its Corollary 2 in the previous section. 



23.2 DE MOIVRE’S TRIGONOMETRIC FORMULA 

leads to 

which means that 

since 

i= 1 

Differentiating In f (t), we get 

so that 

f’(tj) = n (ti - t i ) .  
i t j  

From (3) we find 

f ’ ( t )  = ( p q ) b / 2 (  - 2b) sin bv , ($1 
and from (2), 

- - 4pq sin 20, 
d t  
dv 
_._ - 

which leads to 
b(pq)(b - 2 ) / 2  sin bvj 

2 sin 2vj  
f’(tj)= 

( -  l ) i - ’ b ( p q ) ( b - 2 ) / 2  - - 
2 sin 20, 

Since 

435 
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we obtain 

We shall give two forms of U,,, one in terms of v j  and the other in terms 
of 2 v j ;  this just requires using the fact that 2 sin u cos v = sin 214 and 

1 - 4/74 COS’ U = ( p  -t 4)’ - 2pq( 1 + COS 20) = p’ 4- 4’ - 2pq COS 20. 

Inserting the values found for cj and t j ,  we get U ,  in the form (I), which 
also may be written as 

bl2 sin v j  
(cos vj)n + ’ U,(b, b )  = Pb+4’ 2 n + 2  ( ~ 4 )  ( n + Z - b ) / 2  C (- 1 ) j -  1 -___ 

b ’  j =  I 1 - 4pqcos2 v j  

This completes the proof. 

In the Doctrine (1738), de Moivre presents his results in a rather odd 
order. In Problem 67 he considers the case with p = $and gives the formula 

cosn + I vj  
U,(b, b )  = ~ 2 ( - 1 ) j -  ---, 

2 bl2 

bj=I sin uj 

which is a special case of (7). In Problem 68 he gives formula (I). Next follows 
a section entitled “Of the Summation of recurring Series” succeeded by “Some 
Uses of the foregoing Propositions,” which contains formula (1) with a more 
detailed explanation than in Problem 68, but without proof. (Note that de 
Moivre uses “versed sine of u” instead of 1 - cos v and “versed cosine of v” 
instead of 1 -sin v . )  

In Miscellanen Anaiytica de Moivre indicates that a similar formula may 
be found for u # b, but he gives no details; this remark is not included in the 
Doctrine. 

As noted by de Moivre, the trigonometric formula gives the simplest 
solution possible; it represents the recurring series U,(b, b) of order i b  by a 
sum containing $J terms. Furthermore, for large values of n, the first few 
terms will usually give a good approximation to U,.  

To demonstrate the superiority of (8) over Montmort’s formula (20.3.1) 
de Moivre calculates 
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which shows that the first term alone is a sufficiently good approximation; 
similarly he finds 

U,,,,(45,45)=0.50559 - 0.00002 + * a *  

In Problem 67 de Moivre returns to the problem of finding the median 
duration for two players of equal skill. Assuming that u1 is small, i.e., that 
b is large and that n is large also, it follows from (8) that 

2 C 0 S ” + ~ U l  7c 
U ” 2 -  , u 1 = - .  

b sinu, 2b 
(9) 

To solve the equation U ,  = $, de Moivre sets n + I z n, sin u1 z ul, and 
cos u t  z 1 -$I;, which gives 

n 2 2[ In 4 - In (;.)I( :)2 = 0.756b2 

(The constant should have been 0.758.) 
De Moivre (1738, p. 189) writes that Montmort’s approximation (20.3.2) 

“Which tho’ near the Truth in small numbers, yet is very defective in large 
ones.” He demonstrates this by means of the two examples mentioned above. 
In the first case Montmort’s formula gives n = 108.3 and (10) gives n = 108.9, 
whereas in the second case Montmort’s formula gives n = 1519 and (10) gives 
1531. Todhunter (p. 105) notes that “We should differ here with De Moivre, 
and consider that the results are rather remarkable for their near agreement 
than for their discrepancy.” 

Combining Montmort’s formula (20.3.1) with de Moivre’s formula (8), an 
approximation to the symmetric binomial is obtained, as shown by de Moivre, 
see 424.3. 

De Moivre rightly considered his theory of recurring series and its use 
for solving the problem of the duration of play as one of his greatest 
achievements. He had previously stressed the method of combinations and 
the method of infinite series as the two most important methods in probability 
theory, and he could now add the method of difference equations (as it was 
to be called later) as a third important method. 

23.3 METHODS OF SOLUTION OF DIFFERENCE EQUATIONS 
BY LAGRANCE AND LAPLACE, 1759-1782 

De Moivre left three problems for his successors: (1) to prove the recursion 
formulae for U,(b, b )  and U,(a, b);  (2) to derive the trigonometric formula 
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for U,(a,b); and (3) to develop a general theory for solving difference 
equations. These problems were solved by Joseph-Louis Lagrange 
(1  736- 18 13) and Pierre-Simon Laplace (1 749- 1827) in the 1770s. Like Taylor 
they wanted to create a calculus of finite differences analogous to the infinite- 
simal calculus. An exposition of the calculus of finite differences at about 
1800, including a comprehensive list of the early literature, has been given 
by Lacroix (1819). 

In the present section we shall comment on the early history of difference 
equations, concentrating on contributions by Lagrange and Laplace. In the 
next section the theory will be applied for solving the problems mentioned 
above. 

In 1743 Euler solved the homogeneous linear differential equation of the 
rnth order with constant coefficients (using the same idea as de Moivre) by 
guessing at a particular solution of the form y = ce‘” and thus deriving the 
characteristic equation as an algebraic equation of the mth degree. He pointed 
out that the general solution will be a linear combination of m independent 
particular solutions. The year before he had proved (incompletely) that a 
polynomial with real coefficients can be decomposed into linear and quadratic 
factors with real coefficients, and he could therefore assert that the charac- 
teristic equation always has m roots. He found that the particular solution 
for a single real root has the form y = cerx, for a real root of multiplicity k 
the form erx times a polynomial in x of degree k, and for a pair of conjugate 
complex roots the form 

y = e”’(cl cos bx + c2 sin bx), 

where c1 and c2 are arbitrary constants. 
In 1753 Euler solved the nonhomogeneous differential equation of the 

rnth order with constant coefficients by devising a method for reducing the 
order by unity and thus successively reducing the problem to the solution 
of a nonhomogeneous differential equation of the first order. 

In 1755 Euler introduced the symbol A for a finite difference, so that a 
difference equation could be written in a form analogous to a differential 
equation. 

In the 1760s Lagrange proved that Euler’s 1753 theorem also holds for a 
nonhomogeneous differential equation of the rnth order with variable 
coefficients so that the general solution may be expressed by means of the 
solution of the homogeneous equation and the solution of an adjoint equation 
of the first order. 

We shall sketch how analogous results on ordinary and partial difference 
equations were derived by Lagrange and Laplace. 



23.3 METHODS OF SOLUTION OF DIFFERENCE EQUATIONS 439 

Lagrange’s Solution of the Nonhomogeneous Linear Difference Equation 
with Constant Coefficients, 1759 

Lagrange ( I  759) first considers a difference equation of the first order, 

where u ( x )  is unknown, and a ( x )  and P(x)  are known functions of the integer- 
valued variable x .  By means of the substitution u ( x )  = v(x)z (x) ,  he derives 
two simpler difference equations 

(Ao + m ) z  = 0 and (v + A v ) A z  = /?, 

which lead to the solution 

where n f ( x )  denotes the indefinite continued product of successive values 
of f ( . ) ,  beginning with an initial value and ending with f ( x ) ,  and C f ( x )  
denotes the indefinite sum ending with f ( x  - 1); k is an arbitrary (periodic) 
constant. 

Next, he turns to the solution of the nonhomogeneous linear difference 
equation of the m t h  order with constant coeficients, 

m 

u ( x )  + ai Aiu(x)  = P(x) .  
i= 1 

(3) 

Referring to d’Alembert’s method for solving the corresponding differential 
equation, he introduces the auxiliary function 

m- 1 

z ( x )  = u ( x )  + z (ai + ai )  Aiu(x), 
i= I 

(4) 

with undetermined constants a l , .  . . , a m - , ,  which he chooses such that z 
satisfies a difference equation of the first order. 

Writing (3) as 
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he determines the a’s by requiring that 

m- 1 

i = l  
Au+ C ( a i + a i ) A i + ’ u = a - ’  

Equating coefficients of A’u from the two sides of this equation leads to the 
equations 

ai+ 1 am 

a1 a1 
ai+ai=-- - ,  i = l ,  ..., m - 2 ;  a m . - l + a m - l = - - ,  

with the solution 

i 

j = O  
a t a m W i =  - C am-ju{ ,  i =  1 ,..., m- 1. 

The last of these equations is the characteristic equation 

m 

j = o  
C a,-,a’, =o, ao= 1, 

(7) 

with m roots which each determines a set of the remaininga’s by means of(7). 
It follows from (5 )  and (6) that 

which has a solution of the form (2). 
Each root of (8) gives a solution. Inserting these functions, zl(x), . . . , z,(x), 

say, into (4) and solving the m linear equations, u(x) is obtained as a linear 
combination of the 2’s. 

Lagrange has thus solved the nonhomogeneous linear difference equation 
with constant coefficients in terms of the roots of the characteristic equation 
for the homogeneous case and the solution of a nonhomogeneous equation 
of the first order. 

In accordance with the title of the paper, “On the integration of an equation 
in finite differences, which contains the theory of recurring sequences,” he 
notes that the difference equation (3) is equivalent to the equation 

m 

u(x) + 1 + i )  = P(X), 
i= 1 



23.3 METHODS OF SOLUTION OF DIFFERENCE EQUATIONS 441 

which may be considered as a generalization of the equation defining a 
recurring sequence, the ordinary recurring sequence being obtained for 
P(x) = 0. He concludes, “Thus the theory of recurring sequences has been 
reduced to the calculus of differences and in this manner established from 
direct and natural principles instead of being treated indirectly as formerly 
done.” He does not refer to de Moivre, but he remarks that the main field 
of application of the theory above is the doctrine of chances and that he 
intends to return to these applications at another occasion. 

Laplace’s Method of Reduction of the Order of the Equation by the 
Method of Undetermined Coefficients, 1771 -1 776 

Lagrange’s paper was followed by three closely connected papers by Laplace 
(1771, 1774, 1776). The first one, “Researches on the integral calculus with 
infinitely small differences and with finite differences” is written in 1771, and 
Laplace sent it to the Royal Society of Turin for publication, presumably 
because Lagrange at the time was a professor of mathematics at Turin and 
because the first part of the paper contains a new proof of Lagrange’s theorem 
on the integrability of the nonhomogeneous linear differential equation of 
the mth order with variable coefficients, published in a previous volume of 
the Society’s journal. Laplace’s new proof uses the method of undetermined 
coefficients, which he applies to the solution of both differential and difference 
equations. The solutions are given in great detail and involve an enormous 
amount of algebraic manipulations and formulae, written in rather 
cumbersome notation. It has to be remembered, however, that this paper is 
the first important mathematical paper written by Laplace, who was only 
22 years old at the time. It is a purely mathematical paper; in the introductory 
remarks he mentions the possibility of applications (of differential equations) 
to the natural sciences without giving any examples; he does not mention 
games of chance in connection with his discussion of difference equations, 
even if he must have known of Lagrange’s remark to that effect. 

The two other papers, “Memoir on recurro-recurring sequences and on 
their uses in the theory of chances” and “Researches on the integration of 
differential equations with finite differences and on their use in the theory 
of chances,” were not published until 1774 and 1776, even though the last 
one was read to the Paris Academy of Sciences in the beginning of 1773. 
Stigler (1978) has discussed the chronology of Laplace’s early work. 

It seems reasonable to suppose that Laplace immediately after finishing 
the first paper realized that the same method of proof might be used to solve 
partial difference equations. 

In the second paper he shows how to solve partial difference equations of 
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the first and second order and demonstrates his method on three examples 
from games of chance. 

In the introduction to the third paper he states that de Moivre was the 
first to find the general term of a recurring sequence, but that it was Lagrange 
who as the first realized that this problem depends on the solution of a linear 
difference equation. He also refers to some works by Condorcet. He mentions 
that the results of his previous papers have been incorporated into the present 
one, which is more general in scope. 

Hence, the third paper contains the analysis of difference equations from 
the first paper, rewritten with improved notation and with some new results 
added; i t  also contains the analysis of partial difference equations from the 
second paper with an important generalization; further, he analyzes partial 
difference equations of higher order, simultaneous difference equations, 
circular difference equations, and some simple functional equations. Finally, 
he solves many of the classical problems in probability theory by giving 
explicit solutions of the corresponding difference equations. The paper is 
very impressive; it is 125 pages long. 

The three papers by Laplace have not been much discussed in the historical 
literature, perhaps because the met hods proposed were superseded by his 
method of generating functions a few years later. The papers are, however, 
of historial importance for several reasons. First, they represent a phase in 
the development of the theory for solving difference equations. Second, they 
give an analytical method for solving probability problems which previously 
had been solved by combinatorial methods. Third, they give the first proofs 
of de Moivre’s recursion formulae for the problem of the duration of play, 
and they also give the first (incomplete) derivation of the trigonometric 
solution of this problem for the general case. 

We shall sketch Laplace’s proofs of the two most important theorems on 
difference equations, using notation resembling that in the third paper. The 
first theorem and proof is from the 1771 paper, the second from the 1774 
paper. We shall also indicate the amendments made in the 1776 paper. 

Laplace first solves the difference equation of the first order 

u ( x )  = ol(x)u(x - 1 )  f S(x). 

By successive substitutions he gets 

in agreement with Lagrange’s result (2). 
Next he considers the difference equation of the tilth order with variable 
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coeficien ts 

m 
u(x) = C ai(x)u(x - i) + p(x). 

i =  1 

To reduce this equation to one of the first order, Laplace sets 

U(X) = U(X)U(X - 1) + b(x), (1  1) 

where a(x) and b(x)  are unknown functions to be determined from {ai(.)) 
and P(x). Using the idea from Lagrange’s proof, he shows that b(x) may be 
found as solution of a difference equation of the same form as the difference 
equation for u(x )  but of order m - 1 instead of m. Continuing in this manner, 
the problem is reduced to the solution of a difference equation of the first 
order. 

The function a(x) is found by solving the characteristic equation 

m- 1 

C a,,, - j(x)a(j’(x - m) - dm’(x - m) = 0, (12) 
j = O  

where we have introduced the notation 

@(x - i )  = a(x - i + l)a(x - i + 2)...a(x - i + j ) ,  
i = 1 , 2  ,..., m - 1 ;  j = 1 , 2  ,..., i ,  

and a(O)(x-i)= 1. It will be seen that (12) is a generalization of (8); i t  is 
difficult to solve without further specialization. 

Let al(x) be a solution of (12) and set 

It then follows from (9) and (1 1) that 

b(x + 1) 

is a solution of the original difference equation. 
Continuing this process, Laplace gives the complete solution in the form 

i =  1 
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where u, (x) ,  . . . , u,(x) are m independent solutions of the homogeneous 
equation; z , (x ) ,  ..., zm(x)  are functions of the u’s; and the k’s are periodic 
constants. 

After having derived the general solution, Laplace turns to cases that are 
reducible to equations with constant coemcients. He specifies the coefficients 
to be 

ai(-x) = aig(x)g(x  - I ) . . . g ( x  - i + I )  = aiq‘’)(x - i), 

where ( a i }  are given constants, and g(x)  a given function. He notes that this 
case covers all cases discussed in the literature thus far; in particular, he 
considers g(x)  = I and g(x)  = x. 

To solve the homogeneous equation, Laplace sets a ( x )  = tg(x), say, where 
t is an undetermined constant. Since 

a, - j (x)a‘ j ) (x  - m )  = a,,,- jtjg‘’”)(x - m), 

the characteristic equation (12) becomes 

Suppose first that the characteristic equation has m real and different 
roots, rlr...,tm. It then follows from (13) for b ( x ) = O  that 

where the c’s have to be determined from m given values of u(x). u(l), . . . , u(m), 
say. Let us denote u(x) /G(x)  by ux. The c’s then satisfy the equations 

m 

i =  1 
c tic; = Uxr x = 1,. . . ,m, 

which Laplace solves by the method indicated in connection with de Moivre’s 
Proposition 6 in 923.1. Lapiace’s solution is slightly different from de Moivre’s 
because Laplace uses u I , .  . . ,urn, and de Moivre uses u,,,. . . ,urn-,  as starting 
values. 

Suppose next that the characteristic equation has a double root, t ,  = t 2 ,  
say. Laplace sets t Z  = r I  + d t ,  and shows that the two terms in the limit 
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become t f ( A  + Bx), and continuing in this manner he gets the solution for 
multiple roots. 

In 1771 he does not discuss the case with complex roots, but in 1776 he 
covers all three cases and presents the complete solution as found in textbooks 
today. 

Finally, he gives the solution of the nonhomogeneous equation as 

As an example, Laplace considers the expansion of sinnz in terms of 
x = sin z and y = cos z. From the formula 

sin nz = 2y sin@ - l)z - sin(n - 2)2, n = 1,2,. . . , 

it follows by induction that sin nz may be written as 

sinnz = x{anyn-l + b,yn-3 + c , Y ” - ~  + a * . } ,  n = 2,3, .  . . . 

Laplace derives a set of difference equations for the coefficients and solving 
these he gets 

Laplace ends the 1771 paper with a short discussion of the solution of partial 
differential equations with two independent variables, using the same method 
as for difference equations above. 

Laplace’s second paper (1774) contains the beginnings of a theory of partial 
difference equations. He generalizes the concept of a recurring sequence 
{u(x); x = 1,2,. . .} to a recurro-recurring sequence {u,(x); x = 1,2,. . . ; 
n = 1,2,. . .}, which he defines as an infinite double sequence in which each 
term is a linear combination of a given number of preceding terms, the 
relation being valid only after an adequate number of initial functions has 
been specified. Hence, the terms of a recurring sequence satisfies an ordinary 
difference equation and the terms of a recurro-recurring sequence satisfies a 
partial difference equation. 

At the end of the introduction Laplace writes; “As I have found that such 
sequences are very useful in the theory of chances and as they, as far as I 
know, have not been examined by anybody, I believe that it will not be 
unavailing to develop them here to some extent.” 
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Laplace first considers a partial difference equation of the first order in n 
and an arbitrary order in x, 

where {a,(i)}, ( & ( j ) )  and y,, are given functions, and u,(x) is the unknown 
function to be determined from the equation, and where un(0) = 0. There are 
finitely many terms in the sums, and we have followed Laplace in not 
specifying the number of terms to keep the notation simple. 

Since the solution depends on an arbitrary function of x, Laplace sets 
uI(x) = f ( x ) .  Studying uz(x) and uJ(x) by means of ( f  5), he concludes that the 
partial difference equation may be reduced to an ordinary difference equation 
in x, which he writes in the form 

u,(x) = C a,(i)u,(x -- i) + b,,(x), 
i = l  

where (a&)} and b,(x) are undetermined functions. Inserting (16) for u,,(x) 
on the left-hand side of(l5) and eliminating u n - , ( x  - j )  by means of (16) on 
the right-hand side, Laplace transforms the two sides of (15) to linear 
combinations of (u,(x - i ) } ,  and equating coefficients he obtains a set of 
difference equations for the determination of { a,,(i)} and b,(x), which he 
shows how to solve. 

In the 1774 paper, Laplace considers the special case 6,,(x) = 6, only; the 
general case is discussed in the 1776 paper. 

Finally, u,(x) is found by solving (16). The solution has the form 

where tnlr tnz, .  . . are the roots of the characteristic equation for the ordinary 
difference equation (16). inserting this expression into the original partial 
difference equation (1 5), the unknown functions cnl, c,,,, . . . , and k,(x) may 
be found from a set of difference equations. 

Laplace extends the proof to a partial difference equation of the second 
order in n because such equations are of particular importance in the theory 
of chances (see Problem 7 in 423.5), and he remarks that the same method 
may be used to reduce the order of any partial difference equation by unity. 

The most important general result in Laplace's three papers is the one 
that a solution always exists and may be obtained by successively reducing 
the order of the equation, using the method of undetermined coeficients. 
The price to be paid for each such reduction is, however, that the coeflicients 
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in the new equation have to be found as solutions of a set of difference 
equations, depending on the coefficients of the old equation. In  the general 
case this procedure leads to a formidable set of equations, but in cases where 
the degree of the original equation is low and the coefficients are constants, 
the method is manageable. Laplace demonstrates this by solving nine 
probability problems; we have used some of them as problems for the reader 
in 523.5. 

Lagrange’s Solution by Means of the Substitution u(x ,y)  = cuXbY, 1777 

Lagrange (1 777) reacted to Laplace’s papers by publishing a large paper 
entitled “Researches on recurring sequences whose terms vary in  several 
different ways, or, on the integration of linear equations with finite and partial 
differences, and on the use of these equations in the theory of chances.” He 
refers to his own paper ( 1  759) and to Laplace’s papers and writes, “I believe, 
however, that one may still add something to the work of this illustrious 
mathematician and treat the same topic in a manner more direct, more simple 
and especially more general.” 

In the first section of the paper, Lagrange discusses the linear difference 
equation with variable coenjcients, which he solves by means of the method 
that today is known as Lagrange’s method of variation of parameters. 

In the following sections he discusses partial difference equations with 
constant coefficients and gives a direct method of solution. We shall change 
our notation from u,(x) to u(x, y) ,  which fits better into the system of formulae 
used by Lagrange. 

He first considers the double sequence { u(x ,  y); x = 0,1,. . . , y = 0,1,. . .}, 
where u(x, y) satisfies the equation 

aoou(x ,y)+a,ou(x+ 1,  y ) + a o , u ( x , y +  l ) + a , , u ( x +  l , y +  1)=0. (17) 

Setting 

Q, b, and c being undetermined constants, and inserting into (17), he obtains 
the equation 

aOO + a lOa  + a016 + a,,nb = 0, 

which gives 
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It follows that by may be written as 

m 

b y =  c h,(y)d'-', 
i = O  

r being an integer depending on the coefficients of (17). Inserting into (18) 
he finds 

m 

u(x, y )  = c hi( y)a" + r y -  i. 
i=O 

Since a and c are arbitrary, and since any linear combination of expressions 
like that above is a solution of (17). Lagrange concludes that the form of the 
solution is 

where g(') is an undetermined function. 

g(x) = u(x, 0). The general solution thus becomes 
From u(x,O)=cax, it follows that ho(0)= 1 and hAO)=O, i2 1, so that 

where r and hi(y) are to be found from the expansion (19). If the series is 
infinite, the solution will contain values of u(.w,O) for negative arguments; 
these values have to be found from (20) using the boundary conditions for 
U k  Y). 

Lagrange works out the solutions for a, , = 0 and aol = 0, respectively; it 
turns out that the series in both cases are finite. 

In general, however, the solution (20) will contain infinitely many terms. 
To derive another solution depending on a finite number of terms only, 
Lagrange introduces a representation of a and b in terms of the parameter 
t, say, by the equations 

u = a , r ( l  + a 2 t - ' )  and b = b , ( l  + & - I ) ,  

x + y 

i = O  
axby= c h i ( X ,  y ) P ,  
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where 

it follows by a similar argument as above that the solution has the form 

where f(.) is an undetermined function. 
The value off(.) may be determined by means of u(x,  0) and u(0, y).  From 

i t  follows that 

x = 0,1,. . . , 
I 

and from 

it follows that 

The problem has thus been solved in a simple and general manner. 
Lagrange extends the analysis to difference equations of order rn with two 

and three independent variables. We shall sketch the solution for the 
equation 

The substitution u(x, y) = caXbY leads to the equation 
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Lagrange writes the expansion of by in the form 

by = f hi(y)ai -I- 6 ’2’ k i ( y ) d ,  
i = O  i = O  

where he has used (21) to eliminate powers of 6 larger than or equal to 2. 
By the usual argument he concludes that the general solution has the form 

wherefand y are arbitrary functions. If u(x,O) and u(x, I )  are given, i t  is easy 
to show that the solution becomes 

Lagrange gives several other forms of the expansion of a*bY and corresponding 
forms of the solutions. 

Finally, Lagrange solves seven probability problems; we have used some 
of them as problems for the reader in $23.5. 

Laplace’s Solution by Means of Generating Functions, 1782 

Laplace did not give up; in 1780 he read a paper, published in 1782, to the 
Paris Academy of Sciences on the use of generating functions for solving 
difference equations. He introduced the name “generating function” and 
developed a calculus of generating functions, to a large extent based on 
symbolic methods, which originally had been introduced by Leibniz and 
later developed much further by Lagrange (1 772). Generating functions had 
previously been used by de Moivre, Simpson, and Lagrange for finding the 
distribution of the sum of n identically distributed random variables, see 
914.3. We shall illustrate Laplace’s method by discussing two important 
examples. 

Let g ( t )  be the generating function of u(x )  such that 

a, 

g(0 = C w t x ,  
x = o  

and let u(x)  satisfy the homogeneous linear difference equation with constant 
coeflicients 

2 aiu(x + i )  = 0. 
i = O  
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Multiplying this equation by t X  and summing over x, we get 

Solving for g(t), we obtain 

m m -  1 i 
g(t) 1 a i t m - i =  C a i + l  t m - ( - 1  1 u(j)t . i  

i = O  i = O  j = O  

m - 1  m - I - j  

j = O  i = O  
= 1 u ( j )  a j + i + , t m - i - l  

This is Laplace's solution of the difference equation in terms of the generating 
function of u(x). The generating function is a proper rational function; to get 
u(x) one has to find the corresponding power series. This result corresponds 
to de Moivre's formula (1.1). 

It will be seen that the numerator of g(t) is a polynomial of degree ttt - 1 
with coefficients depending on u(O), . . . , u(m - 1). Generally, we may write 
g(t) = f ( t ) / C a i t m - i ,  where J ( t )  is a polynomial of degree rn - 1, the m 
coefficients being determined by m given values of u(x). 

Examples of Laplace's use of generating functions have previously been 
given in 521.2 on Waldegrave's problem and in 522.6 on the theory of runs. 

Suppose now that u(x, J') satisfies the partial difference equation 

and define the generating function as 

Multiplying the difference equation by sXtJ and summing we get 
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where g(s, 0) and g(0,z) are the generating functions of u(x, 0) and u(0, y), 
respectively. Hence, we have 

g(s, t)(  1 - as - bt - cst) = (1 - as)g(s, 0) + ( 1  - bt)g(O, t )  - u(0,O). 

In general, we may write 

h(s) and k ( t )  being functions to be determined from the boundary conditions. 
Considering the partial difference equation 

Laplace gives the generating function as 

t )  = 

n -  1 m -  I c hi($'+ c k,{t)s' 
i = O  i = O  

where the arbitrary functions {hi($} and {k i ( t ) )  may be found from the 
generating functions of u(x,O), u(x, l), . . . , u(x, n - 1) and u(O,y), u( l ,y) ,  . . . , 
u(m,- 1, y). The proof may be carried out analogously to that above; Laplace 
indicates a proof by symbolic methods. 

It will be seen that it is easy to find the generating function of u when u 
satisfies a linear difference equation with constant coefficients, which is the 
case for the classical problems in probability theory. Laplace had thus reached 
his goal; the results may be seen in his Thtorie Analytique des Probabilitts 
(1812), where he gave the solution of many problems by this method. 

23.4 SOLUTIONS OF THE PROBLEM OF THE DURATION OF 
PLAY BY LAPLACE AND LAGRANGE 

As mentioned in 420.5, Laplace writes de Moivre's algorithm as the partial 
difference equation 
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with the boundary conditions u,(O) = I ,  and 

u,(x)=O, x > ( b - l ) r \ n  and x < ( - a + I ) v ( - n ) ,  n 3 0 .  

Laplace first derives de Moivre’s recursion formula by transforming the 
partial difference equation to an ordinary difference equation. Next, he solves 
this equation thereby obtaining the trigonometric formula for D,(a, b). 

To reduce the order of (1) with respect to x from two to one, he eliminates 
u,- l ( x  + 1 )  by means of the relation 

starting from the upper boundary where u,(6) = 0. 
As shown in 120.5 he then obtains the expression 

u,(x) = c ai(x)u, - 2 i (x )  + c Pi(x)u, - 2 i  + ( x  - I ) ,  n >, 6 - x .  ( 3 )  

It will be seen that the cost of the reduction in order from two to one is that 
the coefficients now depend on x and that the order with respect to n has 
increased. 

To reduce (3) to an ordinary difference equation in n, Laplace uses the 
boundary condition u,( - a) = 0. Setting x = - a + 1, he obtains 

i =  1 i =  I 

b + b -  1V21 
u , ( - a + l ) =  c a i ( - a + l ) u , - 2 i ( - a + 1 ) ,  n > , a + b - 1 ,  (4) 

i =  1 

see (20.5.22). 

for the ruin probability. The only problem left is to find ai(.u). 
Since Y,* = qu,- - a + I), multiplication by q leads to a recursion formula 

By means of (2) and (3) we obtain 

which inserted into (1) gives 

i =  1 
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Comparing with (3) and equating coefficients, we obtain 

which gives 

The boundary conditions follow from (3) for x = b - I and b - 2, which show 
that 

ai(b - I )  = 0, i 2 1, and ai(b - 2) = 0, i 2 2. 

Repeated applications of(6)gives that ai(b + 1 - 2i)  = p i +  , (b  - 2i) = 0, i 3 1. 
The solution of (5) is 

a,(x) = (b  - 1 - x)pq,  

since a,(b - 1) = 0. Laplace also finds a2 and a3 from (6), and then he writes 
“and so on.” I t  is easy to check that the general solution of (6) is 

so that 

which is the coefficient in de Moivre’s recursion formula for the ruin and 
continuation probabilities, see (20.5.14) and (20.5.20). 

This is the first proof of de Moivre’s recursion formula; it must have been 
very satisfactory for Laplace (1776) in one of his first papers to prove this 
theorem which had remained unproved since 1718. He does not, however, 
refer to de Moivre. 

In the 1774 paper Laplace proves the recursion formula for a = b, starting 
from the partial difference equation 
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His method of proof is the same as above, but because of symmetry he 
considers only positive values of x, beginning with x =  0 and working out 
to the boundary x = b. We shall leave the proof to the reader. 

The proof for a = b is also included in the 1776 paper. One may wonder 
why he did not derive the result as a special case of (8). The reason is that, 
like de Moivre, he did not know the combinatorial identity leading from the 
one formula to the other, see 520.6, Problems 12 and 13. 

The proof given above is a "polished" version of Laplace's proof, retaining 
Laplace's idea but using modern notation; it  is based on a paper by Hald 
and Johansen (1983), which also contains an interesting combinatorial proof 
by Johansen. As the problem is combinatorial in nature, it is surprising that 
nobody has given a combinatorial proof until 1983. 

Laplace (1776) continues his analysis by solving the ordinary difference 
equation corresponding to (4) but with u, replaced by D,(a, b). Setting 
c = a + b, we may write Laplace's equation as 

For convenience we shall assume that c is odd so that i (c  - 1)  is an integer; 
a similar proof holds for c even. Setting D , , C C ~ ( " + ~ - ~ ) ~ * ,  we obtain the 
characteristic equation 

To solve this equation Laplace refers to his previous result (3.14), which 
may be written as 

(2 cos o r -  - 2i. 

i = O  

By the substitution 

I I2 
2COSU= +;) , 

he finds 
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Since 

jn sincu=O for u = - - - ,  j = O , 1 ,  ..., 
C 

the roots of the characteristic equation become 

tj=4pqcosZuj, u j = ! F ,  j =  I ,..., i (c -  I ) .  
C 

Finally, Laplace gives the solution as 

Laplace leaves the solution in this form; he does not attempt to find the 
coenicients c j  but refers the reader to find them by the method given in his 
general theory. 

Here we have the first, although incomplete, trigonometric expression for 
D,(a, b). As we shall see below in connection with Lagrange's solution, the 
determination of the c's is not completely trivial. 

Lagrange's formulation of the problem (1 777) is slightly different from the 
usual one. He considers a player, A, say, playing a series of games in which 
he wins a point with probability p and loses a point with probability q = 1 - p 
in each game. After winning i of n games, his score is gn = 2i - n. The play 
continues as long as the score is between - a and 6, a and b being positive 
integers, and stops as soon as the score becomes 6 - a  or 3 h. Lagrange's 
formulation is thus equivalent to the modern one as a random walk with 
two absorbing barriers. 

Lagrange defines w,(x) as the probability of stopping, given that the state 
of the play is such that A has a score of y = x -a  and that the play ends 
after at most n more games. Hence, w,(a) denotes the probability of a duration 
of at most n games, i.e., w,,(a) = D,,(u, b) in the previous notation. 

The fundamental difference equation is 

w,(x) = pw,- , (x  + 1) + 9w,- 1 ( ~  - I) ,  x = 1,2,. . . , a  + b - I ;  
n =  1,2, ...) 

with the boundary conditions 

w, (O)=w, (a+b)=  I ,  n = O , I  ,..., 

w,(x)=O, X =  1,2 ,..., a + b -  1. 
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It will be seen that the difference equation is of the same type as the one 
formulated by Laplace; however, the boundary conditions are different which 
is the advantage of Lagrange’s formulation. Besides the new formulation, 
Lagrange’s contribution consists in a new method of transforming the partial 
difference equation to an ordinary one and the determination of the constants 
in its solution. 

By his usual substitution, w,(x) = ca”p ,  Lagrange finds the equation 

q - ab + p p 2  = 0, (9) 

which has the roots 

say, so that 

X x -  1 

= C hi(x)ai + p C ki(x)ai = Ax(a)  + pB,(a), 
i = O  i = O  

where powers of p higher than one have been eliminated by means of the 
relation p2 = (ap - q ) / p ,  and where Ax(a)  and B,(a) denote polynomials in a. 

According to (3.22), the solution of the difference equation is 

Using the fact that w,(O) = 1 and the definition of A,(a) by (lo), i t  follows that 

which by the substitution 

w,( l )  = 1 - z ,  

becomes 
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To find A,(I) + B,(I) we note that p =  1 gives a = 1 according to (9) so that 
(10) gives A,( 1) + B,( I )  = 1. Hence, 

and using the boundary condition w,(a + 6) = I ,  Lagrange finds that 

a + b -  I 

kXa + b)zn+i = 0, 
i = O  

which means that the original partial difference equation has been 
transformed to an ordinary difference equation of order a + 6 - 1. 

The characteristic equation is 

a t b - 1  

C k , ( ~  + b)t i= Ba+,( t )  = 0, 
i = O  

so that 

a i b -  1 

2, = c cjt;, 
j =  1 

where f l , . . . , l a + b - l  are the roots of the characteristic equation. Inserting 
this expression into (1  I), the solution becomes 

where the c’s are to be found from the boundary conditions wO(x)=O, 
x =  1, ..., a + b -  1, which give 

a + b -  1 

C ciBX(ti) = 1, x = 1 , .  . , ,U + b - 1. 
i =  I 

It remains to find the t’s and the c’s. 
To find &(a), Lagrange solves the equations 
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which give 

8; - 8; 
8, - 8 2  

B,(cc) = ___ 

To solve the characteristic equation Botb(r) = 0, Lagrange uses the 
transformation 

t = 2 J p q  cos v ,  

which inserted into (14) leads to 

sin(a + 6 ) v  

sin v 

( a + b - 1 ) / 2  

- 0, 

so that the roots are 

in 
t i  = 2 J p q c o s  v i ,  0 .  = i =  1, . . . ,  a t b -  1. 

‘ a+b’  

We note that the characteristic equation and the transformation used by 

To solve (13) for the c’s we note that 
Lagrange are analogous to those used by Laplace. 

so that (1  3) becomes 

To solve these equations for the c’s, Lagrange uses that 

n + b - l  

sin xvi sin x v j  = +(a + 6) for i = j  and 0 otherwise. 
x =  1 
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Multiplying (15) by sinxuj and summing over x, he obtains 

the positive sign being valid forj odd, the negative forj even. 
Using 

P 1 - 2  - cosu+-=q- ’ ( l -  
X q  

2 Jp4 cos v),  

and inserting the values found for ci and ti into (1  2), we get Lagrange’s formula 

(a + b - x)/2 

1 - M’,(X) = -___- 
a + b  i = l  

sin xui sin ui cosn ui x .--____ 

1 - 2 J p q  cos ui . 

For x = u we get U,(a, 6) = I - w,(u). Lagrange does not give (16) explicitly, 
he leaves i t  to the reader to make the substitutions. [We have corrected a 
small error in Lagrange’s proof; he has forgotten the factor p on the 
right-hand side of (14). However, i t  is easy to see that this error does not 
affect the final resu1t.J 

Noting that 

sin av, = sin(in - 6 4 )  = (- ly-  * sin 64, 

we obtain 

(4~9)‘” + 1112 (t + b - 1 

U,(a,b)= a + 6  i=l (( ir2 sin au, + (:>”” sin hi) 

sin u.cos“ui 
(17) x -_-t- 

1 - 2 J P q C O S V i ‘  

Lagrange indicates another solution of the difference equation, which he 
obtains by solving(9) with respect to a instead ofp. This leads to an expression 
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for U ,  as a linear combination ofp"-'q' with a set ofequations for determining 
the coefficients, but he does not give an explicit expression for U,,. He remarks 
that this result corresponds to that obtained from de Moivre's algorithm, 
whereas the solution above corresponds to de Moivre's trigonometric 
solution. He also refers to Montmort and Nicholas Bernoulli. 

Lagrange also solves the problem of the duration of play when one of the 
players has unlimited capital, see Problem 10 in 423.5. 

Naturally, Laplace (1812, Book 2, 510) used his method of generating 
functions as the basis for a comprehensive analysis, which encompasses the 
results found by de Moivre and Lagrange and also some new asymptotic 
results. He obtains the correct generating function, even though his proof 
contains an error, which was corrected only in the Fourth Supplement (1825) 
to the third edition of his book. He ascribes the revised proof to his son. 

Laplace considers the usual case with A and B having a and b counters, 
respectively. Let u ( x , y )  denote the probability that A wins, given that the 
state of the play is such that A has x counters and that he wins after at most 
y games. The problem is to find u(a, n )  = R,,(a, b). From the difference equation 
Laplace first finds the generating function for u(x, y) and then the generating 
function for u(a,y) from which u(a,n) may be obtained. 

The difference equation is 

u ( x , y ) = p u ( x +  1,y- I ) + q u ( x -  1,y-  11, 

with the boundary conditions 

u(O,y)=O, y = O , l ,  ...; u ( x , O ) = O ,  X =  1,2 ,..., a + b -  1, 

u(a+b,2i)= 1 ,  u (a+b,2 i+  1)=0, i = o , l )  ..., 

corresponding to the fact that A can win only for even values of n - h. 
According to (3.23), the generating function becomes 

which Laplace writes in the convenient form 

The arbitrary functions are found from the boundary conditions applied to 
the generating function. 
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First, 
m 

g(0, I )  = 1 u(0, y)t' = 0, 
y=o 

which shows that F , ( t )  = 0. 
Second, 

m 

g(s, 0) = u(x,  O)sx = s" " + terms of higher powers of s, 
x = o  

and g(s,O)= - F , ( s )  imply that the term F,(s)s  contains the factor satbtl .  
Third, the generating function of u(a + b, y) becomes 

which is used for determining F3(t ) .  Consider 

and write the denominator as the product ( I  - z,s)(l - z2s) ,  where ( z , , z , )  
obviously are the roots of the equation 

so that 

Hence, (19) may be decomposed into partial fractions 

and expanding this expression in powers ofs, the coefficient becomes 
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However, this is also the coefficient of in the expansion of g ( s , t ) ,  since 
F,(s)s  leads to higher exponents and F 2 ( t )  = 0. Equating (18) and (20) Laplace 
finds 

The generating function of u(a, y )  is the coefficient of s" in the expansion 
of g(s, t ) ,  and it therefore equals 

Inserting the value of F 3 ( t ) ,  Laplace gets the generating function of u(u, y )  
in the form 

( 1  - t2)-'(20, - z;) 
,;+b - Z;+b 

This is the generating function of R,(a,b); i t  follows that the generating 
function of r,,(a, b )  is obtained multiplying by I - t 2 .  

Laplace derives the trigonometric expression for R ,  by means of the 
transformation l/t = 2 f i  cos u. He also indicates how de Moivre's 
recursion formulae and the formula for Y, may be found from the power 
series expansion of (21); some details have been provided by Todhunter 

Comparing the three proofs, it will be seen ( 1 )  that Laplace's 1776 paper 
contains a derivation of de Moivre's recursion formulae and an incomplete 
proof of the trigonometric formula, which ought to be amended; (2) that 
Lagrange's 1777 paper contains a complete proof of the trigonometric 
formula but no discussion of the recursion formulae; however, some 
intermediate results could be used for this purpose; (3) that Laplace (1812, 
1825) gives a very simple derivation of the generating function for R ,  which 
by routine methods may be used to find all the previous results mentioned. 

A simplified version of Lagrange's proof has been given by Ellis (1844), 
and a modification of Laplace's second proof has been given by Feller (1970). 

De Moivre recognized the relation between Montmort and Nicholas 
Bernoulli's combinatorial expression (20.3.1) for D,,(b, 6) and his own 

(pp. 169- 175). 
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trigonometric expression (23.2.8), (see 424.3). but he did not derive the one 
from the other. This problem has been discussed by Fieller (1931) and Takacs 
(1 969). 

Apart from some remarks on Laplace’s generating function, Todhunter 
does not discuss the history of difference equations, and he is therefore not 
able to give a satisfactory discussion of the solution of the problem of the 
duration of play. 

23.5 PROBLEMS 

1. The difference equation for Huygens’ fifth problem is 

4 
u(x) = 1 + - u(x - 1) - --u(x - 2). ( :> P 

with the boundary conditions u(0) = 0 and u(m + n) = 1 (see $14.2). Find 
u ( x )  by means of de Moivre’s theory of recurring series. 

2. The problem of even or odd. From an urn containing x counters a 
random sample of counters is taken. Assuming that all combinations of 
counters are equally probable, show that the number of favorable cases 
for an even number, u(x), say, satisfies the difference equation 

u(x + 1) = 2u(x) + 1, 

and that the probability of getting an even number in the sample is 

Assuming that x is a random variable taking on the values 1,2,. . . , n 
with equal probabilities, show that the probability of getting an even 
number of counters in the sample is (2” - n - 1)/(2”+’ - n - 2). Solved 
by Laplace ( 1  774, 1776). 

Solve the problem by combinatoriai methods, see Laplace (1812, 
Book 2, 95). 

(2x-I- 1)/(2” - I) .  

3. Consider a die with f faces numbered from 1 to f. Find the probability 
of getting the j faces in their natural order in x throws. Let u ( x )  be the 
number offavorablecases among t h e p  total nurnberofcases. Show that 

u ( x )  = ju(x - I )  + s”-’ - u(x - I). 
Solve this equation for .f = 2 and show that the probability in question 
equals 1 - (x + 1)2-”. Solved by Laplace (1776). 
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4. The problem of points for two players. Let the probabilities of winning 
a point be p and q for the players A and B, respectively, and suppose 
that A lacks n points and that B lacks x - n points in winning the play. 
Show that B’s probability of winning, u,(x), say, satisfies the partial 
difference equation 

and solve this equation. Solved by Laplace (1 776). 

5. The problem of points for three players. Using an obvious extension of 
the notation in the previous problem, show that C’s probability of 
winning satisfies the partial difference equation 

and solve this equation. Solved by Laplace (1776). 

de Moivre, see 0 14.1. 
Laplace (1776) also gives a combinatorial proof much like the one by 

6. A generalization of the problem of points for two players. Drawings with 
replacement are made from an urn containing four counters marked A , ,  
A,, B1, B,. If Ai is drawn, A gets i points, and if B, is drawn B gets i 
points, i = 1,2. Suppose that A needs n points and that B needs x - n 
points to win. Show that B s  probability of winning, u,(x), say, satisfies 
the partial difference equation 

and solve this equation. Solved by Laplace (1776). 

7. Because of its importance in the theory of chances Laplace (1776) has 
given a special analysis of the partial difference equation of the second 
order in n of the form 

Show that this equation may be reduced to the following one of the first 
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order, 

show that the coeflicients a,,, b,, and c, satisfy the following difference 
equations of the first order in n, 

and discuss the solution of these equations. 

8. Let un(x) denote the probability of getting at least x successes in n trials. 
Show that u,,(x) satisfies the difference equation 

with the boundary conditions 

u,,(O) = 1, n = 0, 1,. . . , and uo(x)  = 0, x = 1,2,. . . . 

Solve the equations by Lagrange's method, setting u,,(x) = ca"bx. 
Lagrange ( 1  777) thus finds the right-hand tail of the binomial distribution 
expressed by means of the left-hand tail of the negative binomial 
distribution. 

9. Lagrange (1777) formulates the problem of points as follows: Find the 
probability that b failures occur before Q successes. (This means that B 
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wins in the usual formulation.) Let u(x ,  y)  denote the probability that y 
failures occur before x successes. Show that 

u ( x , y )  = pu(x - 1, y )  + q w  y - 11, 

u(x,O) = 1, x = 1,2 ,..., and u ( 0 , y )  =0, y =  1,2 ,..., 

and solve this equation by Lagrange’s method. 

10. Consider a series ofgames in which a player wins a point with probability 
p and loses a point with probability q = 1 - p in each game. The play 
continues as long as the player’s score is less than h and stops as soon 
as it reaches b. Find the probability of stopping in at most n games. This 
is Lagrange’s formulation of the duration of play in the case with 
unlimited capital for one of the players. 

Let u,(x)  be the probability of stopping when the player needs to win 
x more points in at most n more games. Show that 

u , ( x ) = p u , - , ( x -  1 ) + q u , - , ( x +  11, 

uo(x)=O, x =  1,2 ,..., and u,(O)= 1, n = O , l ,  

Solve the difference equation by means of the substitution u,(x) = ca“/P, 
which leads to the equation 

p - ap + q p  = 0. 

The equation may be solved with respect to p or a, and each of these 
solutions leads to a different form of u,(x). Compare these forms for x = b 
with R,(b) given by de Moivre. 

11. Solve the difference equations in the previous problems by the method 
of generating functions. 

12. Find the limiting value of the generating function (4.21) for a+ co and 
use the result to derive de Moivre’s formula for R,(b) .  

13. Find the value of the generating function (4.21) for a = b and use the 
result to derive de Moivre’s formula for R,(b, b). 

14. Derive de Moivre’s trigonometric formula for U,,(b, b )  from (4.17). 



CHAPTER 24 

De Moivre’s Normal 
Approximation to the Binomial 
Distribution, 1733 

In answer to this, I’ l l  take the liberty to say, that this is the 
hardest Problem that can be proposed on the Subject of Chance, 
for which reason I have reserved it for the last, but I hope to be 
forgiven ifmy Solution is notfitted to  the capacity ofall Readers; 
however I shall derive from it some Conclusions that may be of use 
to every body: in order thereto, I shall here translate a Paper of mine 
which was printed November 12,1733, and communicated to some 
Friends, but never yet made public, reserving to myselfthe right of 
enlarging my own Thoughts, as occasion shall require. 

(a  + b)” expanded into a Series, from whence are deduced some 
practical Rules to estimate the Degree of Assent which is to be 
given to Experiments. 

A Method of approximating the Sum of the Terms of the Binomial 

-DE MOIVRE.  1738 

24.1 INTRODUCTION 

We shall use the notation 

b(x) = b(x, n,p) = ( : ) ~ ~ q ” - ~ ,  x = 0,1,. . . , n, n = 1,2,. . . , 

and define b(x) as zero otherwise. In 5g24.1-24.5, we shall follow de Moivre 
and assume that np is an integer. 

468 
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The solution of problems of games of chance by combinatorial methods 
leads to formulae containing binomial coeflicients which are cumbersome to 
calculate for large values of the arguments. For example, Montmort and 
Nicholas Bernoulli calculated sums of binomial coefficients for n larger than 
100 to determine the median duration of play, see 520.3, and ’sGravesande 
calculated the sum of 259 binomial coefficients for n = 11,429 to improve 
Arbuthnott’s test, see $17.2. Hence, there was a great need for simple 
approximations to the binomial coefficient and the binomial distribution. 

The most dificult problems were those requiring the determination of n, 
the number of trials necessary to obtain a specified probability. De Moivre 
(1712) derived an approximate solution of the equation B ( c , n , p )  = with 
respect to n by using the Poisson approximation to the binomial for small 
values of p ,  see $14.4. In 1718 he also found an approximate solution of the 
equation U,(b, 6) = $ for the ruin problem by means of his trigonometric 
formula, which he further improved in 1738, see 520.5 and $23.2. However, 
in these solutions he did not directly approximate the binomial coefficient. 

James and Nicholas Bernoulli (1  713) evaluated the sum 

For p = r / t ,  the ratio of two integers, d = n / t ,  and for Pd > c / ( c  + l), c > 0, 
James found a lower bound for values of n satisfying these requirements, see 
516.2. Nicholas turned the problem around and found a lower bound for Pd 
for a given value of n without any restrictions on d. Assuming that d is small 
compared with n, Nicholas also gave an approximation to Pd based on the 
approximation 

b(nP) - 
b ( n p + d ) ? ( n q - d +  1 i t p  np 

see 0 16.3. 
In 1721 de Moivre began his investigations of the binomial distribution 

for p = $. He first found an approximation to the maximum term and next 
an approximation to the ratio of the maximum to the term at a distance of 
d from the maximum. De Moivre’s approach thus differed from that of the 
Bernoullis by seeking an approximation to b ( x , n , p )  instead of P,.  From 
1725 onward James Stirling (1692-1770) worked on the same problem and 
found that the constant entering de Moivre’s formula equals J2;. After 
having obtained these results they realized that it would be simpler to begin 
with an approximation to Inn!, and they both proved Stirling’s formula, 
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n!  - J2%nne-". De Moivre's proofs are given in the Miscellanea Analytica 
(MA) (1730), Stirling's in his Methodus Dgerentialis (1730). 

It is a remarkable fact that de Moivre's proofs are based on three 
well-known theorems only, namely, Wallis' (1 655) infinite product for 4 2 ,  
Newton's infinite series for In { (1  + x)/( 1 - x)} from the 1660s, and Bernoulli's 
formula (1713) for the sum of powers of integers. Hence, the mathematical 
tools for finding the expansion of Inn! were already available to the 
Bernoullis. 

Three years later, de Moivre (1733) simplified his results for p = i  and 
showed that the normal density function may be used as an approximation 
to the binomial. The generalization to an arbitrary value of p is of course 
very easy, so without proof de Moivre stated that 

b(np + d ,  n, p )  - (2nnpq)-'/* erp( - L), d = O(,/n), 
2nPq 

and that P ,  may be obtained by integration. He also showed how to calculate 
the standardized normal probability integral and gave the result for one, 
two, and three times the standard deviation. 

24.2 THE MEAN DEVIATION OF THE BINOMIAL 
DISTRIBUTION 

In 1721 Alexander Cuming posed the following problem to de Moivre: A 
and B have probabilities p and q, respectively, of winning a single game. 
After n games A shall pay as many counters to a spectator S as he wins games 
over np, and B as many as he wins games over nq. Find the expectation of S. 

Obviously, the expectation of S becomes 

which today is called the mean deviation of the binomial distribution. 
De Moivre (1730, pp. 99-101) proves that 
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He carries out the proof for p = f only, but his proof is easily generalized 
as follows. From 

it follows that 

n nq 

x = n p  y = o  
D, = 2 ( X  - n p ) b ( x )  = 2 C yb(np  + Y).  

Evaluating the ratio b(np + y + l)/b(np + y), we obtain 

which by summation from 0 to nq gives 

and thus 

This completes the proof, which according to de Moivre is from 1721. Johnson 
(1957) has given a proof without assuming that n p  is an integer. 

To facilitate the calculation of the binomial coefficients, de Moivre (1730, 
pp. 103-104) tabulated log,,n! to 1.4 decimal places for ti = 10(10)900. In 
1730 Stirling pointed out some errors in the table, and de Moivre therefore 
published a corrected table in the Supplement (p.22) to the MA. This table 
is reproduced in the Doctrine (1756, p. 333). 

Besides being the spectator’s expected gain per game, D,/n may also be 
interpreted as a measure of the dispersion of the relative frequency x / n  around 
the probability p. This is the first time that such a measure has been formulated 
and discussed; however, from a pedagogical point of view, de Moivre’s 
discussion is rather odd. He pretends that he does not know the properties 
of D, despite the fact that he immediately after the derivation of ( 1 )  shows, 
for p = f, that b(np)  tends to zero inversely as & so that D, tends to infinity 
as &. In the MA he only mentions that D, is an increasing function of n. If 
he had calculated On/& for p = 4, he would have found the following results: 
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n 100 400 900 
On/& 0.39795 0.39869 0.39883 

This might have inspired him to guess that D , / , , h - - + ( 2 ~ ) - ‘ / ~  = 0.39894, 
which would have saved him a great deal of trouble, as we shall see in the 
following sections. 

In the Doctrine (1 738, Problems 86 and 87; 1756, Problems 72 and 73) de 
Moivre discusses Cuming’s problem and states ( 1 )  without proof. He gives 
a numerical analysis of the properties of D, and adds, “how to find the middle 
Terms of those high Powers [of the binomial] will be shown afterwards,” 
but he does not return to a discussion of D, after he has derived the normal 
approximation to the binomial, otherwise he would immediately have found 
that D, - f iEF. He tabulates D, for p = f and n = 100(100)900, and he 
finds that D,,o/lOO = 1/25 and D,,,/900 N 1/75. He also finds D, for p = f, 
n = 6 and 12, and makes the following comment: 

From this i t  follows, that if after taking a great number of Experiments, it should 
be perceived that the happenings and failings have been nearly in a certain 
proportion, such as of 2 to 1, it  may safely be concluded that the Probabilities of 
happening or failing at any one time assigned will be very near in that proportion, 
and that the greater the number of Experiments has been, so much nearer the 
Truth will the conjectures be that are derived from them. 

This formulation of the law of large numbers is clearly influenced by James 
Bernoulli. De Moivre, however, bases his statement on the numerical fact 
that D,/n is decreasing. He knew that 

so that the dispersion of x/n tends to zero for n + 03. He adds that i t  is 
possible to improve the statement above by finding the odds against getting 
a large deviation from the expected value and goes on to derive the normal 
approximation to  the binomial. 

24.3 DE MOIVRE’S APPROXIMATIONS TO THE 
SYMMETRIC BINOMIAL IN MISCELLANEA ANALYTICA, 1730 

The Miscellanea Analytica (MA) may be considered a series of research 
reports written between 1721 and 1730, supplemented by a letter from Stirling 



24.3 DE MOIVRE’S APPROXIMATIONS TO THE SYMMETRIC BINOMIAL 473 

to de Moivre in 1729. Presumably for priority reasons, de Moivre published 
the reports in their original form so that the reader could judge for himself 
which contributions were due to de Moivre and Stirling, respectively. 

The exposition in the present section and in the next section is based on 
de Moivre’s proofs in MA and its supplement and to a large extent on the 
comments by Schneider (1968), who quotes extensively from MA. We shall 
add some new proofs and comments. 

De Moivre naturally begins by studying the simplest case, namely, the 
symmetric binomial. He first finds an  approximation to the maximum and 
next to the ratio of an arbitrary term to the maximum. He states that he 
obtained these results in 1721; the proofs are in MA, pp. 125--129. 

De Moivre’s Approximation to the Maximum of the 
Symmetric Binomial 

(in)( ;)” - 2.168 ( 1 - tl> ‘iJF-7 

Proof. For n = 2m, we have 

h ( m + d ) = (  2m )(:)’”, Idl=O, l ,  ..., m, m =  1,2 ,.... 
m + d  

From 

we get 

m - 1  I + i f m  
lnb(m)=(-2m+ l ) l n 2 +  C In-- 

i = l  I - i / m *  

By means of Newton’s infinite series 

l + x  O0 x2k-1 

1 - x  k=12k-1 
In _ _ ~  = 2  c -, 

the sum above may be written as 

(3) 
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From Bernoulli's formula ( I  5.4.10) for the summation of powers of integers, 
it follows that 

m- 1 (m - 1)2k I 1 

i =  I 2k 2 2 
1 j 2 k - ' = - -  + - ( m  - I ) z k -  I + -(2k - 1)B,(m - 1 ) 2 k - 2  + ..-. ( 5 )  

Setting (m - I ) /m = t ,  say, and inserting (5) into (4) we get 

To evaluate the first of these sums, de Moivre integrates (3) from x = 0 
to x = t, and dividing the result by 1, he obtains 

1 + t  

1 - t 

a, t 2 k - l  

2 c  In----+t-'In(I - t 2 )  
k =  I (2k  - 1)2k 

m 2m-1 
= In (2ni - I )  + --In-. 

m - I ni2 

The second sum in (6) is found directly from (3), which gives 

The third sum becomes 

which tends to 1/12 for m -+ 00. 

De Moivre also evaluates the next term and finds that i t  tends to - 1/360. 
For the two following terms he only gives the limits. 

Inseiting these results into (2), de Moivre finds 

1 1  1 1 
12 360 1260 1680 

In&) - (2m - +)ln(2m - I )  - 2mln(2m) + in2 +--I + -- + ... 

-(2,n-;)ln(2m- 1)-2mIn(2m)+0.7739 + .... (7) 
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Disregarding the remaining terms, he gets the final result 

b(m) - 2.168(2m - 1)'"'- 1'2 (2m)-2m, 

which is the approximation given in (1). 
Noting that 

1 
2m{ln(2m - 1) - ln(2m)) = 2m In 1 - -- = - 1 - - - ..., ( i m )  4m 

it  follows from (7) that 

Inb(m)- -$ln(2m)- 1 +0.7739+ . a * ,  

which gives the approximation 

b(m) - 0.7976/,/%. (9) 

This result is not given explicitly by de Moivre, but he notes that 
(1 - l/n)" - e- l ,  so he only had to calculate 2.168e- = 0.7976. 

Remarks. The proof is very important because it  demonstrates the method 
which de Moivre uses in his other proofs. By an ingenious combination of 
rather elementary infinite series, he finds an expansion of Inb(m). There is 
only one part of the solution that is not quite satisfactory, and that is the 
determination of the numerical constant 2.168, based on In2 plus the first 
four terms of the series in (7), beginning with 1/12. The first four terms are 
decreasing, and he states that the sum gives a satisfactory approximation; 
however, one may wonder why he happend to stop exactly at the best place. 
The explanation may be that he knew that the following terms are increasing. 
He could hardly fail to see that the complete series equals 

To illustrate his difficulties, we have calculated the first eight terms: 

0.0833 - 0.0028 + 0.0008 - 0.0006 

+ 0.0008 - 0.00 19 + 0.0064 - 0.0296 + . . *  . 
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By publishing only four terms, he avoided the difficult discussion of the 
properties of the series. Mathematicians at the time did not distinguish clearly 
between convergent and divergent series. The series continued to trouble 
him until in 1730, inspired by a result of Stirling, he proved by means of 
Wallis’ formula that b(m) - (7rm)-1’2. Later, in the Supplement ( 1  730, p. 9), he 
mentions that the terms after the fourth term do  not decrease. In the Doctrine 
(1756, p. 244) he nevertheless writes that the series “converged but slowly.” 

De Moivre’s Approximation to b(rn)/b(rn + d) 
b(m) 

h(m + d )  
In - ( m  + d - f ) In (m + d -  I )  + (rn - d + +)ln(m - d + I )  

m + d  
- 2m In m + In - -. 

m 

Proof: From 

it  follows that the proof depends on the expansion of 

Using the same method as in the previous proof and setting t = (d - I)/m, 
the first two terms of the expansion become 

Inserting the values of these sums, which have been found above, the theorem 
is proved. 

Comparing the approximative values with the correct ones, obtained from 
his table of logn!, de Moivre concludes that the approximations are 
satisfactory. For n = 900 and p = 4, he finds b(450) z 0.026585, compared 
with the correct value 0.026588, and log [h(45O)/h(480)] z 0.86826,62628, 
compared with 0.86826,69779. He does not compare with Nicholas 
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Bernoulli’s approximation ( l . l ) ,  which turns out to be somewhat poorer, 
since it  gives log [b(450)/b(480)] z 0.86885. Comparing the values of 
b(450)/b(480), de Moivre gives the correct value as 7.38358, the two approxi- 
mations become 7.38357 and 7.39350, respectively. 

De Moivre completes his analysis by a comparison of b(x, n, p )  and b(x, n, i), 
which easily leads to the result 

This means that an approximation to b(x,n,p) may be obtained from the 
approximation to b(+n + d, n,$). For Cuming’s problem this gives 

For completeness we shall state de Moivre’s 1721 approximation to 
b(x, n,p) ,  obtained by inserting (9) and (10) into ( 1  1): 

De Moivre does not give this formula explicitly. As he proved in 1730, the 
constant 0.3988 should have been 1/& = 0.3989. 

De Moivre begins the section “On the binomial a + b raised to high 
powers” by a summary of the results obtained by James and Nicholas 
Bernoulli, including their numerical examples, see 5816.2 and 16.3. After 
having found an approximation to b(x) and solved Cuming’s problem, which 
involves one value of b(x) only, one would have expected him to continue 
with an analysis of Bernoulli’s problem, but he did not succeed in finding a 
simple expression for the sum of the approximate values of b(x). In a way 
his approximation to b(m + d)/b(m) was too good; like Nicholas Bernoulli, 
he did not take the decisive step of sacrificing some of the accuracy to bring 
b(m + d)/b(m) in a form that could be summed by numerical integration 
without too much work. 

The last two pages of the section on the binomial in MA, pp. 109-110, 
are entitled “On the inflection points of the binomial.” Using the language 
from Newton’s paper on interpolation, de Moivre describes how a curve 
may be fitted to the binomial, but unlike Newton, he does not illustrate his 
procedure by a graph. If he had, we would have had the first graph of a 
probability distribution. By interpolation he determines the points of 
inflection of the symmetric binomial and finds that they are at a distance of 
)@, or for large n at a distance of +&, from the point of symmetry. 
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He continues with his first attempt to find Pd. Without proof he states 
the formula 

a + d  2 d +  1 1 . f ( x ) ~ - - - { ( d  + l ) [ / ( a - - d ) + f ( a + d ) ] + ( 4 d -  2)f(a)). (13) 
r = o - d  6d 

For f(x) = b(x, 2m, +) and a = rn, the formula gives an approximation to Pd; 
the three values of b(x)  may be found by his approximation formulae. De 
Moivre neither discusses the accuracy of this formula nor does he give a 
numerical example. Perhaps he realized that the formula is useful only for 
small values of d because it presumes that the binomial can be approximated 
by a quadratic. Outside he points of inflection, the approximation therefore 
becomes very poor. 

It is reasonable to assume that he tried out the formula for I I  = 900 and 
d = 30, since he had calculated b(450) and b(480), as quoted above. This 
would have given the discouraging result 

61 

I80 
P , ,  z --(62 x 0.003601 + 118 x 0.026585) = 1.139. 

However, Schneider (1  968, p. 295) has calculated pd by means of (1 3) for 
d = +& = 15 and found the result P, z 0.708, which is quite satisfactory in 
view of the fact that the normal approximation gives 0.699. 

We shall indicate how de Moivre may have derived formula (13). Consider 
the three-term Newton-Cotes formula, today usually called Simpson’s 
formula, 

For d -+ 00, the sum on the left-hand side of (13) tends to the integral above. 
It seems therefore reasonable to approximate the sum by a weighted sum of 
the three ordinates. Since there are 2d + 1 terms in the sum, we replace the 
factor 3 by (2d + 1)/6d, so that 

which asymptotically agrees with (14); the constants c ,  and c2 are determined 
from the requirement that the formula should give the correct sum ford = 1. 

In 1722 de Moivre made a new attempt to find an approximation to Pd based 



24.3 DE MOIVRE’S APPROXIMATIONS TO THE SYMMETRIC BINOMIAL 479 

on his results for the duration of play (see MA, pp. 226-229). His “proof” 
is incomplete and rather difficult; he refers to Problems 25 and 26 in De 
Mensura Sortis instead of to Nicholas Bernoulli’s formula for the ruin 
probability. We shall give a simpler proof, which in essence shows what 
de Moivre had in mind. 

De Moivre had two expressions for the continuation probability U ,  for 
p = i, one based on Montmort and Nicholas Bernoulli’s formulae involving 
sums of binomial probabilities, and the other based on his own trigonometric 
formula. For p = f, n even, and d odd, it  follows from Nicholas Bernoulli’s 
formula (20.3.3) that 

Since 

we have 

To introduce U ,  we note that 

2R,(d,  d )  = D,(d, d )  = 1 - U,,(d,  d ) ,  

which inserted into (16) gives 

which is de Moivre’s result. 
For n = 900 and d = 45, he finds 

(”g”)( : Y O o  0.8662, 
i = 4 2 8  

and states that this is correct to three decimal places. From the normal 
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approximation we find 0.8664. We note that U9,,(45, 45) according to (23.2.8) 
equals 

) 
901 20 ,.0s901 60 cos901 100 

- +.--.-... 
45 ros sin2" sin 6" sin 10" 

2 
45 

= - (16.5478 - 0.0678 + O . o o 0 0  - * * . )  = 0.7324. 

Since the series leading to (16) has alternating signs, the absolute value 

For comparison with the previous results, we rewrite (17) as 
of the error is at most I - Pod- 1,/2 z $ - $Un(3d, 3 4 .  

" 1 1  1 
2 

Z - + -U,(2d + 1,2d + I), d >  -fi. (IS)  
P d =  i = n / 2  - d  (;)(:) 2 2  

We have added the condition d > :Jn, which de Moivre does not mention. 
It follows from (16) that has to be nearly unity for the approximation 
to hold. Requiring that 3d + I be larger than three times the standard 
deviation, the condition follows. 

For n = 9 0 0  and d =  15. we find 

P d  + x 0.4004 = 0.7002, 

which is as accurate as the normal 'approximation and slightly better than 
the result found from the quadrature formula above. 

Hence, by 1722 de Moivre had found a numerical solution of the problem 
of approximating P d  for the symmetric binomial. For d < $& he had the 
quadrature formula and for n > $,,h the trigonometric formula. These 
formulae are of the same accuracy as the normal approximation, and the 
error of the trigonometric formula is easily evaluated. However, from a 
theoretical point of view the solution is unsatisfactory, since the two formulae 
are completely unrelated. Further, he had no solution for p # i. I t  seems that 
de Moivre for the moment gave up; he turned to other problems, and in 
1725 he published the Annuities upon Lives. 

24.4 STIRLING'S FORMULA AND DE MOIVRE'S SERIES FOR 
THE TERMS OF THE SYMMETRIC BINOMIAL, 1730 

in 1725 Cuming discussed his problem with Stirling and informed him of de 
Moivre's approximations. Stirling developed another approximation, which 
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he communicated to de Moivre. When de Moivre prepared MA for 
publication in 1729, he asked Stirling’s permission to include these results, 
and Stirling set him a letter, published in MA (pp. 170-1 72), with the following 
two results without proofs: 

[b(m)]-’= nm 1 + ____ 1 + 9 + ...), ( 4(m + 1) 32(m + l)(m + 2 )  

9 

32(m + $)(m + $) 
+ ________ + ... ( I+-  1 

Cb(m)32 = n(2m + 1) 4(m + $) 

This is the first time that n occurs explicitly in the approximations to 
b(m). How did Stirling succeed in getting n into his series? Stirling’s derivation 
of the two series is rather involved [see Stirling (1730) and the summary given 
by Schneider (1968, pp. 270-273), which we are going to use]. Stirling 
extended the definition of m! to noninteger values of m by interpolation. 
Tabulating Inm! form = 6,7,. . ., 17, he determined ln(10.5!) by interpolation, 
and using the functional equation m! = m ( m -  I)! ,  he found (-$)! to ten 
decimal places and noted the agreement with the first ten decimal places of 
f i . Hence, in the first instance he did not prove that ( -  $)! = 6. 

Stirling thus improved de Moivre’s approximation in two ways: He found 
that (3.1) may be written as 

and that this approximation is only the first term of a rapidly converging 
infinite series. 

In continuation of Stirling’s letter, de Moivre (MA, pp. 173-174) gives the 
first published proof of (1). The only tool he uses is Wallis’ inequality for 
the determination of 4/n; for simplicity, we shall indicate his proof by means 
of the modern version of Wallis’ formula: 

71 - _ -  [2 x 4 x ... x (2m)]’ 1 
lim - -  
,,,+a, [I x 3 x ... x (2m - 1)]’2m + 1 2 ’  

Since 

1 x 3 x ... x (2m- 1) 
2 x 4 x x (2m) ’ 

~. b(m) = 

(1) follows directly from Wallis’ formula. 
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The proof was of great importance for de Moivre because a comparison 
of (1) and (3.7) showed that his proof of (3.7) would lead to the correct result 
if he replaced the series 

by ln(2n). 
I t  was only after they had obtained the results for b(m) that Stirling and, 

later, de Moivre looked for an approximation to m!. 
Stirling ( I  730) proved the following Theorem. 

Theorem. Let x + n, x + 3n, ..., z - n be a set of positive numbers in 
arithmetic progression. Then, 

In {(x + n)(x + 3n).. .(z - n ) }  

Stirling's proof is very simple. Denote the right-hand side of (3) by f(z), 
say. Then, 

f(z) - f(z - 2n) = In z - - - - 

= I n z + I n  1 -- =In(z-ii), ( 3 
which gives the required result by summation. 

setting z - n = m, n = i, and x = i. The resulting series is 
In an example, Stirling shows how to obtain the expansion for In m! by 

Goldstine (1977) has presented a discussion of Stirling's work. 
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After the publication of first the MA and then Stirling’s book, de Moivre 
felt the need for rewriting and reorganizing his discussion on approximating 
the binomial, and he therefore published a 22-page Supplement. He begins 
by quoting Stirling’s series (4) and his own result (3.7) and then turns to the 
derivation of a new series for In m! by means of the method used for proving 
(3.7). 

De Moivre’s Version of Stirling’s Formula 

or 

rn!-&mmexp 1 

Proof. From 

we get 

Using Bernoulli’s summation formula and setting (m - l)/m = t ,  say, (7) 
becomes 

where the summations are carried out by the same method as in the proof 
of (3.1). Replacing the series (2) by $In (211) and adding In m, ( 5 )  follows. 

De Moivre’s series ( 5 )  is slightly simpler than Stirling’s (4). I t  is known 
today as Stirling’s formula. 

By the same method of proof de Moivre finds an expansion of 
Inn:= I(m - id),  m > kd, analogous to (3). 
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A few years later, Euler and Maclaurin independently derived the formula 

and Maclaurin showed how to obtain Bernoulli's summation formula and 
Stirling's formula as special cases of this formula. In many applications of 
the Euler-Maclaurin summation formula, the resulting series will be 
divergent. However, as for Stirling's formula, a few terms will often give a 
good approximation to the sum, and the remainder is numerically smaller 
than the first neglected term and has the same sign if the terms have alternating 
signs. 

One would have expected de Moivre to use his expansion of In m! to find 
an expansion of In b(m), but instead he amends his original proof of (3.7) by 
evaluating the general term of the series and by substituting +ln(2n) for the 
series (2). This leads him to the following improved version of (3.7): 

Finally, he gives a similarly improved version of (3.10): 

m + d  
- 2mIn m + In __ 

m 

which follows immediately from Stirling's formula. 
Hence in 1730, inspired by Stirling's results, de Moivre succeeded in finding 

an excefient approximation to b(m + d, 2m, t )  by combining the first few terms 
of the two infinite series given above. 
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24.5 
BINOMIAL DISTRIBUTION, 1733 

DE MOIVRE’S NORMAL APPROXIMATION TO THE 

In 1733, twenty years after the publication of James and Nicholas Bernoulli’s 
results, de Moivre succeeded in finding a simple and accurate approximation 
to the binomial distribution. He considered this result so important that he 
printed a seven-page paper, Approximatio ad Summam Terminorum Binomii 
(a + b)” in Seriem expansi, for private circulation. The Latin text was translated 
by de Moivre himself, and with some additions it was included in the second 
and third editions of the Doctrine of Chances (1738, pp. 235-243; 1756, 
pp. 243-254) under the title, “A Method of approximating the Sum of the 
Terms of the Binomial (a + b)” expanded into a Series, from whence are 
deduced some practical Rules to estimate the Degree of Assent which is to 
be given to Experiments.” The last sentence of the title refers to the comments 
to the original results given in 1738 and 1756. Only six copies of the 
Approximatio have been found (K. Pearson, 1924; Pearson and Daw, 1972); 
a photographic reproduction is to be found in Archibald (1926). We shall 
first discuss the Approximatio and then de Moivre’s comments. 

The Approximatio is a mathematical paper in which de Moivre continues 
his research in Miscellanea Analytica; he does not mention the improved 
results in the Supplement to the MA, partly because he did not need them 
and partly because many of his readers had MA without the Supplement. 

He begins with a reference to the works of James and Nicholas Bernoulli 
and concludes that “what they have done is not so much an Approximation 
as the determining of very wide limits, within which they demonstrated that 
the Sum of the Terms was contained.” 

Next he refers tc MA and gives his approximations to b(m) and 
b(m)/b(m + d), see (3.1) and (3.10). He mentions that Stirling has expressed 
the constant by means of II, which “has spread a singular Elegancy on the 
Solution,” which he gives as 

Without proof he states that (3.10) leads to the limiting value 

, d =  O(Jn). 
b($n + d ,  n,  $) 2d2 

lim In ~~ - - - 
n-r  aD b(in,  n, n 

- 

This is the decisive step that he did not take in the MA. The proof is very 
simple; one just has to use the series for In(1 + x) on each of the terms of 
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(3.10) and retain the main term. Of course the proof presupposes that d is 
of the order of J“, which we have added above. De Moivre does not mention 
this condition in the first instance but later writes that the theorem holds, 
“provided the Ratio of d to n be not a finite Ratio, but such a one as may 
be conceived between any given number s and ,,h, so that d be expressible 
by sJn.’’ 

Finally, de Moivre replaces the sum of the approximate probabilities by 
the corresponding integral and thus gets an approximation to P d .  

We now summarize his results. 

De Moivre’s Approximation to the Symmetric Binomial 

He does not give (2) explicitly but only the equivalent form 

However, he introduces f i  as the “Modulus by which we are to regulate 
our Estimation” and shows that Pd depends on d/& only, so that (2) is his 
result in modern notation. 

To calculate the integral for small values of d. he expands the exponential 
function and integrates the resulting series, which gives 

1 2 f ( -  l ) k 2 k d 2 k + 1  
-pd  -- 
2 J2Gk=0 k ! ( 2 k +  l)nk ‘ 

Setting d = t J -  n, he finds 

For r = i, the sum of seven terms gives 0.341344 so that P J ; ~ , ~  10.682688; 
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the correct value is 0.682689. He checks the accuracy of this approximation 
for various values of n and writes, “Still, it is not to be imagined that there 
is any necessity that the number n should be immensely great; for supposing 
it not to reach beyond the 900th Power, nay not even beyond the 100th, the 
Rule here given will be tolerably accurate, which I have had confirmed by 
Trials.” Of course in 1721 - 1722 he had already calculated such values, as 
described in $24.3, but he does not refer to these previous attempts to 
approximate P d .  

To calculate the integral from $$ to f i  and from & to $6, de 
Moivre uses numerical integration by means of Newton’s three-eighth’s 
rule 

3h 
8 

f(x)dx z - (f(a) + 3f(a + h) + 3S(a + 2h) + f(a + 3h)).  

For f ( x )  = exp (- 2x2/n), a = $,,h, and h = and multiplying by 2/,,/2;;, 
he finds the integral in question, which doubled gives 0.271 60. Adding this to 
P J ; , ~  he obtains PJ;; s 0.95428; the correct value is 0.95450. He gives the 
details of these calculations; for the next integral he notes that by the same 
method it  will be found that P f Y q f i  z 0.99874. Unfortunately, he must have 
made an error in his calculations; the three-eighth’s rule gives 

$(0.135335+3 ~0.065729+3 x 0.028566+0.011109)=0.053666, 

which multiplied by f i  gives 0.0428 19. Adding this to the previous result 
we get P , 3 , 2 ) ~  = 0.99710 instead of 0.99874; the correct value is 0.99730. 

On the method used de Moivre remarks that “the more Ordinates there 
are, the more exact will the Quadrature be; but here I confine myself to four, 
as being sufficient for my purpose.” 

Hence, besides deriving the normal probability integral he showed how 
to calculate the integral and gave three examples which, using modern 
terminology, correspond to deviations of one, two, and three times the 
standard deviation. He also solved the equation Pd = and gave the solution 
as “very near,” i.e., d/&=0.3536. This means that the probable 
error, as i t  was called later, equals 0.7071 times the standard deviation; the 
correct factor is 0.6745. 

De Moivre does not prove that the probability integral from - m to + a3 
equals 1, but he uses this fact in computing various odds. 

On the last page or so of the Approxintatio, de Moivre generalizes his 
results to the skew binomial. 
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De Moivre’s Normal Approximation to the Binomial Distribution 

where (3) is stated explicitly but (4) is not. However, he writes; “If the 
Probabilities of happening and failing be in any given Ratio of inequality, 
the Problems relating to the Sum of the Terms of the Binomial (a + b)” will 
be solved with the same facility as those in which the Probabilities of 
happening and failing are in a Ratio of Equality.” Thus ends the Approximatio. 

It  is completely in accordance with de Moivre’s style to omit the proof. 
Because of the extraordinary importance of his result, we shall indicate what 
his proof may have been, using methods and results only from his previous 
proofs. 

Proofof (3). Using de Moivre’s result (4.5) in the form 

and writing 

it follows immediately that 

From 

and 
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it follows that 

which completes the proof. 

Finally, we shall give the modern formulation of de Moivre’s theorem. 
Let the normal density function be defined as 

and the normal distribution function as 

@(u) = d(t)dt. s: a, 

For a fixed value of p,O < p < 1, for u = ( x  - np)/& bounded, and for 
n -+ 00, we have 

n p  and u& being positive integers. 

De Moivre’s Comments in 1738 and 1756 

In 1738 de Moivre adds a comment labeled Remark I in 1756, of about one 
page to the translated Approximatio. Nearly all of it  is taken up by a discussion 
of (2), which may be written as 

He does not state the formula but gives corresponding numerical examples. 
He has previously found the value of the probability integral for t = to 
0.683, so he now states that the odds are a little more than 2 to 1 that the 
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relative frequcncy does not deviate more than 1/(2&) from its true value if 
n is sufficiently large for the approximation to hold. He illustrates this by 
choosing n = 3600, 14,400, and 1,0o0,OOO and stating the deviations to be 
1/120, 1/240, and 1/2000. He adds that 

the Odds would increase at a prodigious rate, if instead of taking such narrow 
limits on both sides the Term of Equality, as are represented by f,h [for the 
relative frequency 1/(2&)], we double those Limits or triple them; for in the first 
case the Odds would become 21 to 1 ,  and in the second 369 [should have been 
3441 to 1,  and still be vastly greater if we were to quadruple them, and at fast be 
infinitely great. 

In this way de Moivre makes the meaning and the applicability of his theorem 
clear for the nonmathematical reader. 

He remarks, “What we have said is also applicable to a Ratio of Inequality, 
as appears from our  9th Corollary.” Following up this hint, the mathematical 
reader is supposed to generalize (7) to the following version of (4): 

This formula shows the revolutionary result of de Moivre’s analysis of the 
binomial distribution: Measuring the deviation d by the modulus 2&;;, a 
quantity t is obtained which determines the probability that 

or equivalently, 

p - 2t J” ,< -y < p  + 2+. 
n n 

(9) 

Inversely, choosing the odds, c to I ,  say, or the probability c/(c + 1) for these 
inequalities to hold, t may be found as a function of c and the corresponding 
limits for x or x/n determined. 

This result is what de Moivre had in mind in 1738 when he added the 
following sentence to the title of the Approxirnotio: “from whence are deduced 
some practical Rules to estimate the Degree of Assent which is to be given 
to Experiments.” 

He ends his comment with the following formulation of the law of large 
numbers: “And thus in all cases it  will be found, that altho’ Chance produces 
irregularities, still the Odds will be infinitely great, that in process of Time, 
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those Irregularities will bear no proportion to the recurrency of that Order 
which naturally results from original design.” 

In 1756 he italicizes the quotation above and adds a three-page Remark I1 
in the same theological vein. He follows the pattern set by Newton and others 
and uses his limit theorem to support the arguments for divine providence 
and design that were popular among scientists at the time, see the quotation 
from Remark I1 given at the end of $2.3. Similar theological considerations 
had been proposed by Graunt, based on the observed stability of statistical 
ratios, see 57.6, and by Arbuthnott and ’sGravesande, supported by both 
data and theory, see s17 .1  and 17.2. De Moivre refers to N. Bernoulli’s 
discussion of Arbuthnott’s data, see $17.3, and concludes that “if we were 
shown a number of Dice, each with 18 white and 17 black faces, which is 
Mr. Bernoulli‘s supposition, we should not doubt but that those Dice had 
been made by some Artist; and that their form was not owing to Chance, 
but was adapted to the particular purpose he had in View.” This is of course 
correct, but de Moivre misses completely the essential point of Bernoulli’s 
statistical analysis. 

Like James Bernoulli, de Moivre was no statistician; they both had the 
idea that probability theory could be used with advantage in the physical 
and social sciences, but they themselves never collected nor analyzed 
observational data, with the exception of de Moivre’s primitive analysis of 
Halley’s life table. De Moivre’s theological arguments are thus rather weak 
because he does not provide the empirical documentation necessary to 
convince the reader that nature behaves as his theory predicts. 

De Moivre had previously alluded to the concepts of Design and Chance 
in the preface to the Doctrine (1718), where he writes; 

From this last Consideration we may learn, in many Cases, how to distinguish 
the Events which are the effect of Chance, from those which are produced by 
Design: The very Doctrine that finds Chance where it really is, being able to prove 
by a gradual Increase of Probability, till it arrive at Demonstration, that where 
Uniformity, Order and Constancy reside, there also reside Choice and Design. 

He does not there give any theological interpretation. It is first in Remark 
I1 in 1756 that he observes that “certain Laws according to which Events 
happen.. . as well as the original Design and Purpose of their Establishment, 
must all be from without” and hence that “we shall be led, by a short and 
obvious way, to the acknowledgement of the great MAKER AND 
GOVERNOUR of all; Himself all-wise, all-powerful and good.” 

After this discussion of design, de Moivre defines chance as follows: 
“Chance, as we understand it, supposes the Existence of things, and their 
general known Properties: that a number of Dice, for instance, being thrown 
each of them shall settle upon one or other of its Bases. After which, the 
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Probability of an assigned Chance, that is of some particular disposition of 
the Dice, becomes as proper a subject of Investigation as any other quantity 
or Ratio can be.” It will be seen that he here uses chance to mean a random 
event; he speaks of the probability of an assigned chance. This definition is 
possibly provoked by Bernoulli’s discussion of (subjective) probability as a 
measure of our knowledge in a deterministic world, see 415.7. Schneider 
(1972, 1975) has pointed out that de Moivre’s definition of chance implies 
the existence of indeterminate (random) events, so that de Moivre considers 
probability as an objective physical property which can be measured by 
repeated observations. K. Pearson (1978, pp. 160-162) has discussed de 
Moivre’s remarks from the point of view of a statistician and a freethinker. 

Except for these three pages, the Docrrirze is a mathematical text with an 
axiomatic foundation. 

We shall now comment on some misconceptions ofde Moivre’s theorem. 
It is sometimes stated that de Moivre found the normal approximation 

for p = 4 only, but as we have seen above this is not so. 
De Moivre did not consider the normal distribution as a distribution in 

its own right (the error distribution) but only as a convenient means for 
approximating the binomial. The essential property is the one following from 
(3) that 

i.e., the limiting distribution depends on t only, and further, that its sum may 
be evaluated by numerical integration. For de Moivre’s purpose it  was 
inessential what form the limiting distribution had if only its sum could be 
evaluated. 

De Moivre’s theorem is rightly considered as the first example of the 
central limit theorem. There is no indication that he himself looked at his 
result from this point of view; otherwise he would probably have discussed 
the limiting distribution of other sums of random variables, for example, the 
sum of the points obtained by throwing several dice, see the remarks in 
connection with Fig. 14.3.1. 

We shall next consider the following three aspects of de Moivre’s theorem: 
(1) calculation of limits for the relative frequency hn = x/n;  (2) calculation of 
limits for p; and (3) the normal approximation to the binomial. The point (3) 
will be discussed in the following two sections. 

To find limits for 11, we have to solve the equation 

C 
P , , = P r ( J h , - p J ~ E ) = - -  

c + l  



24.5 DE MOIVRE’S NORMAL APPROXIMATION 493 

with respect to E. From (8) we get 

E E 2t,  E, 
where t ,  is found by setting the probability integral in (8) equal to c/(c + 1). 

To show the advantages of de Moivre’s solution we shall compare with 
the formulae due to the Bernoullis. According to (16.2.9), James Bernoulli’s 
theorem leads to the equations 

n 4 P  + 4 + 4 
1 + E  ’ 

m =  

P + E  q - E  
Inc = mln- - In -, 

P E 

which have to be solved for E by trial and error. According to (16.3.7), Nicholas 
Bernoulli’s theorem gives 

It follows from the derivation of these formulae that the values of E will be 
too large. 

It will be seen that de Moivre’s solution directly shows how E depends on 
each of the three given quantities n, p, and c. The solution is very simple in 
numerical respects, provided that the probability integral has been tabulated, 
and the solution is more accurate than the ones obtained from the theorems 
of the Bernoullis. From the two other solutions it is rather difficult to see 
how E depends on the three given quantities, and the numerical solution is 
more involved. 

As an example we shall set n = 14,000 and p = 18/35 = 0.5143, as in N. 
Bernoulli’s analysis of Arbuthnott’s data. For convenience we choose 
c/(c + 1 )  = 0.954, or c = 20.7, corresponding to de Moivre’s c = 1. The three 
values of E become 0.0210, 0.0104, and 0.0084, corresponding to formulae 
(1 l), (12) ,  and (lo), respectively. 

The great advantages of de Moivre’s theorem are thus obvious; however, 
neither de Moivre nor anybody else at  the time made such comparisons. 

Turning to the inverse problem, we observe that neither James Bernoulli 
nor de Moivre indicates how to find an interval for p from given values of 
n, h,, and c, perhaps because they realized that an exact solution is impossible 
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within the given model, where p is an unknown constant and It, a random 
variable. Being eminent mathematicians and probabilists with lifelong 
training in deductive reasoning, i t  must have been extremely diflicult for 
them to formulate and solve problems of (inductive) statistical inference. 
Furthermore, in 1738 de Moivre was 71 years old and perhaps not inclined 
to take up a new and difficult line of research. 

A possibility for solving the problem within the deductive framework 
would have been to determine which values of p were compatible with h, 
for a given moral certainty. That de Moivre was not very far from this idea 
is evident from his introduction to Remark 11, where he writes; 

if from numberless Observations we find the Ratio of the Events to converge to 
a determinate quantity, as to the Ratio of P to Q; then we conclude that this Ratio 
expresses the determinate Law according to which the Event is to happen. For 
let that Law be expressed not by the Ratio f : Q ,  but by some other, as R : S ;  then 
would the Ratio of the Events converge to this last, not to the former: which 
contradicts our Hypothesis .  

If he had applied this principle not only to “numberless observations” but 
also for a finite 11, he would have found an interval of “acceptable values of 
p” corresponding to h, and the chosen value of the moral certainty, i.e., a 
confidence interval in modern terminology. 

The great statistical challenges at  the time of de Moivre were the analyses 
of Arbuthnott’s data and the data on the mortality of annuitants. By means 
o f  his new results de Moivre could have improved Nicholas Bernoulli’s 
analysis much as we have done in $17.3, but he did not even indicate the 
possibility of doing so. I t  is a curious coincidence that de Moivre uses 
n = 14,400 and n = 1,000,000 in his examples when discussing deviations from 
p = k ,  and that Nicholas Bernoulli had previously used n =  14,000 in his 
analysis of Arbuthnott’s data and that the total number of observations was 
938,223. For n = 1,O00,000, de Moivre states that the odds are “vastly greater” 
than 369 to 1 for the deviation of h, from p = 4 to be at most 4/2000 = 0.002. 
Having observed that h, = 0.5163, he could safely have rejected the hypothesis 
p = $ ,  and it  must have been tempting for him to say that one could be 
morally certain that p belongs to the interval 0.5163 k 0.0020, which just 
contains the value used by Nicholas Bernoulli. All this naturally assumes 
that the relative frequency of male births varies according to the binomial 
distribution with the same p throughout the 82 years, which was what 
Bernoulli had concluded. Generalizing these considerations, one may wonder 
why de Moivre did not, like Laplace, interchange p and h=.x /n  in the 
inequality (9). He would then have found an interval for p of the form 
/ I +  2t,,h(l -h) /n,  a result that throughout the 19th century was in 

____  
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widespread use and for 2t = 3, known as the three-sigma rule. 
It was first Bayes (1764) and Laplace (1774b) who (independently) realized 

that to get a probabilistic solution of the problem, the model had to be 
extended by assuming that p is a random variable with a known (a priori) 
distribution. They could thus find the conditional probability distribution of 
p for given h, and from this derive probability limits for p. 

De Moivre and his contemporaries did not use the normal approximation 
to the binomial in their discussions of demographic data. The first example 
of such a statistical analysis we have found is due to Daniel Bernoulli in  
1771, see $24.8. 

24.6 LAPLACE’S EXTENSION OF DE MOIVRE’S THEOREM, 1812 

Neither de Moivre nor Laplace comments on the fact that the skew binomial 
distribution is approximated by the symmetric normal distribution in de 
Moivre’s theorem. Nevertheless, it may have been one of the reasons that 
Laplace carried de Moivre’s approximation one step further to obtain a 
correction term taking the skewness into account. 

In his proof, Laplace (1812, Book 2, 916) uses Stirling’s formula and the 
Euler-Maclaurin formula; however, he gives his own proofs of these formulae. 

Laplace does not as Bernoulli and de Moivre assume that np is an integer. 
He shows that the greatest binomial probability corresponds to 
m = [ ( n +  l )pJ=np+z,  say, - q < z < p ,  and he begins by finding an 
approximation to 

n! 
(m + d)!(n  - m - d ) !  b(m + d )  = __ - P” +dqn -d,  

m + d being an integer. Assuming that d = O(&) and disregarding terms of 
the order of l/n, he finds by straightforward expansion of In b(m + d) that 

1 
b(m + d )  = 

J2nnp” 
+ d’ y (( $)2 - ( ; q ) 2 )  + . . . }, 

where we have introduced p’ = m/rt and q’ = (n - m)/n to simplify Laplace’s 
formula. This is Laplace’s extension of de Moivre’s formula (5.3). Setting 
z =0, it will be seen that the main term coincides with (5.3) and that the 
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next term is of the order of n-'I2 times the first. This term gives a correction 
for skewness; i t  depends on q' - p' and disappears for q' = p'. 

Following the tradition from Bernoulli and de Moivre, Laplace seeks the 
sum of the probabilities symmetrically around b(n& and he therefore 
introduces 

f ( x )  = h(m - x) + b(m + x). 

From (1) i t  follows that 

According to the Euler-Maclaurin formula (4.8), we have 

the next term being of a smaller order of magnitude, since f ' ( x )  equals J ( x )  
times a factor of the order of n - ' / 2 .  This result fills out a gap in de Moivre's 
proof of (5.2). Finally, Laplace gets 

where 

This is Laplace's extension of (5.4); a term of the order of 1 1 -  ' I 2  has been 
added to de Moivre's formula. Laplace notes that the approximation may 
be improved by taking more terms of the expansion into account. 

Solving the inequality Ix - ml< d in terms of h, = x / n ,  Laplace finds 

where 
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He concludes that the probability of (4) being satisfied is given by (2). Like 
de Moivre, Laplace notes that for n 3 03 and for a fixed value of t, the 
probability tends to a limit given by the first term of (2) and the limit for 
Ih, - pJ  tends to zero. If the deviation d is fixed, t tends to infinity, and the 
probability integral tends to 1 .  

As an example, Laplace takes N. Bernoulli’s problem of finding 
Pr (7037 < x < 7363) for p = 18/35 and n = 14,000. Using his continued 
fraction for the probability integral, he finds from (2) that P = 0.994,303. He 
does not observe that de Moivre’s formula gives 0.994,155; the correct value 
is 0.994,306. 

Laplace continues with the following remark: “If one knows the number 
of times that the event a has occurred in n trials then the formula (0) [our 
(2)] will give the probability that p ,  which is supposed to be unknown, will 
be included between the limits given.’ Solving the inequality (4) with respect 
to p ,  he gets the limits for p ,  

h“ktj--n-- 2h,(l - h,) 9 

and to find the corresponding probability, he replaces p’ by k, in (2) and (3). 
To get an interval estimate of p, he thus boldly solved the inequality (4) 

and estimated its probability. He did not feel the need to introduce a new 
term (such as confidence or fiducial probability) for the trustworthiness of 
this simple procedure, he simply used probability without any qualification 
or explanation in the hope that his readers would understand. 

However, he hastens to add another justification: “One may arrive at 
these results directly by considering p as a variable between zero and unity 
and determining the probability of these different values, given the observed 
event, as will be seen when we treat the probability of causes, deduced from 
observed events.” The derivation of the posterior distribution of p may found 
in his $26; it was first given in Laplace (1774b). 

24.7 THE EDGEWORTH EXPANSION, 1905 

As noted by Eggenberger (1894), the second term on the right-hand side of 
(6.2) may be included into the integral by changing d to d + in the definition 
oft ,  which may be seen by a Taylor expansion of the modified integral. This 
correction has become known as the continuity correction. 

Laplace’s results are more complicated than necessary because he used 
an inconvenient standardization of the random variable. He did not realize 
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that instead of using m as location parameter and J- as scale 
parameter, he would have obtained simpler results by using np and 6, 
respectively. The standard deviation, c = 6, had not yet beem introduced 
explicitly. Formally the results for this standardization may be obtained from 
Laplace’s results by setting m = np and z = 0. 

Taking one more term of the expansion into account and setting u = d/u, 
we obtain 

We shall leave the detailed derivation to the reader. Starting from 
In b(np + d) the proof consists of three steps: ( I )  application of Stirling’s 
formula to the three factorials; (2) expansion of the two logarithms of the 
form In ( 1  + x); and (3) introduction of the standardized variable 

As mentioned above, the first two terms are due to Laplace. The last term 
was derived by several authors about the end of the 19th century, see for 
example Czuber (1891, p. 85), K. Pearson (1895, p. 347), and Edgeworth 
(1905, p. 59). 

To find the distribution function we use the Euler-Maclaurin formula in 
the form 

u = (x - np) /a  = d/Jn&. 

x = o  24 

Hence the main term obtained by summation of ( 1 )  becomes 

where g(u) represents the last two terms in the parenthesis in ( I ) .  
To carry out the integration we first note that 

W )  @( -x )  = &u)du < --, .Y > 0, 
x 

which may be proved by repeated integrations by parts. This means that the 
integral from - 00 to (- $ - np)/u tends to zero faster than exp( - an), a > 0, 
and we may therefore change the lower limit of integration to - co. 
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We also need the recursion formula 

Further, we note that the second term of (2) contributes to the sum by 

Setting t = (k + - np)/o, we finally get the result 

W k ,  n, p )  = @ ( t )  - &(t) {  ( t2  - I)(q - p)/60 

+ [ t v  - 4pq) - t3(7 - 22pq) + t(3 - 6pq)]/7202 + . . .}. (3) 

In most textbooks only the first two terms are given, since they usually 
will suffice as an approximation to B(k ,  n, p) for practical purposes. The second 
term, depending on (q - p)/a, is called the correction for skewness. 

Returning to the original problem of Bernoulli and de Moivre, we get 

d + f  
P d  = [ @ ( t )  - @( - t)-J[l + O(n-l)J,  t = - 

f iE ’  
n p  being an integer. 

Thus far we have only used the method of proof indicated by de Moivre. 
It is, cf course, possible to continue the expansion, but as the following terms 
become more and more complicated, the need for a simple and general 
principle for the formation of the approximating series is obvious. The 
problem was solved by Edgeworth (1905) who in a more general context 
derived an approximation to a density function in terms of the normal density 
and its derivatives. Edgeworth derived the expansion (1) as we have done i t  
above and used this result as the simplest check on his general result. Finally, 
Cramer (1928, 1937, 1972) gave a rigorous proof of Edgeworth’s general 
asymptotic expansion and its extension to distribution functions. 

For the asymptotic expansions of the binomial, we only know the order 
of the remainder term, but we have no limits for the error. Uspensky (1937, 
p. 119) writes, “When we use an approximate formula instead of an exact 
one, there is always this question to consider: How large is the committed 
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error? If, as is usually done, this question is left unanswered, the derivation 
of Laplace’s formula becomes an easy matter. However, to estimate the error 
comparatively long and detailed investigation is required. Except for its 
length, this investigation is not very dillicult.” Uspensky then evaluates the 
characteristic function of the binomial distribution and finds upper bounds 
for the absolute value of the remainder term when the two-term 
approximations are used. For the density, Uspensky’s upper bound for the 
error is 

[O .  I 5 + 0.25 1 p - q I J o - + e - 3u/z for u 2 5, 

and for the difference B(k,)  - B(k, ), he finds 

[0 . t3+0.18Jp-ql ]o-2+e-3”2 for 0 3 5 .  

24.8 DANIEL BERNOULLI’S DERIVATION OF THE 
NORMAL DENSITY FUNCTION, 1770-1771 

Daniel Bernoulli (1700-1782) wrote a paper published in two parts in 1770 
and 1771, respectively, on the normal density function as approximation to 
the binomial and its application to the analysis of the variations of the sex 
ratio at birth. I t  is a rather curious paper in the sense that it completely 
ignores all previous works on these topics; it is surprising that Bernoulli 
either did not know or had forgotten de Moivre’s Miscellanea Analytica 
(1730) and the Doctrine (1738, 1756). The paper does contain, however, a 
new method of deriving the normal density function as the limit of the 
binomial. 

The first part of the paper has been discussed by Todhunter (pp. 235-236), 
who overlooked the second part. The importance of the second part has 
been pointed out by Sheynin (1970). Both parts have been reprinted in Die 
Werke von Datiiel Bernoulli, Band 2, 1982, with a commentary on the first 
part. We shall first give an account of Bernoulli’s theoretical results and then 
discuss his most important applications. 

In the first part Bernoulli discusses the symmetric binomial. For n = 2m, 
he finds the central term 

I x 3 x . . . x ( 2 m - l )  

2 x 4 x ... x (201) 
b(m) = ’ 

and seeks an approximation for m-+ 03. From 

2nr + 1 b(m + 1 )  - - __ - - __ ~~ 

b(rn) 2n1 + 2’ 
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it follows that 

1 _ _ - _ _ _  - 
b(m) 2 m + 2 ’  

so that 

Replacing the differences by differentials, Bernoulli obtains the differential 
equation 

which has the solution 

where c is a constant of integration. Hence, 

For k =  12, Bernoulli calculates b ( k )  by means of (1) and thus finds the 
approximation 

b(m) z 1.12826(4m + 1 ) -  ’ I 2 .  ( 2 )  

De Moivre and Stirling had previously found 

b(m) z(~rn)-’/~ = 1.12838(4m)-1’2.  

To solve the equation 

with respect to d (we shall call the solution the probable error; Bernoulli 
uses “median limits”), we write 
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where 

h(m + x) 

b(m) 

m(m - I ) . . . ( m  - x + I )  

(in + I )(tn + 2) ’ .  * ( i n  + 9)’ 

I - - - _ _  - --_ 

Bernoulli tabulates h(nz + x) /h(m) to four decimal places for m = 10,OOO and 
x = I (l)50. By summation he finds that 

P47 2 0.4980 and P,, z 0.5070 

and concludes that P47.25 z f. A similar calculation for m = I 0 0  gives 
P ,  2 0.4753 and P ,  z 0.5631, so that P4,3 z i. The ratio of the two values 
of d is thus approximately equal to the square root of the ratio of the in’s. 

Bernoulli concludes that the probable error equals 0.4725J- 111. That the 
probable error is proportional to Jm is supported by his results in the second 
part of the paper. In the first part hc states without proof that if  d = O ( f i ) ,  
then 

h(tn + d )  z h(tn)e-d”m. (3) 

He demonstrates the accuracy of this approximation by numerical examples. 
In the second part of the paper, Bernoulli proves that 

h(np + d,  tr, p )  z b(iip,  11, p )  e-””2npq (4) 

by a generalization of the previous proof. From 

he gets the differential equation 

Integration from x = 0 to x = d gives 

b01p) -1i n p  + 1 n p + r l - t  1 n p + d +  I 
In ~ + I n - -  - _-  . - - _ _ - -  In - ~- 

b(np + ri) - q 4 trp + 1 n p +  I 

Assuming that (1 = O(&) and taking the first three terms of the series for 
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In [ 1 + ( d / ( n p  + l ) ) ]  into account, Bernoulli finds 

so that 

which leads to (4), and for p = f to (3). 
To find b ( n p , n , p )  Bernoulli uses that 

Setting x = np and evaluating b ( n p ,  ti, $ ) / h ( f n ,  t i , + )  by means of (3), he obtains 
finally, 

which is valid only for p = $ + O(n-  ‘ I 2 )  and d = O(ri’’z). 
This is Daniel Bernoulli’s approximation to the binomial; he did not 

succeed in simplifying the factor to exp( - r12/2npq), which de Moivre 
previously had evaluated to (Znnpq)-’/’ [see (5 .3)];  neither did he attempt 
to approximate P d  by integration of (5 ) .  Furthermore, his formula holds only 
for values of p in the neighborhood of p = + of the order of n-  ”’. Daniel 
Bernoulli was one of the great mathematicians at the time; his paper shows 
that i t  was diflicult for him to find a satisfactory solution to the problem 
and thus puts de Moivre’s result into perspective. 

One reason that Bernoulli stops at the unsatisfactory result (5) may have 
been that he applies his formula only to investigations of the sex ratio. Setting 
p / q  = 1 + u and evaluating ( 5 )  for small values of c1, he proves that 

this is the formula he uses in his statistical analyses. He also notes that under 
the same conditions, the probable error equals 0.4725& n.  The correct 
factor derived from the normal distribution is 0.4769. 
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Bernoulli discusses the variations of the sex ratio at  birth, comparing 
observations from different years and different European cities and countries 
taken from the third edition of Sussmilch's book. In most cases he calculates 
the probability of an observed deviation by means of (6), which leads to 
rather small probabilities that are impossible to compare. In other cases he 
uses the probable error to judge whether a hypothetical value of p is reason- 
able or not. His most interesting analysis concerns the sex ratio in London. 
He does not mention the previous results by Graunt, Arbuthnott, Nicholas 
Bernoulli, and Struyck. 

The observations consist of the yearly numbers of male and female 
christenings from 1664 to 1758. The ratio of the total number of male to 
female christenings is 737,629/698,958 = I .055. Looking at  the ratios for 
each decade, Bernoulli observes that the minimum occurs during 1721-1730, 
for which he gets 92,813/89,217 = 1.040. To analyze whether this is an 
essential deviation from 1.055 he calculates the expected number of male 
christenings for each year of the decade under the two hypotheses 

1055 1 040 
p o = - - -  and p ,  =--. 

2055 2040 

He studies the deviations between the observed and expected numbers, as 
shown in the following table. 

DANIEL BERNOULLI'S ANALYSIS OF THE SEX RATIO IN LONDON, 1721-1730" 

Year X n npo npo - x np1 V l  - -x  

1721 
1722 
1723 
1724 
1725 
1726 
1727 
1728 
1729 
1730 

9430 
9325 
981 1 
9902 
966 1 
9605 
924 1 
8497 
8736 
8606 

18,370 
18,339 
19,203 
19,370 
18,859 
18,808 
18,252 
16,652 
17,060 
17,118 

943 1 
9414 
9858 
9944 
9682 
9655 
9370 
8548 
8758 
8788 

+ I  NB 
+ 89 
+47 NB 
+42 NB 
+21 NB 
+ 50 

+ 51 
+22 NB 

+ 182 

+ 129 

9365 -65 
9349 +24 NB 
9790 -21 NB 
9875 -27 NB 
9614 -47 NB 
9588 -17 NB 
9305 +64 
8489 -8 NB 
8697 -39 NB 
8727 +121 

"The .lumber of male christenings is denoted by x, the total number by n; we have omitted the 
number of female christenings. Bernoulli has erroneously used n = 18,759 instead of 18,859 for 
the year 1725; we have corrected the whole line accordingly; Bernoulli's two deviations are - 31 
and - 98. Bernoulli indicates deviations less than the probable error by NB. 
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Bernoulli notes that deviations according to his theory should be 
symmetrically distributed about zero and that half of the deviations should 
be numerically less than the probable error. He says that the positive sign 
is prevalent in the fifth column (nine of ten are positive in his table) and that 
the negative sign is prevalent in the seventh column (seven of ten are negative). 
His discussion is very brief, and he does not explicitly draw the conclusion 
that the probability of a male birth during 1721-1730 is smaller than 
1055/2055. Perhaps he would have done so had he not committed the 
numerical error that led to nine instead of ten positive signs. Nevertheless, 
the ideas implicit in his statistical analysis are very important; we do not 
know whether his contribution was noted by his contemporaries, but 
presumably it  was not. 

For convenience of the reader who wants to analyze the data, we note 
that the average yearly number of christenings equals 18,203 and that the 
corresponding standard deviation equals 67. The reader may carry out both 
a sign test and a x 2  test. Remember that the decade 1721-1730 has been 
selected because i t  gives the smallest value of p .  

Let us summarize here the historical development of the statistical analysis 
of the sex ratio. Graunt (1662) points out that the ratio of male christenings 
in London and Romsey i s  larger than i, and that the ratio does not vary 
much over time; he recommends that similar investigations be carried out 
at other places and times. Arbuthnott (1712) suggests that the variation of 
the number of male christenings may be binomial; he does not investigate 
his hypothesis but uses a probability argument, the sign test, to prove that 
p > f. Nicholas Bernoulli (1713) compares the data with a binomial distribu- 
tion for p = 18/35 and accepts (wrongly) the hypothesis that the variation in 
the period considered is binomial. He evaluates the observed deviations from 
the expected value by means of the tail probability. De Moivre (1738) stresses 
that deviations should be measured in terms of the modulus 2 J n 3  and the 
corresponding value of the probability integral. Daniel Bernoulli's method 
is based upon an analysis of the sign and the size of the deviations in relation 
to the probable error. It is an early example (perhaps the first) of a simple 
and effective method of analyzing binomial data, which in a more detailed 
form was to become widespread in the following centuries. Bernoulli's table 
contains, at least implicitly, a detailed test procedure. First he estimates p 
from the data, p ,  = 1040/2040, and calculates the deviations which he 
compares with the probable error to find out whether the data are binomially 
distributed. Next, he repeats the whole procedure with a hypothetical value 
of p , p o  = 1055/2055, to find out whether or not this value is compatible 
with the data. Here we have the germ of a method of testing statistical 
hypotheses. 

From 1777 on, the method of comparing observed and expected numbers 
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of deaths found important applications in actuarial science and in vital 
statistics, see Keiding (1987). 

Daniel Bernoulli’s method of deriving the normal density from the 
symmetric binomial seems to have been overlooked or  forgotton; however, 
K. Pearson ( 1  895, pp. 53-54) independently of Bernoulli gave the same proof. 
He writes, 

Hence, this binomial polygon and the nornral curve ofjrequency have a very close 
relationship to each other, o f a  geometrical nature, which is quite independent of the 
magnitude of 11. In short their slopes are given by an identical relation.. . . No 
stress seems hitherto to have been laid upon the fact that the normal curve of 
errors besides being the limit of a symmetrical point-binomial has also this intimate 
geometrical relationship with it. 

It is well known that Pearson applied the same method to the hypergeometric 
distribution and thus found a differential equation, leading to his 
four-parameter system of frequency curves. 

Bernoulli’s and Pearson’s proofs are not completely satisfactory from a 
mathematical point of view; a rigorous proof was first given by Jensen and 
Rootzen ( I  986). 

From 1755 on, a probabilistic error and estimation theory was developed 
by Simpson, Lambert, Laplace, and Lagrange. Bernoulli ( 1  778) contributed 
with a paper on the properties of error distributions and, choosing a semicircle 
with known diameter as distribution, he estimated the position of the center 
by the method of maximum likelihood. 

As pointed out by Sheynin (1972), Bernoulli (1780) made a further con- 
tribution to the theory of errors by using the symmetric binomial and the 
normal approximation for a description of the random errors of time measure- 
ments by a pendulum clock. He assumes that there are n oscillations of 
the pendulum in a given time period, that the time of an oscillation may be 
either too long or too short by the same amount, and that these two outcomes 
are equally probable. Denoting the random error of a single oscillation by 
a, the total error for x positive and n - x negative elementary errors becomes 

e ( x )  = xa + (n - x)( - a) = 2a(x - tn), 

which occurs with probability b(x, n, t). Using the true time for one oscillation 
as time unit, Bernoulli concludes that the observed time will be approximately 
normally distributed about n with a probable error of 20((0.4715G). As 
an example Bernoulli considers a pendulum with a period of oscillation of 
1” so that the number of oscillations per day becomes n = 86,400. Setting 
a = 0.01”, he finds the probable error of the time measurement per day to be 2“. 
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He does not compare his theoretical distribution with observations, as he 
did for the sex ratio. 

This is an early example, perhaps the first, of the normal distribution used 
as an error distribution based on the hypothesis that the observational error 
i s  the sum of a large number of elementary errors. The hypothesis of 
elementary errors was generalized by Laplace and led to the central limit 
theorem. A history of the central limit theorem has been given by Adams 
(1 974). 

Todhunter (p. 223) mentions another contribution by Daniel Bernoulli. 
In 1734 he attempted to show that the small mutual inclinations of the 
planetary orbits cannot be attributed to chance. Using the plane of the ecliptic 
as reference and assuming that all inclinations are equally likely he found 
the probability, p say, of an inclination smaller than the largest of the five 
observed. Since p5 is very small, he concluded that the mutual inclinations 
are the results of original design. This is an early example of a test of 
significance, in the same spirit as Arbuthnott’s test (1712). For details we 
refer to Todhunter. 



C H A P T E R  25 

The Insurance Mathematics of 
de Moivre and Simpson, 1725-1756 

25.1 INTRODUCTlON 

The industrial revolution, the increasing overseas trade, the growth of the 
British Empire, the accumulation of capital for investment and speculation, 
the establishment of the Bank of England and of joint-stock companies at 
the end of the 17th century, in short, the increasing capitalist structure of 
the British economy also led to the foundation of private insurance companies, 
at first for marine and fire insurance and a little later for life insurance in 
various forms. 

Life assurances were short-term assurances, for the time of a single voyage 
or for a single year, say. Because of poor evaluation of the risks, life assurance 
contained a great deal of gambling and possibility of fraud. The wave of 
speculation in the first decades of the 18th century also led to speculation 
on the lives of other persons, for example, kings or other public persons; 
however, this combination of insurance and gambling was stopped by the 
Life Assurance Act of 1774, which forbade the insurance of lives in which 
the insured had no interest. 

Several life assurance companies were started at the beginning of the 18th 
century, but only one, the Amicable Society for a Perpetual Assurance Ofice 
in 1705, survived. The Amicable was a primitive group life assurance. The 
number of members of a group was limited to 2000; on entrance, members 
should be between 12 and 45 years of age and of good health; the yearly 
premium was the same for all members independent of age; and the benefit 
to be paid at  death was to be about 20 times the yearly premium. Compared 
with the prevailing individual life assurances, i t  had the advantage of being 
built on a group and being “perpetual.” 

508 
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It was not until 1762, when the Equitable Society was established, that 
an assurance company became based on “such persons as shall be qualified 
and be willing to become mutually contributors for equitable assurances on 
lives and survivorships upon premiums proportionate to the chance of death 
attending the age of life to be assured, and to the time such assurance is to 
continue,” as stated in the preamble of the deed. 

As noted in Chapter 9, state-guaranteed annuities were in general use by 
governments for raising money. To finance the War of the Spanish Succession, 
1701-1713, the British government sold annuities which came to constitute 
the larger part of the national debt after the war. By an agreement between 
the government and the South Sea Company in 1720, the company took 
over the national debt against some trade concessions and payments from 
the government. Shortly afterwards the company got the greater number of 
the annuitants to exchange their annuities for company stock during a period 
with rapidly increasing prices due to speculation. When the slump came later 
in the year, numerous annuitants and other speculants were ruined. 

Economic contracts that depended on the lifetimes of the parties involved 
were important parts of everyday life in Great Britain. Besides life annuities 
sold by the government, there were pensions granted by the government, the 
Church, municipalities, parishes, and private persons; reversions specified by 
wills and marriage settlements; rules for entailed estates, copyholds, advowsons, 
and many other forms of succession. Such contracts were exceedingly difficult 
to evaluate, and the need for a more detailed mathematical analysis of these 
problems than that provided by Halley was obvious. 

This challenge was taken up by de Moivre who published the first textbook 
on life insurance mathematics under the title Annuities upon Lives: or, The 
Valuation of Annuities upon any Number of Lives; as also of Reversions. T o  
which is added, An Appendix concerning the Expectations of Life, and Proba- 
bilities of Survivorship, 1725. 

As described in 49.3, Halley had given the formula for the value of an 
annuity, both for a single life and for several lives, and he had provided a 
table of the value of single-life annuities for every fifth year of age at an 
interest rate of 6%. He characterizes this work as being “a most laborious 
Calculation” and writes that ‘‘I took the pains to compute the following 
table, being the short Result of a not ordinary number of Arithmetical 
Operations.” He gave up the similar work for two lives because of the immense 
number of arithmetical operations involved and left the problem with the 
following remark: “I have sought, if i t  were possible, to find a Theorem that 
might be more concise than the Rules there laid down, but in vain.” 

De Moivre took over where Halley stopped. He had a genius for developing 
mathematical approximations, so he boldly proposed to approximate 
Halley’s life table by a (piecewise) linear function and proved that the value 
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of an annuity under this hypothesis will be a linear function of an annuity 
certain. Hence i t  is not necessary to tabulate the value of annuities, since 
everybody can calculate such values for any rate of interest by means of 
existing tables of annuities certain. Furthermore, he showed how the value 
of a joint-life annuity could be expressed approximately by means of the 
values of the corresponding single-life annuities so that joint-life annuities 
could also be easily handled. At one stroke he thus changed the whole 
outlook; what had seemed nearly impossible now became easy. Besides these 
approximations he gave a systematic exposition of formulae for the value of 
reversionary annuities, annuities on successive lives, and survivorship 
annuities. By these results he laid the foundation of modern life insurance 
mathematics. 

De Moivre remarks that one of the consequences that flows from his 
theory will be to obtain “that Equity which ought to preside in Contracts.” 

For de Moivre life insurance mathematics is applied probability theory. 
His treatise begins as follows: “In estimating the Values of Annuities upon 
Lives, Regard must be had to the Interest which Money bears, and to the 
Probability of the Lives continuing a longer or shorter Time. The Rate of 
Interest is generally regulated by Law, but the greater or less Probability of 
the Duration of Life must be deduced from Observation.” 

Without discussion he accepts Halley’s life table and a yearly rate of 
interest of 5% as the foundation for his analysis. He gives a probabilistic and 
economic analysis of a great number of contracts from everyday life for the 
purpose of deriving a formula for the valuation of each type of contract 
and to find approximate formulae to make the numerical work feasible. 

The main contents of de Moivre’s Annuities upon Lives (1725) may be 
summarized as follows: 

A dedication to the Earl of Macclesfield 
Preface 
On the life table 
The valuation of single-life annuities 
The valuation of annuities upon several lives 
Of reversions 
Of successive lives 
Of the expectation of life and the probability 
of survivorship 
An example of a survivorship annuity 
Halley’s life table 
Value of annuity certain for durations of 1 to 100 years 

Pages I-VIII 
1-1 I 

11-27 
28-49 
49-57 
57-74 
74- 106 

106-108 
109 
110 
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The contents are divided into 38 problems, each with a verbal solution 
and a numerical example followed by a mathematical demonstration. He 
uses the same popular style as that in the Doctrine of Chances. 

Much of the material from the I725 edition is included in the 1738 edition 
of the Doctrine (pp. 21 1-231,251-255). He adds some new material on succes- 
sive lives, on the value of annuities for children, on temporary life assurances, 
and a table of “The present Value of an Annuity of One Pound, to continue 
as long as a Life of a given Age is in being, Interest being estimated at five 
per cent.” 

Between 1725 and 1750 several books and tables on annuities were 
published, but they are all inferior to de Moivre’s text, except for Thomas 
Simpson’s The Doctrine of Annuities and Reoersions, Deduced f i om General 
and Evident Principles: W i t h  Useful Tables, Shewing the Values of Single and 
Joint Lives, etc. at different Rates of Interest, 1742. 

In the preface Simpson criticizes authors who “without troubling them- 
selves or their readers about observations, etc. have taken upon them to 
prescribe methods of their own, that have neither foundation in experience 
nor in reason.” He continues, “Yet I would not be thought to condemn any 
hypothesis grounded upon reason and matters of fact, because such are often- 
times made use of to very great advantage, of which Mr. de Moiore’s excellent 
book on this subject is an instance.” 

Simpson’s book is to a large extent built on de Moivre’s; he uses the same 
framework and nearly the same problems. However, his exposition is shorter 
and clearer, many of his proofs are more general, and he makes three important 
new contributions: (1) a life table based on the London bills of mortality; (2) 
tables of values of single- and joint-life annuities for nominess of the same 
age based on this life table; and (3) rules for calculating joint-life annuities 
for different ages from the tabulated joint-life annuities. Simpson shows that 
de Moivre’s formula for the value of joint-life annuities is not sufficiently 
accurate, and he provides the first satisfactory solution to the problem of 
calculating values of annuities for two and three lives. 

In 1743 de Moivre published the second edition of Annuities on Lioes, 
Plainer, Fuller and more Correct than the former. It contains a few more 
problems than discussed in 1725 and 1738 and some improved solutions. 
The exposition is reorganized so that the demonstrations are transferred to 
an Appendix. The 5% table of annuities is supplemented by tables for 4% 
and 6%. In the preface he defends his linear hypothesis, and about the value 
of joint-life annuities he states, “The greatest Difficulty that occurred to me 
in this Speculation, was to invent practical Rules that might easily be applied 
to the Valuation of several Lives; which however, was happily overcome, the 
Rules being so easy, that by the help of them, more can be perform’d in a 
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Quarter of an Hour, than by any Method before extant, in a Quarter of a 
Yea r.” 

He ends the preface with a denunciation of Simpson: 

After the pains I have taken to perfect this Second Edition, it may happen, that 
a certain Person, whom I need not name, out of Compassion to the Public, will 
publish a Second Edition of his Book on the same subject, which he will afford 
at a very moderate Price, not regarding whether he mutilates my Propositions, 
obscures what is clear, makes a Shew of new Rules, and works by mine; in short 
confounds in his usual way, every thing with a croud of useless Symbols; if this 
be the Case, I must forgive the indigent Author, and his disappointed Bookseller. 

This is clearly an overreaction, which can be understood only if one 
remembers Simpson’s plagiarism of de Moivre’s Doctrine of Chances two 
years before, see $22.4. In both of his books, Simpson refers to de Moivre 
in the preface, but he does not refer to him in the text, even though he has 
used nearly all of de Moivre’s results. At the time the rules for crediting other 
authors were not as strict as they are today, but Simpson’s omission of 
references to de Moivre is nevertheless very conspicuous compared with the 
behavior of Montmort, Nicholas Bernoulli, and de Moivre himself. Of course, 
de Moivre ought to have mentioned Simpson’s new results in his book and 
modified his own exposition accordingly, but he did not do  so, neither in 
the second nor in the following editions. 

Simpson reacted by publishing a 16-page “Appendix, containing Some 
Remarks on Mr. Demoivre’s Book on the same Subject, with Answers to 
some Personal and Malignant Misrepresentations, in the Preface there- 
off . .  .“to clear myself from a charge so highly injurious, and do justice to 
the foregoing work.” He defends himself euectively against de Moivre’s 
unreasonable charges and launches a counterattack by giving a detailed 
discussion of several errors in both editions of de Moivre’s Annuities. He 
ends the Appendix with the remark, “Lastly, I appeal to all mankind, whether 
in his treatment of me, he has not discovered an air of self-suficiency, 
ill-nature, and inveteracy, unbecoming a gentleman.” 

De Moivre did not answer directly but removed the accusation against 
Simpson from the preface of the following editions. 

In a letter to W. Jones, a vice president of the Royal Society, communicated 
to the Royal Society in 1744 and published in the Phil. Trans. (1746), de 
Moivre finds an approximation to the value of a complete life annuity and 
gives a better explanation of the use of his piecewise linear mortality 
hypothesis for calculating the value of annuities than in the first edition. 

The final edition of his treatise is to be found at the end of the 1756 edition 
of the Doctrine of Chances under the title A Treatise of Annuities on Lives 
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with the running head “The Doctrine of Chances applied to the Valuation 
of Annuities.” This edition contains the text from the second edition with 
the addition of a Chapter IX: “Serving to render the Solutions in this Treatise 
more general, and more correct,” a reprint of the letter to W. Jones, an 
extension of the tables of annuities to interest rates of 3 and 3374, and some 
new empirical life tables constructed by other authors. Between the second 
and the last editions, the third and the fourth editions were published in 
1750 and 1752, respectively, being essentially reprints of the second edition. 

Most authors commenting on de Moivre’s work have naturally used the 
1756 edition. However, to understand this edition it is important to consider 
the first edition and the additions given in the Doctrine of Chances (1738). 

In 1752 Simpson published The Valuation of Annuities for single and joint 
Lives, with a Set of new Tables, far more extensive than any extant, being 
Part VI of Select Exercises for Young Proficients in the Mathematicks, which 
is a popular exposition of his previous book with many new examples and 
with three important additions: (1) a table of the value of annuities on two 
lives of different ages; (2) a rule by which the value of an annuity on three 
lives may be expressed by annuities on two lives; and (3) rules for calculating 
survivorship insurances in which he corrects one of de Moivre’s mistakes. 

Finally, we note the great investigations of annuitant mortality made in 
the 1740s by Nicolaas Struyck (1687-1769) and Willem Kersseboom 
(1691-1771) in Holland and by Antoine Deparcieux (1703-1768) in France. 
The resulting life tables have been discussed by many authors; we refer to 
Braun (1925), Westergaard (1936), and K. Pearson (1978). The life tables 
constructed by Halley, Simpson, Kersseboom, and Deparcieux, along with 
some commentary by de Moivre, may be found in the Doctrine of Chances 

De Moivre advocated using a mathematical law of mortality, whereas 
Simpson used an observed life table. In the first instance, Simpson won; the 
following generation of actuaries used Simpson’s approach, although they 
did not use his tables but based their calculations on better life tables 
constructed from the experiences of life insurance offices. At the same time, 
however, many attempts were made to find a more satisfactory law than that 
proposed by de Moivre, but it was not until 1825 that Benjamin Gompertz 
(1 779-1865) succeeded in formulating a law that won universal acceptance; 
it was improved by William Maitland Makeham (1826-1891) in 1860 and 
has since been an important tool for graduating mortality observations and 
calculating the value of life insurances. A survey of laws of mortality has 
been given by J. du Saar (1917). 

A polemic history of insurance mathematics in Britain in the 18th century 
may be found in the preface to Baily (1813) who also discusses the results 
of de Moivre and Simpson in his text. 

(1756, pp. 345-348). 
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The present chapter is a continuation of Chapters 8 and 9, and we shall 
use the notation employed there. De Moivre and other actuaries in the 18th 
century did not introduce specific symbols for probabilities of life, 
expectations, annuities, and so on; they used arbitrary letters, such as M, P, Q 
for annuities and a,b,c for the number of survivors in the life table; in 
particular, they did not use subscripts to denote the age of annuitants, they 
merely mentioned the age in the text. We shall chiefly use the notation from 
the Institute of Actuaries’ Text  Book by G. King (1902), which also contains 
many of the results of de Moivre and Simpson, with modern proofs. 

25.2 THE LIFE OF THOMAS SIMPSON 

Thomas Simpson (1710-1761) was the son of a weaver who wanted Thomas 
to take up the same profession and therefore did not much care for his son’s 
literacy. Conflicting interests led the 14-year-old Thomas to leave home and 
settle in a neighboring village at the lodging house of Mrs. Swinfield, the 
widow of a tailor. There he continued to educate himself and worked as a 
weaver. From a peddler and fortune teller who occasionally lodged at the 
same house, Simpson borrowed a book on arithmetic and one on astrology; 
he soon mastered both and became known as an able fortune teller. He 
married Mrs. Swinfield, his senior by about 30 years with two children his 
own age. An unfortunate case of fortune-telling caused Thomas and his family 
to move to Derby, where he continued his trade as a weaver, became 
instructor at an evening school, and continued his study of mathematics. At  
the age of 25 he moved to London, still working as a weaver and teaching 
mathematics in his spare time. He became a member of one of the many 
mathematical clubs and won a reputation as an able teacher and a writer 
of textbooks. 

In 1743 he left London to become Second Master of Mathematics at the 
Royal Military Academy, Woolwich, which gave him regular teaching hours, 
a regular income, and more time for studying and writing. 

He contributed many mathematical problems and solutions to the 
Ladies’ Diary, a popular annual publication with a section on elementary 
mathematics; in 1754 he became editor and compiler of this magazine, 
continuing for six years. 

His teaching, writing, and editorial work resulted in a large correspondence 
about mathematical and actuarial problems. 

He became a successful writer of textbooks and of some books of essays 
resulting from his research. His astounding output consists of eleven books 
published between 1737 and 1757. The subject matter and the year of 
publication of each are as follows: 
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on the theory of fluxions, 1737; 
on the laws of chance, 1740; 
speculative and mixed mathematics, 1740; 
annuities and reversions, 1742; 
on a variety of physical and analytical subjects, 1743; 
algebra, 1745; 
geometry, 1747; 
trigonometry, 1748; 
on fluxions, 1750; 
select exercises in mathematics, 1752; 
miscellaneous tracts on mechanics, physical astronomy, and speculative 
mathematics, 1757. 

Several of these books are of an elementary nature and were designed for 
courses taught at the military academy. His success as a textbook writer is 
evidenced by the fact that several of his books had numerous editions and 
were also published in America, France, and Germany. 

Simpson’s writings aroused much controversy and many accusations of 
plagiarism. Besides the controversy with de Moivre, he had a controversy 
with the First Master at the Military Academy over their books on geometry, 
and another controversy with the previous editor of the Ladies’ Diary. 

As stated, Simpson made original and important contributions to actuarial 
science, which we shall detail in the following sections. He also made an 
important contribution to statistical error theory. It had become customary 
among astronomers to use the mean of several observations to estimate the 
true value, but an adequate theoretical background for this procedure was 
missing. The beginnings of such a theory were provided by Simpson (1755, 
1757), who derived the error distribution of the mean under some simple 
assumptions on the distribution of the individual errors, using de Moivre’s 
technique of generating functions, see Seal (1949) and Stigler (1986). 

F. M. Clarke (1929) has written a biography of Simpson on which the 
sketch above is based. 

25.3 DE MOIVRE’S LINEAR AND PIECEWISE LINEAR 
APPROXIMATION TO HALLEY’S LIFE TABLE 

Except for Graunt’s table, the only existing empirical life table at the time 
was Halley’s table for the population of Breslau, see Table 9.3.2. Hence, de 
Moivre had no other choice but to use Halley’s table if he wanted to base 
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his analysis on real observations rather than on hypothesis, as the distinction 
was then formulated. He was of course aware that the mortality rate in 
London was different from that in Breslau, but he had no means of finding 
the London mortality rate because the Bills of Mortality still did not contain 
information on the age at death. He does not discuss the construction of 
Halley’s table, and he uses the table as if the numbers tabulated were I ,  and 
not L,, see 99.3. 

He begins with a discussion of the difference d, = I, - I , ,  , and notes that 
Halley’s life table is piecewise linear from x = 12 to 77, with intervals of 
varying length. In 1725 he gives a discussion in the text only; in 1756, p. 346, 
he puts an asterisk in the table each time the value of d,  changes. As shown 
in Fig. 25.3.1, there are nine intervals with constant differences varying from 
6 to 1 1 .  

De Moivre’s great discovery was that the value of an annuity may be 
expressed as a linear function of an annuity certain if the life table is linear, 
and that an analogous theorem holds for a temporary annuity if the life table 
is linear for the age interval in question. He could thus avoid the calculation 
of the many products and sums which had troubled Halley by using his 
formula for each linear section of the life table. It will be seen that this idea 
is the same as that used by de Witt, whose work, i t  is presumed, was unknown 
to de Moivre. 

I I 1 I I I I I I  
10 20 30 LO 50 60 70 80 x 

Fig. 25.3.1. A graph of the differences d,  in Halley’s life table. The average differences 
for x 2 12 and x 2 30 are indicated. 
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De Moivre writes (1725, p. 1 I), “Let us therefore consider, 1” what would 
be the result of an Hypothesis that makes the Probabilities of Life to decrease 
in Arithmetical Progression: 2” how far the Calculations deduced from it 
agree with the Tables: 3” what Corrections are necessary to be made to it 
where it varies from the Tables.” He realized that his hypothesis could not 
be used below the age of 12. 

De Moivre’s linear hypothesis relates to the probabilities of life; he assumes 
that 

and that rpx  = 0 for x 2 w ,  t 2 0. He calls w - x for the complement of life. 
He chooses o = 86 for the following reasons ( 1  725, p. VIII): 

my Meaning, in fixing that Term, imports no more than this, uiz. that the Time 
of contracting for Annuities being commonly very remote from the 86th Year of 
the Life purchased, it is not likely that any Consideration will then be given for 
the Chance of receiving the Rent of that year, which will produce the very same 
Conclusions in Theory, as if the Extremity of that Year were never attainable. 

To distinguish between the numbers in the life table and de Moivre’s 
approximation, let us denote the former by Ax and the latter by I,. The linear 
hypothesis may then be written as 

and I x + ,  = O  for x + t >/ w. It is clear 
fit varies considerably with x, being 
x = 30, see also Fig. 25.4.1. 

from Fig. 25.3.1 that the goodness of 
rather poor for x = 12 and good for 

Most authors write about the linear hypothesis as if  de Moivre assumed 
that I, = w - x for 0 6 x < w, but that is not so. 

De Moivre also worked with a finer hypothesis based on the assumption 
that the life table may be approximated by a piecewise linear function. For 
the interval (x,x + s) this approximation becomes 

l * + , = (  1 t O t t G s .  
(3) 

He notes that (3) may be considered as the first section of length s of (2) if 
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o is chosen as 

so that the piecewise linear function may be composed of sections of linear 
functions of the type (2) with varying values of o. 

De Moivre gives a sketch of a piecewise linear life table which is omitted 
from the following editions, but a verbal description of this “polygon” is 
included in the last edition (1756, p. 325). 

It will be seen from Fig. 25.3.1 and Fig.25.4.1 that a piecewise linear 
function for 10-year intervals beginning at the age of 12 will give a good 
approximation, except for the last interval. 

25.4 SIMPSON’S LIFE TABLE FOR THE POPULATION 
OF LONDON 

At the initiative of John Smart, the parish clerks in London began in 1728 
to record the age of the deceased, and Smart used the observations for the 
period 1728-1737 to construct a life table. 

Simpson observes that this table does not represent true mortality in 
London because Smart has not taken migrations into account. He therefore 
modifies Smart’s table for ages below 25, but unfortunately his description 
of the method used is so vague that it  is impossible to see what he actually 
did. He writes (1742, pp. 2-3), 

In doing this, I have supposed the number of persons coming to live in town, after 
25 years of age, to be inconsiderable, with respect to the whole number of 
inhabitants; and therefore the probabilities of life, for all ages above 25 years, the 
same as this author has made them; but then have increased the numbers of living, 
corresponding to all ages below 25; so that they may, as near as possible, be in 
the same proportion one to another, as they would be, were they to be deduced 
from observations on the mortality of those persons only, that was born within 
the bills. Which was done, by comparing together the number of christenings and 
burials, and observing, by help of Dr. Halley’s table, the proportion which there 
is between the degrees of mortality at London and Breslau, in the other parts of 
life, where the ages are greater than 25. 

Smart had I, = lo00 and = 426. Simpson did not change Smart’s life 
table for x > 25 but increased I ,  to 1280. Taking do = 410, so that I ,  = 870, 
he interpolated between 870 and 426, taking Halley’s table into account. The 
crucial point is how he found I ,  and do; he gives no information on this step. 
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1, I I I I I I I I 

Fig. 25.4.1. Halley’s and Simpson’s life tables. Halley’s table begins with I, = 1000, 
Simpson’s with I, = 1280. The curves are linear between dots. 

Westergaard (1901, pp. 43-45; 1936, p. 67) has suggested how Simpson 
may, have reached his result. 

Simpson does not give a detailed discussion of his table but only states 
that mortality in London is higher than in Breslau. 

We have compared Halley’s and Simpson’s life tables in Fig. 25.4.1. There 
are several interesting features. First, Simpson’s I ,  is smaller than Halley’s, 
and the two curves are nearly parallel for ages between 10 and 60. Second, 
like Halley’s table, Simpson’s is approximately linear above 10 years of age. 
Third, Simpson estimates mortality in the first year to 32%. 

Deparcieux criticized Simpson for using too high a mortality for children, 
to which Simpson (1752, p. 31 1) replies, “He [Deparcieux] does not seem to 
be appriz’d, that there is not, perhaps, a City in the World so fatal to the 
Infant State as the City of London (owing, too much, to the Intemperance 
of Parents and profuse, irregular manner of Living).” 

Simpson’s table soon became obsolete for insurance purposes because it  
gives the mortality of the whole population, not of annuitants only. 

25.5 SINGLE-LIFE ANNUITIES 

As noted by Halley, the fundamental quantity for calculating the value of 
an annuity for a life (x) is the value of the amount I payable in f years if (x) 
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is then alive. Setting o = (1  + i)- ‘, we have 

The sum is finite because , p , = O  for x + t 2 o. Halley’s principle for 
calculating the value of a life contingency thus consists in finding the present 
expected value of each year’s benefit and adding these amounts over the 
period in question. This principle was adopted by de Moivre and Simpson, 
so the problems they faced were to find the probability of the contingency 
and to evaluate the sum, either mathematically or numerically. 

Halley calculated ,Ex  by logarithms and obtained a, by summation. De 
Moivre gives a much simpler method for tabulating a, by means of the 
backward recursion formula 

To prove this formula de Moivre notes that (x) will get the amount 1 in one 
year if he is then alive, and that he will also be entitled to all the succeeding 
rents which have the value a,, Discounting the two amounts with respect 
to both interest and mortality, (3) follows. He gives a numerical example for 
x = 29. 

=0, a complete table of a, may be calculated, the 
amount of work being about the same for the whole table as for calculating 
a ,  by Halley’s method. De Moivre does not tabulate a,; he writes ( 1  725, p. 8), 

Beginning with 

By help of the Method hitherto explained, those that will take the Pains may, if 
they think fit, compose Tables of the several Values of those Annuities for any 
Age proposed, and for any Rate of Interest that shall be fixed upon. But ’till that 
be done, it will be convient to try whether there be not some easy practical Method 
whereby the Values of those Annuities may be determined very near as accurately 
as if they had been deduced Year by Year from the Tables ofObseruations. 

The backward recursion formula is not included in the later editions of 
de Moivre’s treatise, perhaps because they contain tables of a,. This omission 
has led to the misunderstanding that the formula is due to Simpson (1742, 
pp. 18-20). Simpson’s contribution is to point out that the formula also holds 
for joint lives and to “take the Pains” to use the formula for calculating 
tables of values of annuities based on his own life table. 
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We note that the backward recursion is a generalization of Nicholas 
Bernoulli’s formula for the calculation of the expectation of life, see 58.2. 

By introducing a mathematical hypothesis about ‘ p x ,  de Moivre obtains 
a simple formula for a,. To justify this approximation he states “that 
any small Difference that may arise from the two Methods of Calculation 
is not to be regarded in a Subject of this Nature,” thus alluding to the 
uncertainty inherent in Halley’s table and its application to annuitants in 
London. 

He begins with the following problem (1725, p. 11): “Supposing the 
Probabilities of Life to decrease in Arithmetic Progression to find the Value 
of an Annuity upon such a Life.” 

For x < o, the solution is 

ProoJ LikedeMoivreweshallsetn=o-xsothat,p,= 1 - t , h  Hence, 

a,  = vt (  1 - t) =a- - -(*a)-- 1 
nl 4, 

t = 1  

where a7 denotes the value of an annuity certain 

N 1 - v n  
a 4 =  C v‘=-- - - ,  

r = 1  i 

and (I&, denotes the value of an increasing annuity certain 

(1a)q = u‘t = ( n  + 1 + ;)aq - ,. n 

I =  1 1 

‘To prove the last result de Moivre refers to a theorem in the Doctrine of 
Chances (1718) on the summation of recurring series but does not carry out 
the proof. Following his hint we note that 

b r = d t ,  t=0 ,1 ,  ..., 

is a recurring series satisfying the relation 

b , = 2 ~ b , - ,  - V Z b f - 2 ,  t = 2 , 3 ,  . . . .  



522 THE INSURANCE MATHEMATICS OF DE MOIVRE AND SIMPSON, 1725- I756 

It follows that S = b,  + . - a  + b, satisfies the equation 

s - b = 2u(S - b,) - U Z ( S  - b, - - bn), 

which leads to 

S( 1 - u)' = u( 1 - u") - u( 1 - u)nu". 

Eliminating u" by means of (5),  we get (6), which completes the proof. 

In subsequent editions de Moivre states that the derivation of (4) requires 
"something more than an ordinary skill in the Doctrine of Series," so that 
he will show the reader that the formula is correct by inserting the series for 
a4 and l/i in terms of 0'. This is a more tedious procedure than his original 
proof. 

As explained in 89.2, de Witt's formula for the value of an annuity is 

Under de Moivre's hypothesis we have I ,  = n and d,, ,  = 1. so that 

which immediately leads to (4). However, de Moivre 
not consider this simple proof because they strictly 
principle. 

For later use we note that 

and Simpson did 
followed Halley's 

say, since the value of this annuity depends on s only. 
De Moivre next solves the following problem ( I  725, p. 20): "To find the 

Value of an Annuity for a limited Interval of Time, during which the 
Decrements of Life may be considered as equal." 

Denoting the value of a temporary annuity to (x) for s years as aXd, the 
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solution becomes 

523 

(8) 

Proof, De Moivre’s proof is very simple. From (3.3) we have 

which inserted into 

immediately proves (8). 

To link the temporary annuities together de Moivre uses the backward 
recursion (1  725, pp. 25-26) 

His proof of this formula is analogous to the proof of (3), which is obtained 
for s =  1. 

Young (1908) suggests that both de Moivre and Simpson failed to observe 
“the implication [of (3)] of the necessary start with the oldest age attained 
in the observations”; instead he ascribes this observation to Euler. Young’s 
conclusion seems unwarranted in view of the facts that de Moivre used (9) 
for s = 10 to calculate the value of annuities, beginning with the age of 86, 
and that Simpson calculated all his tables by means of (3). Simpson’s 
published life table ends with I,, = 29, but he has of course (like Halley) just 
continued the table to some higher age for which I ,  = 0; his table of annuities 
ends at the age of 75. 

To evaluate the accuracy of the approximation de Moivre calculates some 
values of ax by (4) and compares them with the values given by Halley. As 
shown in the table below the percentage error is at  most 4.5 for ages between 
10 and 70. We do not know how he found a ,  = 12.57; it  has not been 
calculated from (4), and in the tables published later he gave the value as 10.80. 

He also uses the backward recursion (9) for 10-year intervals to calculate 
a, for x = 86,76,. . . , 6  and i = 0.05, but since he does not calculate the 
corresponding values from Halley’s table, he cannot find the errors. We have 
therefore used (9) for i = 0.06 to calculate the values corresponding to those 
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given by Halley, starting from a,o = 5.50. The table below shows that the 
percentage error is at most 0.5 for ages between 10 and 60. 

Comparison of Exact and Approximate Values‘ of a, 

EQUATION 4 EQUATION 9 

PERCENTAGE PERCENTAGE 

X HALLEY DE MOIVRE ERROR DE MOWRE ERROR 

1 10.28 (12.57) -. - - 

10 13.44 12.84 - 4.5 13.45 +0.1 
20 12.78 12.30 - 3.8 12.75 -0.2 
30 11.72 11.61 - 0.9 11.70 - 0.2 
40 10.57 10.70 + 1.2 10.55 - 0.2 
50 9.21 9.49 + 3.0 9.23 + 0.2 
60 7.60 7.83 + 3.0 7.64 + 0.5 
70 5.32 5.50 + 3.4 - - 

”The exact values are calculated from Halley’s table; the approximate values are calculated 
from de Moivre’s linear and piecewise linear hypotheses using (4) and (9), respectively. 

De Moivre states that the piecewise linear hypothesis will lead to a good 
approximation for any life table and any rate of interest. However, he is 
content with the approximation obtained from the linear hypothesis for 
x 2 10, and calculates all his tables of a, for various rates of interest under 
this assumption. 

For x < 10, special methods have to be used because the linear hypothesis 
does not hold. De Moivre shows how to find uIm from Halley’s table and 
then to find a ,  by means of (9) and a I 2 .  

De Moivre’s first table of a, is to be found in the Doctrine of Chances 
(1738), where he also makes the following remark about the value of a, for 
x <  10: 

But before we proceed any farther, it will be convenient to observe, that in Children 
the Probability of Life increases instead of decreasing; and that therefore those 
that have a mind to use the Rule given in our LXXIIId Problem for finding an 
Annuity upon the Lives of Children of 1, 2, 3, 4, 5, 6, 7, 8, 9 years of Age, ought 
to calculate them as if they were of the respective ages of 39,31,24,20,17,14, 
12, 11, 10. 

His rule of conversion is thus very simple: a,  should be set equal to a39r a2 
equal to u 3 , ,  and so on, but his motivation is difficult to understand. He 
refers to a problem in which he assumes that the life table is geometrically 
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decreasing, which means that ' p X  = p' for a suitably chosen value of p. I t  
follows that 

To determine p from Halley's table we have to solve the equation 

4 0  
plO-, = -* 4 

For i = 0.05 we find a, = 11.99, in agreement with de Moivre who gives the 
value 11.96 in the table. However, for x = 2,3,. . . ,7, we get values about 2% 
larger than those given by de Moivre. It seems that de Moivre has imposed 
the restriction that a, should have its maximum for x = 10 and that he has 
smoothed the values between a, and a,, such that the conversion table gets 
reasonably decreasing differences with respect to x. 

It is clear that the rule of conversion depends on the rate of interest, but 
nevertheless de Moivre uses the same rule of conversion in all his tables. 
Since the remark on the conversion rule quoted above is to be found in the 
1738 edition only, readers of all the following editions may have wondered 
how the first nine values in the tables have been found. 

A comparison of the values of annuities from the tables of de Moivre and 
Simpson is given in the following table: 

Table of a, for i = 0.05 

X 

10 20 30 40 50 60 70 

De Moivre 14.60 13.89 12.99 11.83 10.35 8.39 5.77 
Simpson 14.3 13.0 11.6 10.3 9.2 7.9 6.2 
Ratio 0.98 0.94 0.89 0.87 0.89 0.94 1.07 

Source: de Moivre (1738, p. 255) and Simpson ( I  742, pp. 38-39). 

It will be seen that Simpson's life table gives values that are about 
12% lower than Halley's for ages between 30 and 50. 

Simpson (1752, pp. 274-276) had the knack of finding simple 
approximations. As an example we shall quote his formula for the value of 
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an annuity based on Halley’s table, 

85 - X  
(J 

x -  
O.Si(85 - x) + 2’ 

which “from the Age of Eight, To Eighty, will, for the general Part, come 
within less than 1/8 of an Year’s Purchase of the Truth.” it is remarkable 
that Simpson nearly always makes such statements about the accuracy of 
the many approximations he proposes. He gives a similar formula for values 
based on his own life table. Clearly, these formulae have no theoretical 
foundation; they are presumably found by trial and error. 

In the second edition of the Annuities (1743), de Moivre omitted the 
backward recursion formulae (3) and (9) and the investigation of the accuracy 
of (4). From (9) i t  is clear that he knew the formula for the value of a 
temporary annuity, 

but nevertheless he forgot the factor spx  when solving Problem 23 (1743). Of 
course, Simpson (1743, p. 140) pointed out the error and gave the correct 
formula. Instead of quoting (1 1) in later editions, de Moivre derived a formula 
directly from the linear hypothesis. Assuming that l , , ,  is linear for 
0 < t d (0 - x, we have .pX = 1 - s/n, so that (8) becomes 

a X S I  - = ! [ S + ( n - s - -  n i  l-f)a.l]. n = w - x ,  

as given by de Moivre ( 1  756, p. 292). This is a generalization of (4), which is 
obtained for s = n. 

De Moivre also gave an incorrect formula for the value of a temporary 
reversionary annuity; Simpson pointed out the error and gave the correct 
formula 

(see also de Moivre, 1756, p. 293). 
A t  the time, a distinction was made between an annuity “secured by 

money” and “secured by land,” the former being an ordinary annuity and 
the latter a complete annuity, i.e., an ordinary annuity supplemented by a 
proportionate part of the yearly payment for the time between the last 
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payment and the moment of death. In his letter to W. Jones in 1744, de 
Moivre derives the value of a complete annuity. 

Suppose that (x) dies at age x + t and set t = k + E, where k = “J. The 
value of the payments will then be 

De Moivre begins his proof by stating that it is well known that the value 
of an annuity certain payable during the time L is ( 1  - u‘)/i .  However, as 
shown above, this is only an approximation, except for the case where t is 
an integer. He proceeds to find the expected valuc of this annuity certain 
under the linear hypothesis, which means that the probability of dying 
between t and t + dt equals dtln, n = o - x. Hence, 

1 - u ‘  1 a- 
E i 7 } = i j ; ( l  - u ‘ ) d t = - - - - d  

i nS’ 
n = o - x ,  6=In ( l  +i). (14) 

Since t is continuous, de Moivre naturally uses integration to find the value 
of the annuity; he had previously used this technique to find the expectation 
of life. About the integral of u‘, he states that “1 do not know, whether the 
same method has been made use of by others.” His method is to make the 
transformation y = u - ‘  so that 

I t  is also remarkable that here he uses de Witt’s principle instead of Halley’s 
to find the value of the annuity. 

De Moivre does not consider the value of a continuous annuity, which 
is the expected value of a continuous annuity certain 

n 6 n6’  

a formula analogous to  (4). This result follows immediately from (14) by 
multiplication by i/d. A proof of this result is due to Simpson (1752, 

De Moivre and Simpson thus succeeded in developing a rather complete 
pp. 323-3241, 

theory of single-life annuities supplemented with adequate tables. 
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25.6 JOINT-LIFE ANNUITIES 

De Moivre presumably began his work on joint-life annuities by deriving 
formulae for the values of annuities on two and three lives under the linear 
hypothesis. For three lives the formula is rather unwieldy, and for that reason 
de Moivre looked for another approach. Surprisingly, he begins the discussion 
in his book by considering a fictitious life with a geometrically decreasing 
probability of life and proves the following result ( I  725, p. 33): 

Suppose that (x) and ( y )  are independent and have geometrically 
decreasing probabilities of life. Then, the value of an annuity granted for the 
time of their joint continuance equals 

axay( I + i )  -- a,, = 
(a, + I)@, + I )  - a,a,(l + ij 

Proof. Suppose that ,px = p i  and ‘pY = p\ so that ‘pxy  = ( p l p 2 ) ’ .  We then 
have 

UP 1 P1 m 

a, = 1 (up1)‘ = -. = --. 
‘ = I  1 - u p ,  1 + i - p ,  

Solving for pl ,  de Moivre finds 

a,(l + i )  p1 = __-- 
a,+1 ’ 

similar expressions being valid for ay and uxy. Eliminating the p’s from 

(1) follows. He proves an analogous formula for three lives. 

This elegant therorem enables him to calculate the value of a joint-life 
annuity from the values of the single-life annuities under the assumption 
stated. However, he knows the assumption to be false; in relation to Halley’s 
life table and the linear hypothesis, the formula is only an approximation 
that has to be justified by further investigation. 

In the following sections de Moivre derives formulae for compound 
survivorship annuities in terms of single- and joint-life annuities. His proofs 
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depend on the compound probability theorem which he had proved in the 
Doctrine of Chances (1718), see $19.4 and Q 19.6. However, he does not refer 
to the Doctrine but derives the necessary formulae directly in the Annuities 
upon Lives. 

He begins with the following problem (1725, p. 36): “The Values of two 
single Lioes being given, to find the Value of an Annuity upon the longest of 
them; that is to continue so long as either of them is in being.” 

The solution is 

a, = a, + ay - axy. ( 2 )  

Proof .  The probability of at least one of the lives (x) and (y) being alive 
after t years is 

multiplication by v‘ and summation proves (2). 

De Moivre generalizes (2) to any number of lives. 
Of course, (2) is exact and valid for any life table; however, to use i t  in 

practice de Moivre calculated axy by means of his approximation (1). Instead 
of investigating the accuracy of (1) directly, de Moivre investigates the 
accuracy of (2) by comparing with the results obtained from the linear 
hypothesis. He states his objective clearly (1725, pp. 46-47): 

To the End that the Readers may be freed from any Scruple they may entertain, 
that the converting real Lives into fictitious ones, and then combining them 
together, from thence to deduce the Values of Annuities upon the real Lives, may 
perhaps not be altogether to be trusted to; I shall here annex a Calculation of an 
Annuity upon two Lives whose Decrements are in Arithmetic Progression; which 
consequently very nearly agree with the Values as deduced from the Tables; and 
then compare the Result with the Value of an Annuity upon the two Lioes 
considered as fictitious. 

To carry out this excellent program he first gives a formula without proof, 

1 l + i  l + i  

i ni nmi 
a-=--- (a4 + aq)  + ---2 [2m - ( 2  + i)aT], 

XY (3) 

for n = w - x , m  = o - y , m  < n. 
Since 

axy = a, + ay - aG, 
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it is easy to derive the corresponding formula for ax,, by means of (5.4) and 
(3). We thus get the following result: 

Suppose that (x) and (y) are independent and have arithmetically 
decreasing probabilities of life with complements of life equal to n = u - x 
a n d m = u - y , m < n .  Then, 

+i [ (n-m-  1 --)t+i]. 2 a- 2 
a x y  = T - -nT- 

i 
(4) 

Presumably, de Moivre knew this theorem in 1725 even if he did not state 
it explicitly. It is given, with an indication of a proof, by Simpson (1742, 
p. 16), who also gives the formula for three lives. 

P r o o f n f ( 4 ) .  From the assumptions it follows that 

v'(n - t)(m - t ) .  
1 

uxy = - g 
n m r = I  

Simpson states that this series may be summed and will be found equal to 
(4). We shall indicate a proof analogous to the proof of (5.4). 

Let us set 

h, = u'(n - t)(m - c), I = 0, I , .  . . , m, 
so that 

m 

S = 1 b, = nma,,. 
1 =  I 

It is easy to see that b, satisfies the recursion 

b, = 3vb,-, - 3 ~ ~ b ~ - ~  + ~ ~ b , - ~ , '  I = 3,. . . , m, 

which by summation from 3 to m gives 

so that 

S(I - 0I3 = v[nm(l  - uj2 - (n  + m  - 1 ) ( 1  - v)(I  - u r n )  

- 2m( 1 - v)um + 2u( 1 - u r n ) ] .  

Inserting u = ( 1  + i)- and v m  = 1 - ha, we get (4). 
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To investigate the accuracy of (2), de Moivre gives one numerical example 
in which he finds a relative error of O.l%, which would have been 4.6% if 
he had carried out his calculations correctly. One may wonder why he gives 
one example only instead of carrying out a systematic investigation like the 
one he carried out for (5.4). Furthermore, why does he discuss the accuracy 
of the formula for a, instead of axy, which is the fundamental quantity? Is 
that because the relative error of a, is smaller than that of aXy? 

As shown in the following table, Simpson carries out the numerical 
investigation which de Moivre ought to have made. 

Simpson's Table" of the Values of Joint- 
Life Annuities Compared with the 
Approximations (1) and (4) for i = 0.04 

VALUE OF a,, FROM 

a, LIFE TABLE (1) (4) 

7 4.7 3.9 4.9 
9 6.1 5.3 6.4 

1 1  7.6 6.9 7.9 
13 9.5 8.7 9.7 
15 11.5 10.6 11.6 

"The table above gives only every second value 
from Simpson's table. 
Source: Simpson (1742, p. 61). 

It will be seen that both formulae give systematic errors as applied to 
Simpson's life table. Formula (4) gives too large a value, the absolute error 
being between 0.1 and 0.3. Formula (1) gives too small a value, the error 
being between 0.7 and 0.9. In addition, a comparison of the third and fourth 
columns shows that de Moivre's formula (1) based on the geometrically 
decreasing life table gives a systematically smaller value of about 1.0 than 
(4) based on the arithmetically decreasing life table. 

Simpson does not use any of the approximations. By means of backward 
recursion he tabulates ax,., a,, axxx, and axxx for x = 6(1)75 and i = 0.03, 
0.04,0.05 and gives rules for finding the values when the ages differ. To find 
ax,,, he gives the formula 

which he states without proof; he has presumably derived the formula by 
trial and error. If both x and y are between 25 and 50, he states that aXy 2 awn,, 
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where w = i ( x  + 1’). For three lives the general rule is considerably more 
complicated. 

Simpson stresses that his results are based on real observations and that 
his method oftabulating the value ofannuities may be used for any life table. 

Simpson’s criticism of de Moivre’s rule for calculating the value of joint- 
life annuities must have been a hard blow to de Moivre, who at the time 
was preparing the second edition of his book. He must have realized that 
he had let himself been carried astray by the mathematical and numerical 
simplicity of his approximation. However, instead of admitting his error by 
rewriting a section of his book, he tried to conceal it. He removes formula 
(3) for axY and the corresponding discussion of the accuracy of the 
approximation from the second edition, so that the reader is left with (1) 
without any indication of its accuracy. Furthermore, he supplements ( I )  with 
the slightly simpler formula 

stating without proof that (5) has been derived from ( I )  and “that whether 
one or the other is used, the Conclusions will very little differ” (1743, p. 91). 
He adds that ( I )  is “better adapted to Annuities paid in Money,” whereas 
( 5 )  is “better fitted to Annuities paid by a Grant of Lands,” by which he 
implies that (5) gives slightly larger values than ( I ) .  Dividing ( 5 )  by ( I )  we get 

so that ( 5 )  gives the larger value if j > i, which is easily shown to be true. 
Simpson (1743, p. 138) comments sarcastically on de Moivre’s discussion 

of the small difference between (1) and (3, noting that “must it not seem a 
little strange that he should here make such an extraordinary skew of 
exactness, and appear so solicitous about a small dimerence.. . , when at the 
same time, both his methods differ from the truth by more than five times 
as much‘!.’’ 

In his 1752 publication Simpson made further progress in determining 
the value of joint-life annuities. First, he tabulates a,, for .Y= 10(5)75 and 
y = x, .Y + 5, .  . . ,75, so that uXy may be found by linear interpolation for any 
x and y larger than 10. Next, he considers the following problem (1752, 
p. 279): “To find the Value of an Annuity for three joint Lives, A, B, and C. 
Solution. Let A be the youngest, and C the oldest, of the three proposed 
Lives: Take the Value of the two joint Lives B and C (by Tab. VIII) and find 
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the Age of a single Life D, of the same Value (by Tab. V) then find the Value 
of the joint Lives A and D; which will be the Answer.” 

In our notation Simpson’s rule for finding a,yz, x < y < z ,  becomes, 

Find w such that a,. = ayz and set oxsz 2 a, ,,,. (6) 

Simpson states that “The Reasonableness of the Method of proceeding is 
evident from the Nature of the Subject, without calling in the Assistance of 
any Kind of Computation: And in a Number of Examples, respecting Lives 
of different Ages, 1 scarce ever found the .Error to exceed I j S  of an 
Years- Purchase.” 

Obviously, de Moivre could have made tables of the value of joint-life 
annuities based on the linear hypothesis but never did, perhaps because of 
the labor involved and because he wanted to find a simple mathematical 
solution that could replace his unsatisfactory formula from 1725. I t  was not 
until 1756 that the resulting formula was published. In the new Chapter IX 
we first find the following concession: 

To preserve somewhat of Elegance and Uniformity in my Solutions, as well as to 
avoid an inconvenient multiplicity of Canons and Symbols, I did transfer the 
Decrement of Life from an Arithrnetical to a Geometrical Series: which however, 
in many Questions concerning Combined Lives, creates an error too considerable 
to  be neglected. This hath not escaped the Observation of my Friends, no more 
than i t  had my own: but the same Persons might have observed likewise, that 
such Errors may, when it is thought necessary, be corrected by my own Rules; 
particularly upon this obvious principle, That, if rnoney is supposed to bear 110 

Interest, the Values of Lives will coincide with what I call their Expectations. 

He continues by stating a “General Rule for the Valuation of joint Lives,” 
namely, 

( m  - 
3(n- 1) 

axyZa,, , ,  ~ = 8 6 - 2 @ , + , : , + ,  = y +  I +-----, (7) 

rn 

3 n  
a,, 2 a,,, w = 86 - 22,, = y + -, (8) 

where 
x < y ,  n = 8 6 - x ,  m = 8 6 - y ,  

and 2 denotes the expectation of life, see 525.9. De Moivte formulates the 
rule for any number of lives. 

Following the hint quoted above we shall assume that w as a function 
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of (x, y) does not depend strongly on i so that we may replace the equation 
between the a's with the corresponding one between the e's. Since 2, = 
(86 - w)/2, (8) follows immediately. Noting that 

and setting e,,, = ex,,, we get 

w + 1 = 86 - 2(gX,, - f )  = 86 - 2eX+ :,"+ 

which proves (7). 
De Moivre does not take the trouble to show that his new rule (7) leads 

to nearly the same result as (4). He gives two numerical examples in which 
his old rule (5) gives 9% and 15% smaller values, respectively, than his new 
rule. 

With Simpson in mind, but without mentioning him, de Moivre ends his 
discussion by recommending mathematical rules instead of arithmetical 
results: "For we do  not here aim at an Accuracy beyond what the determina- 
tion of our main Data, the Probabilities of human Life, and the conformity 
of our Hypothesis to nature, can bear; nor do  we give our Conclusions for 
perfectly exact, as is required in such as are purely arithmetical, but only as  
very near Approximations; upon which business may be transacted, without 
considerable Loss to any party concerned." 

As mentioned above, de Moivre gives a rule for calculating the value of 
an annuity on the longest of any number of lives. This rule obviously 
corresponds to (19.4.9) for k = 1 for finding the probability of the occurrence 
of at least one event among n independent events. Without proof, Simpson 
(1742, pp. 25-26) states the formula for the value of an annuity continuing 
as long as at least m of n lives survive. 

Essentially through Simpson's works (1742, 1752), a theory for annuities 
on two and three lives had been developed, and tables for their evaluation 
had been provided. 

25.7 REVERSIONARY ANNUITIES 

A reversionary annuity to (x) after (y), which will be denoted by uYlx, is an 
annuity to (x) after the death of (y) if (x) is then alive. Since 

( 1  - rPy)rPx = rP.r - r P x y r  

i t  follows that 
- 

UyIx - 0.r - a x y .  

which may also be seen directly. 
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It is clear that (2) may be generalized by letting x and y represent combina- 
tions of lives, so that the reversionary annuity becomes an annuity payable 
for the remainder of the status represented by x,  after the failure of the status 
represented by y. 

In 1725 de Moivre gives the formulae for several reversionary annuities 
without presenting the proofs because the results are easy to see directly 
from the definitions. In 1738 he adds some formulae involving up to four 
lives and indicates the proofs by calculating probabilities like (I) .  He also 
introduces a symbol for annuities on joint lives. Let X ,  Y,  and Z represent 
the values of single-life annuities, XX XZ, and %? the values of the 
corresponding joint-life annuities, and so on. He then gives a list of formulae 
for different kinds of annuities expressed in terms of joint-life annuities. For 
example, his expression for a reversionary annuity to (u )  after the longest of 
the three lives (x),  ( y ) ,  and ( z )  becomes 

_ -  

_ _ _ _ _ _ _ _ _ _ _ _ _ - _ _  
u - x u -  Y U - z u  + X Y U  + x z u  + Y Z U  - X Y Z U ,  

which clearly corresponds to the relation between the probabilities 
involved. 

Simpson (1 742) proves four general theorems on reversionary annuities. 
Considering two groups of three lives each he derives the formulae for the 
annuities characterized by the symbols x y z J  abc, xyzlabc, 1 abc, and 
xyzlabc. From these formulae all the results of de Moivre and many other 
results are easily found. Simpson indicates the formulae for any number 
of lives and gives many examples of applications. 

_ _  

25.8 LIFE ASSURANCES, REVERSIONS, AND 
SUCCESSIVE LIVES 

To simplify the exposition let us first introduce some formulae for assu- 
rances and reversions in modern notation. Let A, denote the present value 
of the sum 1 payable at the end of the assurance year in which (x) dies, i.e., 
the value of a life assurance. We then have 

1 "  
A ,  = - C u t + l d x + t ,  

I , t = O  

since of I, insured persons, d,+[  die during the t t h  year. Inserting 

d,+,/Ix = t P x  - I+ , P x r  
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it follows that 

I - ia, 
A , = u ( l  + a , ) - a , =  --. 

1 + i  

Hence, because of the identity 

1 - ia, = ( I  + i)A.K, (2) 

a theory about the reversion 1 - ia, is at the same time a theory about the 
life assurance A,. The factor 1 + i is due to the fact that I - ia, represents 
a reversion for ever with a yearly payment of i after the death of (x) and that 
an evaluation of this perpetuity at the end of the year in which (x) dies gives 
1 + i .  A reversion for ever after (x) with a yearly payment of 1 has the present 
value l / i-u, ,  which is the limiting value of the temporary reversionary 
annuity (5.13) for s-, co. 

The first example of a life assurance given by de Moivre is to be found 
in the following problem (1725, p. 59): “If there be three equal Lives, and A 
or his Heirs are to have the Sum S paid upon the Vacancy of any of those 
Lives, what is the Expectation of A worth in present Money.” 

The problem is obviously to find the value of the assurance on the three 
joint lives. De Moivre solves the problem under the assumption that the life 
table is geometrically decreasing. Let p ,  = p for all x. The probability that 
the three lives all exist after t years and that they do  not all exist after t + 1 
years is (p3 ) ‘ (  I - p 3 ) ,  and de Moivre therefore gives the solution as 

Using the result 

( 1  + i)u, p =  -__ 
a,+ I 

from the proof of (6.1), de Moivre expresses A,,, in terms of a,. He also 
solves two somewhat more complicated problems under the same 
assumption. 

If he had solved the problem for one life only he would have got the result 

in agreement with (2). 
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The next example may be found in the introduction to the section “Of 
annuities on Lives” in the Doctrine of Chances (1738, pp. 212--213), where he 
writes, “But let us suppose, that instead of an Annuity upon a Life whose 
Age is given, there should be the Expectation of a Sum (which we may call 
1) payable once for all whenever it happens that the Life ceases within a 
limited time.” He derives the formula for a temporary life assurance 

and taking the values of I ,  and d, from Halley’s table, he finds the value of 
the temporary life assurance for a life aged 10 and a duration of 11 years to 
0.0797. He adds that it would have been possible to extend this analysis if 
there had been a “Table of Observations concerning a Man’s marrying and 
getting an Heir-Male between 16 and 21.” 

Immediately after this discussion of the life assurance he formulates the 
linear mortality hypothesis and derives the value of a,. He does not, however, 
remark that the analogous result for the assurance equals 

which follows from (3) for d,,,/l, = l/n. 
De Moivre’s two examples of life assurances have usually been overlooked 

because they are omitted from the following editions of the Annuities. 
After this promising beginning it is strange that neither de Moivre nor 

Simpson developed a theory of life assurances corresponding to the one they 
had given for annuities. Perhaps they did not feel the need for such a theory 
because they usually expressed the benefits in terms of annuities. 

Reversions for ever are important for the evaluation of contracts on 
successive lives, such as copyholds, leases, and advowsons. 

De Moivre begins by solving a problem on successive lives (1 725, p. 57): 
“If A enjoys an Annuity for his Life, and at his Decease has the Nomination 
of a Successor who is likewise to enjoy the Annuity for his Life; to find the 
Value of the two successive Lives.” 

Without demonstration he gives a slightly incorrect solution; the correct 
solution is given in 1738 (p. 225) as 

a, + ay - ia,a,. ( 5 )  

Of course, this solution presupposes that ( y )  takes over the annuity at the 
end of the assurance year in which (x) dies. 
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De Moivre mentions that the present value of a reversion for ever after 
(x) equals l/i - a, and uses this quantity as a “discounting factor.” He may 
therefore have found (5) simply as 

u, + ( I  - iu,)a,. 

However, in the following editions of the Annuities he gives a proof based 
on his concept of an equivalent annuity certain (1738, p. 231). He sets 

1 - llk 
a,=---,  

i 

and solving for uk, he gets the discounting factor 

vk = I - iu,. 

His characterization of (6) as an equivalent annuity certain is not quite 
correct because he implies that k is an integer. He interprets k as an “average 
duration” of the life annuity. If the average durations for (x) and (y) are k 
and m, respectively, so that the total average duration of the successive lives 
becomes k + m, then the value of the corresponding annuity becomes 

which is de Moivre’s proof (1743, pp. 104-105) of (5). 

given by Simpson ( I  742, pp. 87-89), which runs as follows: 
This proof is rather artificial compared with the simple and natural proof 

1 - (1 - iu,)( 1 - ia,) - 

i 
= a, + uy( I - iu,) = 

The both generalize to any number of lives. 
As pointed out by Baily (1813), they did not distinguish clearly between 

the present value of a sum payable at the end of the year in which any 
number of lives become extinct and the present value of an annuity to 
commence at the same time. 

Simpson (1742, p. 76) generalizes de Moivre’s problem about A,,, to a 
problem about Axgr but gives the solution as I - i ~ , ~ ~ .  As mentioned above, 
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de Moivre omits this problem and its solution from the 1743 edition. Instead, 
he assumes that “upon the Failing of any one of them, that Life shall be 
immediately replaced, and I then receive a Sum S agreed upon, and that to 
perpetuity for me and my Heirs.” Like Simpson he gives the value of the 
first sum as S(t - iaxxx) and the value of the whole contract as 

his proof is straightforward using the equivalent annuity certain. He should 
instead have used Axxx ,  and he would then have reached the correct solution 

Both de Moivre and Simpson use the value of the reversion 1 - ia, in the 
same manner as today we use A, to find the present value of a copyhold 
and of a perpetual advowson. 

S A x x x I ( l  - A*.rx). 

25.9 SURVIVORSHIP PROBABILITIES AND EXPECTATIONS 
OF LIFE 

Modern texts on life contingencies all begin with a discussion of the life table, 
survivorship probabilities, and expectations of life, whereas the books by de 
Moivre and Simpson end with these problems. The explanation of this 
peculiar order is given by de Moivre (1725, p. VII): 

I t  may perhaps seem somewhat strange that the Speculation concerning 
Survivorship should be postponed to the Rules given for Settling the Values of 
Reversions; when those Values seem to suppose that the Chance of Suruioorship 
is already known. But it will not be difficult to account for the Steps taken in this 
Matter, for although the Notion of Survivorship may successfully be employed in 
determining the Values of Reversiom, yet i t  will be found that the common Cases 
belonging to that Subject, are so easily derived from a proper Combination of 
single and ofjoint Liaes, that any other Consideration would have been entirely 
superfluous. Nevertheless, the Probability of Suroivorship may be useful in resolving 
some extraordinary Cases relating to Reversions. 

De Moivre gives one example of such cases. 
The comprehensive discussion of survivorship probabilities given in the 

first edition (1725, pp. 74-106) is considerably reduced in the later editions, 
where de Moivre omits nearly all the proofs; on the other hand, he adds 
some general formulae. 

In the previous parts of the Annuities, de Moivre expresses all the results 
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as sums; here, however, he considers the life table as continuous and derives 
the results by integration. 

For a life (x) with a complement of life n = o - x, he illustrates his reasoning 
by means of a straight line with time, t, say, moving from the origin to n. 
According to his hypothesis, the probability of life lpx = ( n  - t ) / n  corresponds 
to the ratio of two segments of the line. He supposes that the complement 
of life is “divided into an infinite Number of equal Parts, representing 
Moments.” The probability that (x) is alive at time t and dies between t and 
t + dt is then 

n - t  dt dt 
, p x p x  + I  dt = __ = - , O < t , < n ,  

n 1 1 - t  n 

and 0 otherwise. The symbol px+rdt ,  not used by de Moivre, denotes the 
conditional probability that (x) dies between x + t and x + t + dt, given that 
he is alive at  age x + t .  We shall use this symbol to  save many verbal 
explanations. 

In the following we shall use three lives (x), (y), and (z), ordered according 
to increasing age, so that the complements of life are n 2 m 2 k, say. 

To find the probability that (x) survives (y), de Moivre first finds the 
“Probability of the first Life’s continuing during the Time ,423 [0, t ]  or beyond 
it, and of the Second’s failing just at  the End of that Time,” which is 

n - t d t  
r P x  r P y f l y  +(  dt  = __ , O < t t m ,  

ti m 

and 0 otherwise. He considers the quantity (n - t ) / n m  as the ordinate of a 
curve and finds its area so that the probability in question becomes 

m 
( n  - r)df = 1 - -. 

ntn 2t1 

This proof demonstrates his method and is included in all editions. In 
later editions ( 1  756, p. 324)  he only adds, “By the same method of arguing, 
we may proceed to the finding the Probability of any one of any Number 
of given Lives surviving all the rest, and thereby verify what we have said 
in Prob. XVlII and XIX.” Because of his linear hypothesis the probability 
density of any status of r lives at  time t will be a polynomial in t of at most 
the rth degree, and the survivorship probability is then found by integration. 

As an example we shall give his proof from the first edition of the 
probability that (x) survives both (y) and (2). The probability is composed 
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of three parts 

(2) 
m k 2  

2n 6nm’ 

the first integral giving the probability that (x) survives (z) and that (z) survives 
(y) within the interval (0, k), the second integral giving the probability that 
(x) survives (y) and that (y) survives ( z )  within the interval ( O , k ) ,  and the 
third integral giving the probability that (x) survives (y) within the interval 

In 1738 he gives the general rule for finding the probability that any one 
of a given number of lives survives the rest and states the formulae for five 
lives. He also gives the six probabilities that three lives will die in any given 
order. For example, the probability that the order will be {(z), (y), (x)} is 
found as the probability that (y) survives (z)  minus the probability that (y) 
survives both (z) and (x), which by means of (1) and (2) gives 

( k ,  m) .  

k m kZ 
Pr(T,>T,>T,}=l - - - -++.  

2m 2n 6nm 
(3) 

De Moivre remarks that the formulae for the expectations of life may be 
obtained from those for annuities setting i = 0. However, he does not discuss 
these formulae but turns to the derivation of the expectation of life for a 
continuous life table. 

The expectation for (x) of living through the “moment” dt is tp ,d t .  Hence, 
the expectation of life becomes 

n - t  1 
-__ dt  = -n, 

n 2 

which may also be seen directly. The expectation for two joint lives becomes 

n - t m - t  m m2 
n m  2 6n 

____ dt = - - -. 

He generalizes this result to any number of lives. 
The expectation of life for the longest of two lives is 

(4) 

and so on analogously to the formulae for annuities. 
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To find the expectation of life in general, 

de Moivre uses the piecewise linear approximation, which means that he 
approximates the integral by using the trapezoidal rule. 

Similarly, he approximates the probability that (y) survives (x) 

by a sum of products of the form 

The reader should compare this with the methods used by Huygens and 
Nicholas Bernoulli, see 098.1-8.2. 

In 1743 de Moivre adds one more problem: To find the expected time for 
the rth death among s lives of the same age. 

Without any indication of proof he gives the result as nr/(s + I) ,  where n 
is the complement of life. This is an extension of the result due to Nicholas 
Bernoulli (1709), which is obtained for r = s, see 48.2. Perhaps de Moivre has 
used the same method of proof as Bernoulli. He may have found the 
probability of the rth life dying between t and t + dt, which equals 

and found the expectation oft  by integration by parts. De Moivre ends his 
comments to this problem very effectfully: “This Speculation might be carried 
to any Number of unequal Lives: but my Design not being to perplex the 
Reader with too great Difficulties, I shall forbear at present to prosecute the 
thing any farther.” He does not return to this problem; we shall leave its 
solution to the reader. 

Simpson follows de Moivre closely in his discussion of survivorship 
probabilities; for the evaluation of the integrals involved he uses the 
Newton-Cotes formulae for numerical integration instead of the trapezoidal 
rule used by de Moivre. Instead of discussing expectations of life, he solves 
the following related problem (1742, pp. 124-128): “To determine from a 
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table of observations, and the bills of mortality of any place, the number of 
souls contained in that place.” 

For a given interval of time he considers the number of persons entering 
and leaving the population as defined by the life table, i.e., he defines the 
stationary population corresponding to the life table. He finds the size of 
the population as the yearly number of births times the expectation of life, 

For London he finds C, = 25,500/1280, “whence i t  appears that the number 
of the living, at any one time, born within the bills of mortality of this city, 
is to the number of births happening yearly within the same bills (taken at 
a medium) as 20 to I ,  very near.” He adds that the yearly number of burials 
exceeds the yearly number of births because of migrations. 

Young (1908) is of the opinion that Simpson is “apparently entitled to 
the merit of the first systematic application of the Continuous principle to 
life-contingency questions.” He reaches this conclusion because he does not 
consider de Moivre’s geometrical approach in 1725 as an application of the 
method of fluxions. However, de Moivre’s use of “moments” implies the 
method of fluxions. Simpson took over de Moivre’s reasoning with the only 
modification of introducing the dot notation for the differential element. 
Perhaps the credit should go to Nicholas Bernoulli (1709) who used the 
calculus to find the expected time for the last death among a given number 
of lives, see $8.2. I t  follows from the Doctriize qf fhances  (1718, p. XIV), but 
not from the later editions, that de Moivre knew Bernoulli’s thesis; he does 
not, however, refer to Bernoulli in the Annuities. 

25.10 SURVIVORSHIP INSURANCES 

After having derived survivorship probabilities and expectations of life one 
would have expected de Moivre to continue with the corresponding annuities 
and assurances according to Halley’s principle, i.e., multiplying the 
probabilities by the discounting factor u‘ and evaluating the integrals. 
However, he did not do so but gave a simpler formula based on an incorrect 
argument. 

Consider an assurance 2, payable at the moment of death of (x) and let 
it be split into two parts according to whether (x) dies before or after ( y )  so that 
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with an obvious notation. Expressed in terms of integrals we have 

The corresponding survivorship probabilities are 

so that 

A, = QjY A, + Q:y A,, . (4) 

De Moivre’s mistake consists in setting j:y equal to QiyJx. His reasoning 
has been shown in the following table: 

CONDITION 

~ 

BENEFIT PROBABILITY 

(x) dies before (y) 0 Qjy = m/2n 
(x) dies after (y) 

Expectation: Ax( 1 - rn/2n) 

AX I - Qiy = I - n;/2n 

The probability is calculated under the linear mortality hypothesis, see (9.1). 
The table above corresponds to the simplest example given by de Moivre 
(1756, Problem 17) with the modification that he as usual replaces Ax by 
1 - iux. 

In general, de Moivre’s principle consists in multiplying the unconditional 
assurance by the probability of the condition being fulfilled. He gives several 
such examples in the second and later editions; in the first edition he gives 
one example only. His principle was adopted by Simpson (1742). Perhaps 
they considered this solution as an approximation only but they do not say so. 

In 1752, however, Simpson observes that de Moivre’s principle is wrong. 
He writes (1 752, pp. 322-323), 

’Tis true the Manner of proceeding by first finding the Probability of Survivorship 
(which Method is used in my former Work, and which a celebrated Author on 
this Subject has largely insisted on in three successive Editions) may be applied 
to good Advantage, when the given Ages are nearly equal: But then, it is certain, 
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that this is not a genuine Way of going to  Work; and that the Conclusions hence 
derived are, a t  the best, but near Approximations. The Rate of Interest that Money 
bears must be compounded with the Probability of Survivorship, and the 
Expectation on each particular Year must be determined, in order to have a true 
Solution. 

After having stated the right method for finding survivorship insurances, 
Simpson faced the difficult problem of evaluating the sums and integrals 
involved. He naturally wanted to express the survivorship insurances in terms 
of his tabulated joint-life annuities. We shall demonstrate his way of reasoning 
by two examples. 

Consider first the assurance A:, with the benefit being paid at the end of 
the year so that 

1 "  
of+ l(d,+,ly+l+ 1 + fdx+,dy+Ar Ax,=- c 

I x I ,  1 = 0 
( 5 )  1 

where the last term in the bracket presupposes that the deaths within each 
year are uniformly distributed. Expressing the d's in terms of the I's and 
setting rPx = I + 1 P x -  1 l P x -  1 we get 

which gives Af, in terms of three joint-life annuities. This result is due to 
Baily (1813, pp. 183-185); it is the formula that Simpson was looking for 
but did not find. 

Simpson does not give (5) explicitly, but it is implied in his derivation of 
A:, under the linear hypothesis. Setting I,+, = n - t and I,+, = m - t ,  m d n, 
he finds (1 752,  pp. 3 16-3 18) 

He could of course have expressed the sum as a linear function of an annuity 
certain but he does not do so because this result cannot be generalized; he 
only uses that A:,, varies inversely as n = 2gX. Noting that 

he gets 

1 A,, = +Ayy 2 f( L - ia,,), 
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from which he obtains the approximation 

which is easily applicable, since he has tabulated a, and CX based on his life 
table. The last part of his argument is of course unsatisfactory, and he does 
not give an evaluation of the accuracy of the formula. It will be seen that 
he does not reach Baily's formula because he specializes to the linear 
hypothesis. 

As another example consider an insurance in which (2) gets an annuity 
after (y), if (y) survives (x). Simpson (1752, pp. 318-321) first finds the 
probability that (x) dies before (y) in the sth year as 

which by summation gives the probability that (x) dies before (y) before the 
end of the t th  year as t2/2nm, t < m. The value in question then becomes 

I k  1 '  

2nmk , = 
-- C drpzt2 = --- C d ( k  - t)t2, k < ~ I I  < 11. 
2nm ,= I 

Since 

Simpson writes the result as 

which may be calculated by means of his rule for reducing an annuity on 
three lives to an annuity on two lives. This result, which is exact for a linear 
life table, is then applied to his own life table. 

Simpson's results for survivorship insurances are thus valid only for a 
linear life table. Nevertheless, his contributions represent an essential 
step forward, and his clearly formulated method of proof became of great 
importance for the following generation of actuaries. 
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25.11 

Various schemes of provision for ministers’ widows were established about 
the beginning of the 18th century, some based on a single premium, others 
on yearly premiums to be distributed as benefits in the same year. Between 
1741 and 1744 two Scottish ministers, Alexander Webster and Robert 
Wallace, with some assistance from Colin Maclaurin worked out a plan for 
the Scottish Ministers’ Widows’ Fund of 1744, which has functioned ever 
since. Based on yearly premiums from all Scottish ministers, annuities were 
paid to widows and children. Since the income during the first years of 
operation greatly exceeded the expenses, a fund was built up so that, when 
the stationary state arrived, premiums and interest of the fund would balance 
the benefits and administrative expenses. The actuarial calculations were 
based on statistics on the average number of ministers, widows and orphans 
for the period 1722-1741, on Halley’s life table, and on an interest rate of 
4% as shown in a memorandum probably written by Webster (1748). The 
construction of this fund has served as model for many later pension funds; 
its history has been written by Dunlop (1971) and Dow (1975). 

THE SCOTTISH MINISTERS’ WIDOWS’ FUND OF 1744 

25.12 PROBLEMS 

1. Assuming that the linear mortality hypothesis holds, evaluate the 
accuracy of de Moivre’s approximations (6.1), (6.5), and (6.7) by 
comparison with (6.4). Extend this analysis to three lives. 

2. From the identity a, = axy it follows that ,pw = ,pxy for all r .  Show that 
this equation is satisfied if  and only if Gompertz’s law of mortality holds, 
i.e., if log,p, = cx(c‘- l)logg, so that w may be found from the equation 
cw = cx + cy, see King (1902, Chapter 12). 

3. Prove that the value of a complete annuity approximately equals 
a, + $ A x (  1 + i )” ’ ,  and compare this result with de Moivre’s approxi- 
mation (5.14). 

4. Let (x i ) ,  i =  1,2, ..., be a given number of lives ordered according to 
increasing age, and let n, = o - x i  be the complements of life. Show that 
the probability of (xl) surviving all the other equals 

11; 4 --^-----..., n I----?---- 
2n, 6~1,nz 12n1nzn3 20n,nZit3n4 

see de Moivre ( 1  738, p. 223). 
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5. Under the linear mortality hypothesis prove that 

Compare with (6.4). 

6. Evaluate Ax and A;y for ,px  = (n - t ) /n and f p y  = (m - t)/m, m < n, and 
discuss the accuracy of de Moivre’s approximation to j i y .  Analyze the 
same problem for r p x  = p‘, and r p y  = p i .  

7. Evaluate A;,,, x d y ,  under the linear hypothesis and discuss the accuracy 
of Simpson’s approximation (10.8). 

8. “If A ,  B, C agree amongst themselves to buy an Annuity to be by them 
equally divided whilst they live together, then to be divided equally 
between the two  next Survivors, then to belong entirely to the last 
Survivor, for his life, to find what each of them ought to contribute 
towards the Purchase.” Problem posed by de Moivre (1725, p. 52; 1738, 

Answer: A’s contribution should be A - iAB - )x + im. 
p. 222). 

9. “A and B enjoy an annuity, to which a third person C, after the decease 
of A, is to have the sole right of possession for life, provided B be then 
extinct; otherwise it is to be equally divided between him and B, during 
their joint lives, and then to belong entirely to C, for life, if he be the 
last survivor: To find the value of the right of C in that annuity.” Problem 
posed by Simpson ( I  742, p. 70). 
Answer: C - A? - $FC + +A. 

10. “D, whilst in Health, makes a Will, whereby he bequeaths 500E to E, and 
300f to F, with this Condition, that if either of them dies before him, 
the whole is to go to the Survivor of the two; what are the Values of 
the Expectations of E and F, estimated from the time that the Will was 
writ?” Problem posed by de Moivre (1743, p. 50). 

Show that the expectation of E according to the method of de Moivre 
equals 331.65. Find the correct value under the linear mortality 
hypothesis, expressing the integrals in terms of continuous annuities 
certain. Show that this gives 327.15 for Es expectation. 
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190, 281-282, 504-505 
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Galen ( I  29-200). 20 
Galilei. Galileo (1564-1642): 

absolute deviations, sum. 150, 156- 159 
astronomical observations, 24 
and Catholic church, 24, 
and Chiaramonti, 149- 159 
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distribution of score of three dice, 41 
error theory, 149-150 
experimentation, I49 
mathematization of physics, 25, 149 
statistical analysis of astronomical data, 

mentioned. 6, 13, 17, 21, 22, 26, 42, 44, 

156- I60 

150-160 

66, 171, 184, 221 

problem), 63, 68, 76-78, 79, 202-204, 
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and lotteries 

Gambler’s Ruin problem (Huygens’ fifth 

Games of chance, see iirider nnme of game 

Gani, J . ,  189 
Garber, D., 32 
Gauss, Carl Friedrich (1777-1855). 167 
Generating functions: 

definition, 21 I 
for length of runs, 417-421 
for m-combinations with repetitions. 212 
for m-permutations with repetitions. 213 
for ruin probability in duration of play, 

46 1-463 

for sum of points in dicing, 21 1-212 
in Waldegrave’s problem, 391 -392 

Geometric distribution, 55-56 
Gerson. Levi ben (1288-1344). 53 
Gilbert William (1544- 1603). 24 
Gillies, D. A.,  400 
Gillispie, C. C., 12 
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differences in Halley’s life table, 516 
distribution of parallaxes, 158 
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Galileo’s proof of distance formula, 155 
by Halley of probabilities of compound 

Halley’s and Simpson’s life tables, 519 
by Huygens of Gambler’s Ruin problem, 77 
by Huygens of Graunt’s life table, 109 
Lexis diagram for Halley’s life table, 133 
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of binomial probabilities, 272 
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random walk diagram for problem of points, 

standardized deviations for sex ratio at birth, 

171, 275-280, 285, 491 

events, 140 
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in tennis, 242 

62 
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Graunt. John ( 1620- 1674): 

authorship of the Obserwtions, 86 
and Bacon, 23. 88, 104 
bills of mortality, 82-85 
biography, 85-86 
critical appraisal of data. 84, 89-91 
correlation between two time series, 95-96 
course of plague epidemic. 85 
estimates of population size, 96-100 
fluctuations in time series of burials and 

christenings, 94-95 
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history and provenance of data, 83-85 
life table, 100- 103 
and Lord Moray, 88 
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migrations. 98- 100 
mortality by cause of death. 91-92 
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rnenrioned, 6, 13, 23, 82. 106, 134, 138, 
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491, 505. 515 

118. 121-122, 138. 376 
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Hald. A.,  115. 141, 160. 169. 267, 364. 365. 
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279-280, 46Y, 491 

117, 141 

234 

366. 370. 374, 402, 455 

annuity, table of value of single-life. 139, 

biography, 13 I - 132 
deaths at Breslau 1687- 1691, age distribu- 

endowment. value, 141. 519-520 

509 

tion. 135 

life assurance, 139 
life table, 136. 138. 515-516, 519 
median remaining lifetime. I39 
and de Moivre, 398 
and Newton. 132. 175 
pictorial representation of compound events. 

probability of compound events, 139-141 
single-life, joint-life and reversionary annui- 

smoothing. 137 
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nienrioried, 7. 13. 103, I I I ,  I 16. I 18, I 19, 

129, 131, 252. 290, 336, 378. 395, 399, 
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I39 

ty, value, 139-141, 509, 519-520 
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Hartley, David (1705- 1757), 400 
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256, 313-314 

24 I 

188. 290 
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106. 122, 123, 125-127, 128-129, 202, 
22 I 

Hull. Charles H.. 83. 84, 103. 104, 105 
Huygens. Christiaan (1629-1695): 

analytical method, 72-73, 74-75 
biography. 65-68 
and Carcavi, 63, 68. 74, 75, 76 
conditional distribution. expectation and 

De Rarionciniis in Liido Aleae, genesis of, 
probability, 108-1 10 

67-68 
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dicing problems, 71 -72 
equivalent lottery, 69 
expectation of fair game, 69 
expectation of life, 106-108 
and Fermat, 68. 74, 75. 76 
the five problems, 74-78 
Gambler’s Ruin problem, 63, 68, 76-78 
graph of Gambler’s Ruin problem, 77 
graph of Graunt’s life table, 109 
and Hudde, 76. 78. 126 
and Lodewijk Huygens, 78, 106-108 
joint-life expectation, 108- I 10 
median remaining lifetime, 108 
de MCrt’s problem, 71 
and Newton, 174 
and Pascal, 63. 68, 76 
probabilistic interpretation of Graunt’s life 

problem of points, 70-71 
recursion on expectations, 70-72, 75 
sum of points at dicing, distribution, 204 
survivorship probabilities, 108-1 10 
nzenriotied, 4, 6, 10, 13, 19, 27, 40. 63, 

table, 106-1 10 
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401. 426, 542 
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Huygens’ analytical method, 72-73, 198- 199, 

Huygens’ five problems, 68, 198-204. 352, 
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106-108, 110, 112, 128, 131 

201, 380-383, 402 

373. 464 
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Inclusion and exclusion, method, 209, 330, 
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Induction, mathematical, 48, 51, 53, 232, 

Infinite series in probability theory, 184- 185, 
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Interpolation, 176- I82 
Inverse of Bernoulli’s theorem, 263, 489-495, 
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Kersseboom, Willetn (1691-1771). 395, 513 
Kiefer, Jack C. (1924-1981), 272 
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Lacroix, Silvestre F. (1765-1843). 438 
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difference equations, solution, 431 -432, 

441 -447, 450-452, 465-466 
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Laplace, Pierre-Simon de (continued) Maclaurin. Colin (1698-1746), 484, 547 
MacMahon, Percy A. (1854-1929). 344 duration of play, problem of, 361, 452-456. . .  

46 1-463 
even and odd. 464 
generating functions, 21 1-212, 450-452, 

46 1-463 
normal approximation to binomial distribu- 

tion, 495-497 
occupancy problem, 416-417 
Pascal’s wager, 187 
principle of insufficient reason, 252 
problem of points, 465 
theory of runs. 42 I 
Waldegrave’s problem. 391 -392 
nwnrioned, 5 ,  8, 9, 10. 58, 192. 248, 268, 

340, 341, 348, 438, 494, 498, 506, 507 
Law of large numbers, 225, 257-274, 472, 

489-491.497 
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19, 134, 170, 172, 173. 184, 185. 189. 
221. 222. 223. 229, 235. 247. 252-253, 
286, 329. 35 I ,  399. 400, 425 
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tiber de Litdo Aleae, 37-4 I 
Life annuity, see Annuity, value 
Life assurance, 139. 508. 535-539, 543-546 
Life tables by: 

van Dael, 121-122 
Deparcieux, 395. 396. 513 
Graunt, 100-103. 107, 122 
Halley. 136. 138 
Kersseboom, 395. 513 
Klingenberg (Tonti). 12 I - 122 
Simpson, 5 18-5 I9 
Smart. 518 
Struyck, 395-396 
de Witt, 124, 129 

Locke, John (1632-1704). 24, 187-188, 254 
M v e ,  Michel (1907-1979), 343 
Logarithms, invention and tables, 16- 17 
Logical probability. 28, 30 
Longomontanus, Christen S. (1562- 1647). 

Lotteries, 34, 69, 310, 323, 377. 394, 

Lucas, H.-C., 560 
Luck, good or bad, 226, 289, 406-407 
Luther. Martin (1483- 1546). 22 
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422-423 

McClintock. B., 356, 402 

Mahoney. M. S.. 44 
Maistrov, L. E., I I .  150, 270 
Makeham, William M. (1826-1891). 513 
Malebranche, Nicolas de (1638-1715). 

Markov. Andrei A. (1856- 1922), 224, 

Maseres, Francis ( 1734- 1824). 224 
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Maty, Matthew (1718-1776). 397, 401 
Maximum likelihood, 506 
Mazarin, Jules (1602-l661). 120 
Mean deviation of the binomial distribution, 

Median lifetime, 108-109, 112, 139 
Meitzen. August (1822-1910). I2 
Melanchthon, Philip (1497- 1560). 22 
Mercator, Nicolaus (c. 1620- l687), 230 
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Mesnard. J., 563 
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Minimax solution, 320-321 
MisceIiunea Anaivka,  472-473 
Mixed strategy. 319-322 
Modelbuilding in astronomy, 160-168, 

Modulus of the binomial distribution, 486, 

Moivre, Abraham de (1667- 1754): 
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268-269 

470-472 

I 75- I 76 

490 

addition rule for probabilities. 403 
Annuities ripon Lilies, content, 509-5 I3 
annuity, value, 

complete. 527 
joint-life, 528-534 
reversionary, 526, 534-535 
single-life, 119, 520-527 
tables, 524-525 
temporary. 522-523, 526 

backward recursion for value of annuity. 

Basselte. 240. 303 
binomial distribution: 

520-521, 523-524, 526 

derivation, 196. 403, 409 
approximations, 472-480. 481, 484. 
485-489 

biography, 397-401 
bowls, probability of winning a game, 

309 
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calculus, use, 540-543 
chance versus design, 285, 407, 491 
Cheyne, dispute with, 399 
coincidences, problem, 338-340, 344 
complement of life, 5 17 
compound probability theorem, 326, 

conditional probability and expectation, 403, 

De Mensitra Sortis. content, 401-404 
dependent events, probability, 409 
difference equations, see Recurring series 
Doctrine of Chances: 

prefaces, 404-408 
content, 408-413 

algorithm, 356-359 
continuation probability, 357, 359, 372 
problem, 356-373 
recursion formulae, 366-370 
ruin probability, 358-360, 362-364 
trigonometric formula, 372, 433-437 

expectation of life, 541-542 
expectation of r th  smallest observation, 542 
generating functions, 210-21 I .  418 
and Halley, 398 
Halley’s life table, 515-516 
Huygens’ analytical method, 407 
Huygens’ five problems, 198-204 
Huygens’ treatise, 241, 397, 402 
hypergeometric distribution, 422 
inclusion and exclusion, method, 336-337, 

infinite series in probability, use, 386-390 
and James Bernoulli, 405-406 
and John Bernoulli, 399, 400, 406 
law of large numbers, 406, 472, 490-491 
life assurance, value, 535-537 
linear approximation to life table, 515-518 
lotteries, 422-428 
luck, good or bad, 406-407 
mean deviation of binomial distribution, 

median duration of Bernoulli trials, 214-216 
median duration in ruin problem, 436-437 
Miscellanea Analytica, 472-473 
modulus of binomial distribution, 486, 490 
and Montmort, 286, 290, 291, 361, 402, 

multinomial distribution, 197-198 
multiplication rule for probabilities, 403, 409 

336-338 

409 

duration of play: 

415 

470-472 

405-406, 428 

and Newton, 400-401 
and Nicholas Bernoulli. 285, 361, 391, 406, 

non-normal approximations to symmetric 

normal approximation to binomial distribu- 

occupancy problem, 414-41 7, 423 
original design, 27, 491 
Pharaon. 303 
Poisson approximation to binomial distribu- 

probability concept, 402-403, 491 -492 
probability of continuation and ruin, see 

Duration of play in the ruin problem 
probable error, 487 
problem of points, 196-198, 422 
reciprocal equations, 357 
recurring series, theory, 370-372, 

reversions, 535-539 
and Robartes, 308, 401 
runs, theory, 417-420, 423, 424 
and Simpson, 400. 414, 512, 532 
and Stirling, 469, 471, 472-473, 476, 485 
Stirling’s formula, 469-470, 482-484 
successive lives, value, 537-539 
summation of series, 234, 4 13, 426-433 
sum of points at dicing, distribution, 204, 

survivorship insurances, value, 543-544 
survivorship probabilities, 539-541. 542 
and Taylor, 389 
waiting time distribution, multinomial, 198 
Waldegrave’s problem, 378, 379, 386-391 
tfieritioned, 2, 3, 4, 5 ,  7, 9, 10, 16, 29, 40, 

41, 5 5 ,  58, 63, 78, 170, 180, 185, 191. 
192, 233, 235, 252, 266. 268, 292, 297, 
340, 343, 348, 354, 442. 450, 453. 461, 
463, 496, 500. 501, 503, 505 

49 I 

binomial, 472-480, 484 

tion, 468-470, 485-495 

tion. 214-216 

425-433 

210-21 I 

Montmort, Pierre Rernond de ( 1678- I7 19): 
advantage of player, 297 
Bassette, 240, 303 
binomial waiting time distribution, 197 
biography. 286-287 
bowls. probability of winning a game, 

coincidences, problem, 328-331, 333-336 
combinatorics, 292-296 
commentary on De Meriswa Sortis, 291, 

308-309 

403-404 
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Montmort. Pierre Remond de (conrinue4 
duration of play. problem, 349-352. 356, 

E S S N ~  d’AmrIue, content, 287 
figurate numbers. 293, 299-301 
handicap in tennis, 313-314 
Her. strategy in game, 314-321 
history of probability theory, 188, 290. 291 
Huygens’ analytical method, 199 
Huygens’ five problems, 198-204 
hypergeometric distribution. 293 
inclusion and exclusion, method, 209, 330 
infinite series in probability. use. 199 
and James Bernoulli. 288 
and John Bernoulli, 196-197, 223, 

Lansquenet, 303-306 
and Leibniz. 286. 287. 329 
lotteries, 310. 323 
and de Moivre, 286. 291, 308-309, 361. 

402, 405-406. 428 
multinomial distribution, 293-294 
and Newton. 286, 287 
and Nicholas Bernoulli, 287, 292, 310-322. 

occupancy numbers, distribution of, 

Pharaon. 297-303 
Poisson distribution as approximation to 

coincidence probabilities. 335-336 
preface, 288-290 
problem of points. 196-198 
problems for the reader, 324-325. 328. 335 
Quinquenove. 237 
randomization of the number of trials, 216, 

randomized strategy. 3 19 
recursion, 202, 298. 309. 329. 330, 333, 

Robartes’ problem, 308-309 
summation of series, 233-234, 296-297, 

sum of poinls at card drawings, distribution, 

sum of points at dicing. distribution, 

and Taylor, 287 
tennis. problem of points. 312-314 
Treize. see Coincidences 
waiting time distribution for first coinci- 

dence. 330. 333-334 

357,437 

301-302, 310 

328-335,350-353.378-379 

294-296 

3 13-3 14 

335 

428 

213 

204-210 

and Waldegrave, 312. 318-322, 378 
Waldegrave’s problem, 378-392 
menfiuned. 4,  9, 10, 40. 41. 61. 63. 78. 

170, 183, 185, 191. 192, 213, 252, 336, 
340, 348, 400, 402. 404. 407, 414, 425, 
426,461, 469 

Mora-Charles, M. S. de. 185 
Moral certainty, 248-249 
Moray. Robert (c. 1608-1673). 88, 106 
Morgan, Augustus de ( 1806- I87 I ) ,  392 
Morgensrern,.Oskar (1902 - 1977). 320 
Mortality, see nlso Life tables by 

in Breslau. 135-136 
i n  Geneva, 102 
in Holland. 126- 127, 395-396 
in London. 97. 100-102. 518-519 
in Romsey. 97 
in Switzerland. I15 

Mortality by cause of death. 91-92 
Multinomian coefficient. 54, 294 

distribution. 198, 293-294 
expansion, 294. 398 

Multiplication rule for probabilities. 39-40, 
42. 226. 403, 409 

Mylon. Claude, 67, 68 

Napier. John (1550-16171, 16 
Naux, C.,  17 
Negative binomial distribution. see binomial 

Nemeskeri. J.. 122 
Netto. Eugen (1846-1919), 344 
Neumann. Caspar (l648-1715), 134. 252 
Neumann. John von (1903-19571. 320 
Newton, Isaac (1642- 1727): 

analysis and synthesis. method. 176 
binomial expansion, 173 
biography, 172- I73 
calculus, invention. 173- I74 
and Cotes, 175 
and Halley. 175 
and Hooke, 175 
interpolation formulae, 176- 180 
law of gravitation, 175-176 
laws of motion, 174-175 
and Leibniz. 174 
and de Moivre, 400-401 
and Montmort, 286, 400 
and Nicholas Bernoulli, 400 
orbit of a comet. 180-182 
Prirrcipin Matheninricn. 22. 174- 176 

waiting time distribution 
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probability, 189 
quadrature, I80 
statistics. I89 
theology, 173 
mentioned, 6, 16, 18. 19, 22, 23, 27, 67, 

160. 167. 170, 172. 221, 222, 286, 397. 
399, 425, 470 

Newton-Bessel interpolation fortnula, 179 
Newton-Cotes quadrature formulae, I80 
Newton-Raphson formula, 182 
Newton-Stirling interpolation formula, 179 
Nicole, Pierre (1625-1695). 31, 63 
Nieuwentyt, Bernard ( I  654-1 7 18). 279,285,396 
Normal approximation to binomial distribution, 

Normal distribution: 
485-503 

as limit of binomial distribution. 485-503 
calculation of integral, 486-487 
as error distribution. 506-507 

Objective certainty. 247 
Objective probability, 28, 245 
Obserr,ations made irpon the Bills of Mortality, 

Occupancy numbers, distribution. 294-296, 

Occupancy problem, 414-417, 423 
Ockham, William of (1285-1349), 20 
Oettinger, Ludwig (1797-1869), 342, 345 
Opinion, 30, 31 
Orbais, Abbt de, 318 
Orbit: 

of comet, 180-182 
of planets, 507 

Ore. Oystein (1899-1968). 37, 38. 45 
Outliers. 281-282 

content, 86-89 

322 

Pacioli, Luca (c.1445-c.1514), 14, 35 
Parzen, E., 343 
Pascal, Blaise (1623-1662): 

arithmetic triangle. 45-54 
and Arnauld, 44, 63 
axioms for division of stake, 56 
binomial distribution. symmetric, 58 
binomial expansion. 50 
biography. 44-45 
calculating machine, 44 
and Carcavi, 43. 67, 68, 76 
combinatorial numbers, 5 I 
conditional expectation. 57 
expectation of player, 56 

and Fermat, 43. 45, 59-63 
figurate numbers, 50 
Gambler’s Ruin problem, 63, 76. 78, 79 
and Huygens, 63, 67. 68. 76 
induction. mathematical, 48, 51, 58 
de MCri’s problem, 54-55 
and Mersenne. 44, 54 
problem of points, 56-63 
recursion, 46. 49. 52, 57 . 
and Roberval, 60 
sum of powers of integers, 52-53 
mentioned, 4, 10. 13, 18, 19, 27, 35, 40, 

41, 54, 66. 70, 183, 184. 188. 196, 213, 
229. 232. 253. 290, 292, 401, 426 

Pascal’s wager. 63-64, 187 
Pasquier, Louis G. du, I21 
Pearson, Egon S. (1895-1980). 12, 485 
Pearson, Karl (1857-1936). I I .  82, 104, 105, 

279, 285, 396. 399, 401. 485, 492, 498, 
506, 513 

Pearson’s system of frequency curves, 506 
Pension fund. 547 
Pepys, Samuel (1633-1703), 189 
Permutations, 53-54, 184. 213, 229, 

Personal probability, 28, 248 
Petersburg problem, 7. 31 I ,  393 
Petry. M. J . ,  560 
Petty, William (1623-1687). 6,  24. 34, 82. 

Peverone, Giovanni F. (1509-1559). 36 
Pharaon. 297-303 
Plackett. R .  L.. 12. 82. 145. 147, 190 
Plague deaths, 82-85 
Planetary orbits, inclination, 507 
Planets, motion. 160-168, 175-176 
Planning of observations, 146- 148 
Plato (427-347BC3, 22 
Poisson. SimCon-Denis (1781-1840). 

216-217. 225, 246 
Poisson approximation to binomial distribu- 

tion, 213-217 
Poisson distribution as approximation to coinci- 

dence probabilities, 335-336. 341 -342 
Political arithmetic. 82, 104-105 
Popper, K. R . ,  248 
Prestet, Jean (1648-1690), 188, 229, 230 
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